Academic literature on the topic 'Bioreactor design'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bioreactor design.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bioreactor design"

1

Fitzpatrick, John J. "Insights from Mathematical Modelling into Energy Requirement and Process Design of Continuous and Batch Stirred Tank Aerobic Bioreactors." ChemEngineering 3, no. 3 (July 13, 2019): 65. http://dx.doi.org/10.3390/chemengineering3030065.

Full text
Abstract:
Bioreaction kinetics, oxygen transfer and energy modelling were applied to stirred tank aerobic bioreactors. This was done to investigate how key input design variables influence bioreactor size, feed and wasted substrate, and electrical energy requirements for aeration and cooling, and to compare batch and continuous modes of operation. Oxygen concentration in the liquid is a key input design variable, but its selection is challenging as it can result in design trade-offs. Reducing its value caused a decrease in electrical energy requirement, however this tended to increase the working volume of the bioreactor. The minimum or near-to-minimum total energy requirement for oxygen transfer occurred when operating at the onset of flooding throughout the bioreaction time. For typical KS values, continuous mode of operation required a much smaller bioreactor volume, due to higher operating cell concentration, and this is a major advantage of continuous over batch.
APA, Harvard, Vancouver, ISO, and other styles
2

Kırdök, Onur, Berker Çetintaş, Asena Atay, İrem Kale, Tutku Didem Akyol Altun, and Elif Esin Hameş. "A Modular Chain Bioreactor Design for Fungal Productions." Biomimetics 7, no. 4 (October 27, 2022): 179. http://dx.doi.org/10.3390/biomimetics7040179.

Full text
Abstract:
Plastic bag bioreactors are single-use bioreactors, frequently used in solid culture fermentation. This study developed plastic bag bioreactors with more effective aeration conditions and particular connection elements that yield sensors, environmental control, and modular connectivity. This bioreactor system integrates the bags in a chain that circulates air and moisture through filtered connections. Within the present scope, this study also aimed to reveal that cultures in different plastic bags can be produced without affecting each other. In this direction, biomass production in the modular chain bioreactor (MCB) system developed in this study was compared to traditional bag systems. In addition, contamination experiments were carried out between the bags in the system, and it was observed that the filters in the developed system did not affect the microorganisms in different bags.
APA, Harvard, Vancouver, ISO, and other styles
3

Malhotra, Neeraj. "Bioreactors Design, Types, Influencing Factors and Potential Application in Dentistry. A Literature Review." Current Stem Cell Research & Therapy 14, no. 4 (May 23, 2019): 351–66. http://dx.doi.org/10.2174/1574888x14666190111105504.

Full text
Abstract:
Objectives:A variety of bioreactors and related approaches have been applied to dental tissues as their use has become more essential in the field of regenerative dentistry and dental tissue engineering. The review discusses the various types of bioreactors and their potential application in dentistry.Methods:Review of the literature was conducted using keywords (and MeSH) like Bioreactor, Regenerative Dentistry, Fourth Factor, Stem Cells, etc., from the journals published in English. All the searched abstracts, published in indexed journals were read and reviewed to further refine the list of included articles. Based on the relevance of abstracts pertaining to the manuscript, full-text articles were assessed.Results:Bioreactors provide a prerequisite platform to create, test, and validate the biomaterials and techniques proposed for dental tissue regeneration. Flow perfusion, rotational, spinner-flask, strain and customize-combined bioreactors have been applied for the regeneration of bone, periodontal ligament, gingiva, cementum, oral mucosa, temporomandibular joint and vascular tissues. Customized bioreactors can support cellular/biofilm growth as well as apply cyclic loading. Center of disease control & dip-flow biofilm-reactors and micro-bioreactor have been used to evaluate the biological properties of dental biomaterials, their performance assessment and interaction with biofilms. Few case reports have also applied the concept of in vivo bioreactor for the repair of musculoskeletal defects and used customdesigned bioreactor (Aastrom) to repair the defects of cleft-palate.Conclusions:Bioreactors provide a sterile simulated environment to support cellular differentiation for oro-dental regenerative applications. Also, bioreactors like, customized bioreactors for cyclic loading, biofilm reactors (CDC & drip-flow), and micro-bioreactor, can assess biological responses of dental biomaterials by simultaneously supporting cellular or biofilm growth and application of cyclic stresses.
APA, Harvard, Vancouver, ISO, and other styles
4

Christianson, Laura E., Richard A. Cooke, Christopher H. Hay, Matthew J. Helmers, Gary W. Feyereisen, Andry Z. Ranaivoson, John T. McMaine, et al. "Effectiveness of Denitrifying Bioreactors on Water Pollutant Reduction from Agricultural Areas." Transactions of the ASABE 64, no. 2 (2021): 641–58. http://dx.doi.org/10.13031/trans.14011.

