Journal articles on the topic 'Biopolymers – Analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Biopolymers – Analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ramadhan, Romal, Muslim Abdurahman, and Falan Srisuriyachai. "Sensitivity Analysis Comparisson of Synthetic Polymer and Biopolymer using Reservoir Simulation." Scientific Contributions Oil and Gas 43, no. 3 (2020): 143–52. http://dx.doi.org/10.29017/scog.43.3.516.
Full textAslam Khan, Muhammad Umar, Saiful Izwan Abd Razak, Wafa Shamsan Al Arjan, et al. "Recent Advances in Biopolymeric Composite Materials for Tissue Engineering and Regenerative Medicines: A Review." Molecules 26, no. 3 (2021): 619. http://dx.doi.org/10.3390/molecules26030619.
Full textZupančič, Gregor Drago, Anamarija Lončar, Sandra Budžaki, and Mario Panjičko. "Biopolymers Produced by Treating Waste Brewer’s Yeast with Active Sludge Bacteria: The Qualitative Analysis and Evaluation of the Potential for 3D Printing." Sustainability 14, no. 15 (2022): 9365. http://dx.doi.org/10.3390/su14159365.
Full textSoldo, Antonio, Victor Aguilar, and Marta Miletić. "Macroscopic Stress-Strain Response and Strain-Localization Behavior of Biopolymer-Treated Soil." Polymers 14, no. 5 (2022): 997. http://dx.doi.org/10.3390/polym14050997.
Full textSoldo, Antonio, and Marta Miletic. "Durability against Wetting-Drying Cycles of Sustainable Biopolymer-Treated Soil." Polymers 14, no. 19 (2022): 4247. http://dx.doi.org/10.3390/polym14194247.
Full textVenkateshaiah, Abhilash, Vinod V. T. Padil, Malladi Nagalakshmaiah, Stanisław Waclawek, Miroslav Černík, and Rajender S. Varma. "Microscopic Techniques for the Analysis of Micro and Nanostructures of Biopolymers and Their Derivatives." Polymers 12, no. 3 (2020): 512. http://dx.doi.org/10.3390/polym12030512.
Full textBaidurah, Siti. "Methods of Analyses for Biodegradable Polymers: A Review." Polymers 14, no. 22 (2022): 4928. http://dx.doi.org/10.3390/polym14224928.
Full textHamzah, Amir. "The Characteristics and The Making of Biopolymer Film from Oil Palm Trunk Starch (Elaeis guineensis Jacq.) Using Sorbitol Plasticizer." Journal of Chemical Natural Resources 1, no. 2 (2019): 11–22. http://dx.doi.org/10.32734/jcnar.v1i2.1249.
Full textChen, Huanwen, David Touboul, Matthias Conradin Jecklin, Jian Zheng, Mingbiao Luo, and Renato Zenobi. "Manipulation of Charge States of Biopolymer Ions by Atmospheric Pressure Ion/Molecule Reactions Implemented in an Extractive Electrospray Ionization Source." European Journal of Mass Spectrometry 13, no. 4 (2007): 273–79. http://dx.doi.org/10.1255/ejms.879.
Full textMistretta, Maria Chiara, Luigi Botta, Rossella Arrigo, Francesco Leto, Giulio Malucelli, and Francesco Paolo La Mantia. "Bionanocomposite Blown Films: Insights on the Rheological and Mechanical Behavior." Polymers 13, no. 7 (2021): 1167. http://dx.doi.org/10.3390/polym13071167.
Full textMorales-Jiménez, Mónica, Luisa Gouveia, Jorge Yáñez-Fernández, Roberto Castro-Muñoz, and Blanca Estela Barragán-Huerta. "Production, Preparation and Characterization of Microalgae-Based Biopolymer as a Potential Bioactive Film." Coatings 10, no. 2 (2020): 120. http://dx.doi.org/10.3390/coatings10020120.