Full text
Abstract:
HighlightsDenitrifying woodchip bioreactors treat nitrate-N in a variety of applications and geographies.This review focuses on subsurface drainage bioreactors and bed-style designs (including in-ditch).Monitoring and reporting recommendations are provided to advance bioreactor science and engineering.Abstract. Denitrifying bioreactors enhance the natural process of denitrification in a practical way to treat nitrate-nitrogen (N) in a variety of N-laden water matrices. The design and construction of bioreactors for treatment of subsurface drainage in the U.S. is guided by USDA-NRCS Conservation Practice Standard 605. This review consolidates the state of the science for denitrifying bioreactors using case studies from across the globe with an emphasis on full-size bioreactor nitrate-N removal and cost-effectiveness. The focus is on bed-style bioreactors (including in-ditch modifications), although there is mention of denitrifying walls, which broaden the applicability of bioreactor technology in some areas. Subsurface drainage denitrifying bioreactors have been assessed as removing 20% to 40% of annual nitrate-N loss in the Midwest, and an evaluation across the peer-reviewed literature published over the past three years showed that bioreactors around the world have been generally consistent with that (N load reduction median: 46%; mean ±SD: 40% ±26%; n = 15). Reported N removal rates were on the order of 5.1 g N m-3 d-1 (median; mean ±SD: 7.2 ±9.6 g N m-3 d-1; n = 27). Subsurface drainage bioreactor installation costs have ranged from less than $5,000 to $27,000, with estimated cost efficiencies ranging from less than $2.50 kg-1 N year-1 to roughly $20 kg-1 N year-1 (although they can be as high as $48 kg-1 N year-1). A suggested monitoring setup is described primarily for the context of conservation practitioners and watershed groups for assessing annual nitrate-N load removal performance of subsurface drainage denitrifying bioreactors. Recommended minimum reporting measures for assessing and comparing annual N removal performance include: bioreactor dimensions and installation date; fill media size, porosity, and type; nitrate-N concentrations and water temperatures; bioreactor flow treatment details; basic drainage system and bioreactor design characteristics; and N removal rate and efficiency. Keywords: Groundwater, Nitrate, Nonpoint-source pollution, Subsurface drainage, Tile.
APA, Harvard, Vancouver, ISO, and other styles
5

Micheler, Carina M., Paulina A. Geck, Fiona Charitou, René Leix, Peter Foehr, Jan J. Lang, Nikolas J. Wilhelm, Jutta L. Tuebel, and Rainer H. H. Burgkart. "Bioreactor design for the mechanical stimulation by compression of 3D cell cultures." Current Directions in Biomedical Engineering 7, no. 2 (October 1, 2021): 899–902. http://dx.doi.org/10.1515/cdbme-2021-2229.

Full text
Abstract:
Abstract Bioreactors with a controlled physiological environment are being developed to study various cell processes. The influences of mechanostimulation on bone cell cultures can be investigated using a compression bioreactor. The developed bioreactor system applies a cyclic compression force to the specimen via an eccentrically mounted push rod. The compression force is monitored by a force sensor to detect changes in the material properties of the specimen. Depending on the piston setting, a stroke of 0.28 - 2.50 mm can be applied to the specimen. The bioreactor system was tested with a trial run of 18 days. A sample was continuously stimulated with a loading frequency of 2 Hz and a stroke of 1.50 mm. The sterility in the cell chamber as well as the functionality of the realised bioreactor stimulation system could be successfully confirmed
APA, Harvard, Vancouver, ISO, and other styles
6

Maxwell, Bryan, Laura Christianson, Richard A. C. Cooke, Mary Foltz, Niranga Wickramarathne, Ronnie Chacon, and Reid Christianson. "Nitrate Removal and Woodchip Properties across a Paired Denitrifying Bioreactor Treating Centralized Agricultural Ditch Flows." Water 14, no. 1 (December 28, 2021): 56. http://dx.doi.org/10.3390/w14010056.