Full textKaddo, Maria. "Analysis of the possibility of using polylactide in production of building materials." E3S Web of Conferences 217 (2020): 01012. http://dx.doi.org/10.1051/e3sconf/202021701012.
Full textDara, Pavan Kumar, Mahadevan Raghavankutty, Karthik Deekonda, et al. "Synthesis of Biomaterial-Based Hydrogels Reinforced with Cellulose Nanocrystals for Biomedical Applications." International Journal of Polymer Science 2021 (September 7, 2021): 1–14. http://dx.doi.org/10.1155/2021/4865733.
Full textCherednichenko, Kirill, Dmitry Kopitsyn, Svetlana Batasheva, and Rawil Fakhrullin. "Probing Antimicrobial Halloysite/Biopolymer Composites with Electron Microscopy: Advantages and Limitations." Polymers 13, no. 20 (2021): 3510. http://dx.doi.org/10.3390/polym13203510.
Full textAhn, Seongnoh, Kwangkuk Ahn, Changho Lee, Jun-Dae Lee, and Jongwon Jung. "Evaluation of Dynamic Properties and Ground-Response Analysis of Soil Reinforced with Cement and Biopolymer." Journal of the Korean Society of Hazard Mitigation 20, no. 5 (2020): 291–96. http://dx.doi.org/10.9798/kosham.2020.20.5.291.
Full textAremu, Mujidat O., Mofoluwake M. Ishola, and Mohammad J. Taherzadeh. "Polyhydroxyalkanoates (PHAs) Production from Volatile Fatty Acids (VFAs) from Organic Wastes by Pseudomonas oleovorans." Fermentation 7, no. 4 (2021): 287. http://dx.doi.org/10.3390/fermentation7040287.
Full textHrnčiřík, Pavel. "Monitoring of Biopolymer Production Process Using Soft Sensors Based on Off-Gas Composition Analysis and Capacitance Measurement." Fermentation 7, no. 4 (2021): 318. http://dx.doi.org/10.3390/fermentation7040318.
Full textKlishanets, E. T. "Analysis of existing applications of the biopolymer chitin and its derivatives." Vesnik of Yanka Kupala State University of Grodno. Series 6. Engineering Science 12, no. 1 (2022): 99–106. http://dx.doi.org/10.52275/2223-5396-2022-12-1-99-106.
Full textGasljevic, K., and E. F. Matthys. "Ship Drag Reduction by Microalgal Biopolymers: A Feasibility Analysis." Journal of Ship Research 51, no. 04 (2007): 326–37. http://dx.doi.org/10.5957/jsr.2007.51.4.326.
Full textYahya, Esam Bashir, Fauziah Jummaat, A. A. Amirul, et al. "A Review on Revolutionary Natural Biopolymer-Based Aerogels for Antibacterial Delivery." Antibiotics 9, no. 10 (2020): 648. http://dx.doi.org/10.3390/antibiotics9100648.
Full textKumar, Ravinder, Naresh Kumar, Vishnu D. Rajput, et al. "Advances in Biopolymeric Nanopesticides: A New Eco-Friendly/Eco-Protective Perspective in Precision Agriculture." Nanomaterials 12, no. 22 (2022): 3964. http://dx.doi.org/10.3390/nano12223964.
Full textSurya, Indra, C. M. Hazwan, H. P. S. Abdul Khalil, et al. "Hydrophobicity and Biodegradability of Silane-Treated Nanocellulose in Biopolymer for High-Grade Packaging Applications." Polymers 14, no. 19 (2022): 4147. http://dx.doi.org/10.3390/polym14194147.
Full textTeleky, Bernadette-Emőke, and Dan Cristian Vodnar. "Recent Advances in Biotechnological Itaconic Acid Production, and Application for a Sustainable Approach." Polymers 13, no. 20 (2021): 3574. http://dx.doi.org/10.3390/polym13203574.
Full textKong, Dexu, and Lee D. Wilson. "Uptake of Methylene Blue from Aqueous Solution by Pectin–Chitosan Binary Composites." Journal of Composites Science 4, no. 3 (2020): 95. http://dx.doi.org/10.3390/jcs4030095.