Full text
Abstract:
Treatment of nitrate loads by denitrifying bioreactors in centralized drainage ditches that receive subsurface tile drainage may offer a more effective alternative to end-of-pipe bioreactors. A paired denitrifying bioreactor design, consisting of an in-ditch bioreactor (18.3 × 2.1 × 0.2 m) treating ditch base flow and a diversion bioreactor (4.6 × 9.1 × 0.9 m) designed to treat high-flow events, was designed and constructed in an agricultural watershed (3.2 km2 drainage area) in Illinois, USA. Flow and water chemistry were monitored for three years and the woodchip and bioreactor-associated soil were analyzed for denitrification potential and chemical properties after 25 months. The in-ditch bioreactor did not significantly reduce nitrate concentrations in the ditch, likely due to low hydraulic connectivity with stream water and sedimentation. The diversion bioreactor significantly reduced nitrate concentrations (58% average reduction) but treated only ~2% of annual ditch flow. Denitrification potential was significantly higher in the in-ditch bioreactor woodchips versus the diversion bioreactor after 25 months (2950 ± 580 vs. 620 ± 310 ng N g−1 dry media h−1). The passive flow design was simple to construct and did not restrict flow in the drainage ditch but resulted in low hydraulic exchange, limiting nitrate removal.
APA, Harvard, Vancouver, ISO, and other styles
7

Catapano, Gerardo, Juliane K. Unger, Elisabetta M. Zanetti, Gionata Fragomeni, and Jörg C. Gerlach. "Kinetic Analysis of Lidocaine Elimination by Pig Liver Cells Cultured in 3D Multi-Compartment Hollow Fiber Membrane Network Perfusion Bioreactors." Bioengineering 8, no. 8 (July 23, 2021): 104. http://dx.doi.org/10.3390/bioengineering8080104.

Full text
Abstract:
Liver cells cultured in 3D bioreactors is an interesting option for temporary extracorporeal liver support in the treatment of acute liver failure and for animal models for preclinical drug screening. Bioreactor capacity to eliminate drugs is generally used for assessing cell metabolic competence in different bioreactors or to scale-up bioreactor design and performance for clinical or preclinical applications. However, drug adsorption and physical transport often disguise the intrinsic drug biotransformation kinetics and cell metabolic state. In this study, we characterized the intrinsic kinetics of lidocaine elimination and adsorption by porcine liver cells cultured in 3D four-compartment hollow fiber membrane network perfusion bioreactors. Models of lidocaine transport and biotransformation were used to extract intrinsic kinetic information from response to lidocaine bolus of bioreactor versus adhesion cultures. Different from 2D adhesion cultures, cells in the bioreactors are organized in liver-like aggregates. Adsorption on bioreactor constituents significantly affected lidocaine elimination and was effectively accounted for in kinetic analysis. Lidocaine elimination and cellular monoethylglicinexylidide biotransformation featured first-order kinetics with near-to-in vivo cell-specific capacity that was retained for times suitable for clinical assist and drug screening. Different from 2D cultures, cells in the 3D bioreactors challenged with lidocaine were exposed to close-to-physiological lidocaine and monoethylglicinexylidide concentration profiles. Kinetic analysis suggests bioreactor technology feasibility for preclinical drug screening and patient assist and that drug adsorption should be accounted for to assess cell state in different cultures and when laboratory bioreactor design and performance is scaled-up to clinical use or toxicological drug screening.
APA, Harvard, Vancouver, ISO, and other styles
8

Hartfiel, Lindsey M., Michelle L. Soupir, and Kurt A. Rosentrater. "Techno-Economic Analysis of Constant-Flow Woodchip Bioreactors." Transactions of the ASABE 64, no. 5 (2021): 1545–54. http://dx.doi.org/10.13031/trans.14300.