Full textSikorska, W., M. Zięba, M. Musioł, et al. "Forensic Engineering of Advanced Polymeric Materials—Part VII: Degradation of Biopolymer Welded Joints." Polymers 12, no. 5 (2020): 1167. http://dx.doi.org/10.3390/polym12051167.
Full textShutilin, Y. F. "About molecular transformations of biopolymers." Proceedings of the Voronezh State University of Engineering Technologies 83, no. 4 (2021): 238–45. http://dx.doi.org/10.20914/2310-1202-2021-4-238-245.
Full textAcharya, Raju, Aravind Pedarla, Tejo V. Bheemasetti, and Anand J. Puppala. "Assessment of Guar Gum Biopolymer Treatment toward Mitigation of Desiccation Cracking on Slopes Built with Expansive Soils." Transportation Research Record: Journal of the Transportation Research Board 2657, no. 1 (2017): 78–88. http://dx.doi.org/10.3141/2657-09.
Full textGumowska, Aneta, Eduardo Robles, and Grzegorz Kowaluk. "Evaluation of Functional Features of Lignocellulosic Particle Composites Containing Biopolymer Binders." Materials 14, no. 24 (2021): 7718. http://dx.doi.org/10.3390/ma14247718.
Full textRyou, Jae-Eun, and Jongwon Jung. "Analysis of Biopolymer Solution Injectability Based on Pore Size Distribution and Injection Pressure Using Pore Network Model." Journal of the Korean Society of Hazard Mitigation 22, no. 6 (2022): 219–27. http://dx.doi.org/10.9798/kosham.2022.22.6.219.
Full textQuigley, Wes W. C., and Norman J. Dovichi. "Capillary Electrophoresis for the Analysis of Biopolymers." Analytical Chemistry 76, no. 16 (2004): 4645–58. http://dx.doi.org/10.1021/ac040100d.
Full textKrylov, Sergey N., and Norman J. Dovichi. "Capillary Electrophoresis for the Analysis of Biopolymers." Analytical Chemistry 72, no. 12 (2000): 111–28. http://dx.doi.org/10.1021/a1000014c.
Full textHu, Shen, and Norman J. Dovichi. "Capillary Electrophoresis for the Analysis of Biopolymers." Analytical Chemistry 74, no. 12 (2002): 2833–50. http://dx.doi.org/10.1021/ac0202379.
Full textWegrzynowska-Drzymalska, Katarzyna, Kinga Mylkie, Pawel Nowak, et al. "Dialdehyde Starch Nanocrystals as a Novel Cross-Linker for Biomaterials Able to Interact with Human Serum Proteins." International Journal of Molecular Sciences 23, no. 14 (2022): 7652. http://dx.doi.org/10.3390/ijms23147652.
Full textAlvarez Chavez, Brenda, Vijaya Raghavan, and Boris Tartakovsky. "A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies." RSC Advances 12, no. 25 (2022): 16105–18. http://dx.doi.org/10.1039/d1ra08796g.
Full textKwon, Tae-Hyuk, and Jonathan B. Ajo-Franklin. "High-frequency seismic response during permeability reduction due to biopolymer clogging in unconsolidated porous media." GEOPHYSICS 78, no. 6 (2013): EN117—EN127. http://dx.doi.org/10.1190/geo2012-0392.1.
Full textAmalia, Dewi, Bagus Guritno, and Geni Firuliadhim. "Pengaruh Biopolimer Pada Stabilitas Lereng Swelling soil." Borneo Engineering : Jurnal Teknik Sipil 5, no. 3 (2021): 307–16. http://dx.doi.org/10.35334/be.v5i3.2099.
Full textAguirre Calvo, Tatiana, and Patricio Santagapita. "Physicochemical Characterization of Alginate Beads Containing Sugars and Biopolymers." Journal of Quality and Reliability Engineering 2016 (September 7, 2016): 1–7. http://dx.doi.org/10.1155/2016/9184039.
Full textNi, Jing, Gang-Lai Hao, Jia-Qi Chen, Lei Ma, and Xue-Yu Geng. "The Optimisation Analysis of Sand-Clay Mixtures Stabilised with Xanthan Gum Biopolymers." Sustainability 13, no. 7 (2021): 3732. http://dx.doi.org/10.3390/su13073732.
Full textGumowska, Aneta, Eduardo Robles, Arsene Bikoro, Anita Wronka, and Grzegorz Kowaluk. "Selected Properties of Bio-Based Layered Hybrid Composites with Biopolymer Blends for Structural Applications." Polymers 14, no. 20 (2022): 4393. http://dx.doi.org/10.3390/polym14204393.
Full textTuszyński, Jack, Stéphanie Portet, and John Dixon. "Nonlinear assembly kinetics and mechanical properties of biopolymers." Nonlinear Analysis: Theory, Methods & Applications 63, no. 5-7 (2005): 915–25. http://dx.doi.org/10.1016/j.na.2005.01.089.
Full textAmani, Fateme, Atefe Rezaei, Hajar Akbari, Cristian Dima, and Seid Mahdi Jafari. "Active Packaging Films Made by Complex Coacervation of Tragacanth Gum and Gelatin Loaded with Curcumin; Characterization and Antioxidant Activity." Foods 11, no. 20 (2022): 3168. http://dx.doi.org/10.3390/foods11203168.
Full textArias-Nava, Elias H., Delia J. Valles-Rosales, and B. Patrick Sullivan. "Biopolymer Non-Parametric Analysis: A Degradation Study under Accelerated Destructive Tests." Polymers 15, no. 3 (2023): 620. http://dx.doi.org/10.3390/polym15030620.
Full textCedillo, Gerardo, and Emilio Bucio. "Solid State NMR Analysis of Two Grafted Biopolymers." MRS Proceedings 1767 (2015): 113–18. http://dx.doi.org/10.1557/opl.2015.234.
Full textComoglio, Federico, and Maurizio Rinaldi. "Rknots: topological analysis of knotted biopolymers with R." Bioinformatics 28, no. 10 (2012): 1400–1401. http://dx.doi.org/10.1093/bioinformatics/bts160.
Full textKnorre, D. G. "Physicochemical Biology: Conquered Boundaries and New Horizons." Acta Naturae 4, no. 2 (2012): 36–43. http://dx.doi.org/10.32607/20758251-2012-4-2-36-43.
Full textKnorre, D. G. "Physicochemical Biology: Conquered Boundaries and New Horizons." Acta Naturae 4, no. 2 (2012): 36–43. http://dx.doi.org/10.32607/actanaturae.10624.
Full textChen, Chunhui, Zesen Peng, JiaYu Gu, Yaxiong Peng, Xiaoyang Huang, and Li Wu. "Exploring Environmentally Friendly Biopolymer Material Effect on Soil Tensile and Compressive Behavior." International Journal of Environmental Research and Public Health 17, no. 23 (2020): 9032. http://dx.doi.org/10.3390/ijerph17239032.
Full textSilva, Nadeeshika, and Dagnija Blumberga. "Why Biopolymer Packaging Materials are Better." Environmental and Climate Technologies 23, no. 2 (2019): 366–84. http://dx.doi.org/10.2478/rtuect-2019-0074.
Full textMohan, TP, Kay Devchand, and K. Kanny. "Barrier and biodegradable properties of corn starch-derived biopolymer film filled with nanoclay fillers." Journal of Plastic Film & Sheeting 33, no. 3 (2016): 309–36. http://dx.doi.org/10.1177/8756087916682553.
Full textNoworyta, Andrzej, Anna Trusek, and Maciej Wajsprych. "Membrane reactor for enzymatic depolymerization – a case study based on protein hydrolysis." Polish Journal of Chemical Technology 20, no. 4 (2018): 44–48. http://dx.doi.org/10.2478/pjct-2018-0053.
Full text