Full text
Abstract:
HighlightsTechno-economic analysis was performed for multiple scales of bioreactors operated under a variety of conditions.The unit cost decreased as the bioreactor size increased.The unit cost increased in bioreactors with longer HRTs and bypass flow due to reduced treatment capacity.One large bioreactor was more cost-effective than multiple smaller bioreactors.Abstract. Woodchip denitrification bioreactors are a relatively new, edge-of-field technology used to reduce nitrate-nitrogen (NO3-N) from subsurface tile drainage. The removal rate of nitrate is influenced by many factors, including temperature, dissolved oxygen, and hydraulic residence time (HRT). The objective of this study was to conduct a techno-economic analysis (TEA) for four scales of woodchip denitrification bioreactors operating at three HRTs (2, 8, and 16 h), designed with bypass flow or with a low probability of bypass flow, to determine the cost to remove 1 kg of NO3-N at each bioreactor scale and at each HRT. Several assumptions were made: the flow rate required to achieve a 2 h HRT on a per m3 basis could be achieved at all scales, the same mass removal of NO3-N was achieved on a per cubic meter basis, and the 2 h HRT did not have any bypass flow at each scale. With these assumptions, the lowest unit cost was observed for the large-scale bioreactor sized to have a low probability of bypass flow at 16 h HRT, with a resulting cost of $0.74 kg-1 NO3-N removed. The highest unit cost was observed for the pilot-scale bioreactor designed with bypass flow to achieve a 16 h HRT at a cost of $60.13 kg-1 NO3-N removed. At longer HRTs with bypass flow, a greater percent removal of nitrate has been observed with a lower mass removal rate. By having a low probability of bypass flow in the design, a higher mass removal and percent removal of nitrate were observed, leading to the above results. Contrasting this trend, the total and annual costs were highest for the large-scale bioreactor and lowest for the pilot-scale bioreactor. However, it was determined that 783%, 280%, and 54% increases in total cost for the pilot-, small-, and medium-scale bioreactors would be incurred to implement the number of bioreactors (66, 24, and 4, respectively) required to treat the same volume of flow as one large bioreactor. These results can be used to inform future design decisions and inform stakeholders of the approximate unit cost of installing a denitrifying woodchip bioreactor over a range of expected field conditions. While a larger bioreactor with a low probability of bypass flow may represent a more cost-effective investment, the potential for unintended, negative byproducts needs to be considered in the design. Keywords: Denitrification, Nitrate, Tile drainage, Water quality, Woodchip bioreactor.
APA, Harvard, Vancouver, ISO, and other styles
9

Catapano, Gerardo, Gionata Fragomeni, Giuseppe Falvo D’Urso Labate, Luigi De Napoli, Vincenza Barbato, Maddalena Di Nardo, Valentina Costanzo, Teresa Capriglione, Roberto Gualtieri, and Riccardo Talevi. "Do Bioreactor Designs with More Efficient Oxygen Supply to Ovarian Cortical Tissue Fragments Enhance Follicle Viability and Growth In Vitro?" Processes 7, no. 7 (July 15, 2019): 450. http://dx.doi.org/10.3390/pr7070450.

Full text
Abstract:
Background: Autotransplantation of cryopreserved ovarian tissue is currently the main option to preserve fertility for cancer patients. To avoid cancer cell reintroduction at transplantation, a multi-step culture system has been proposed to obtain fully competent oocytes for in vitro fertilization. Current in vitro systems are limited by the low number and health of secondary follicles produced during the first step culture of ovarian tissue fragments. To overcome such limitations, bioreactor designs have been proposed to enhance oxygen supply to the tissue, with inconsistent results. This retrospective study investigates, on theoretical grounds, whether the lack of a rational design of the proposed bioreactors prevented the full exploitation of follicle growth potential. Methods: Models describing oxygen transport in bioreactors and tissue were developed and used to predict oxygen availability inside ovarian tissue in the pertinent literature. Results: The proposed theoretical analysis suggests that a successful outcome is associated with enhanced oxygen availability in the cultured tissue in the considered bioreactor designs. This suggests that a rational approach to bioreactor design for ovarian tissue culture in vitro may help exploit tissue potential to support follicle growth.
APA, Harvard, Vancouver, ISO, and other styles
10

Nielsen, Jens. "Bioreactor system design." FEBS Letters 369, no. 2-3 (August 7, 1995): 348. http://dx.doi.org/10.1016/s0014-5793(95)90811-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Bioreactor design"

1

Ntwampe, Seteno Karabo Obed. "Multicapillary membrane bioreactor design." Thesis, Cape Peninsula University of Technology, 2005. http://hdl.handle.net/20.500.11838/897.

Full text
Abstract:
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2005
The white rot fungus, Phanerochaete chrysosporium, produces enzymes, which are capable of degrading chemical pollutants. It was detennined that this fungus has multiple growth phases. The study provided infonnation that can be used to classify growth kinetic parameters, substrate mass transfer and liquid medium momentum transfer effects in continuous secondary metabolite production studies. P. chrysosporium strain BKMF 1767 (ATCC 24725) was grown at 37 QC in single fibre capillary membrane bioreactors (SFCMBR) made of glass. The SFCMBR systems with working volumes of 20.4 ml and active membrane length of 160 mm were positioned vertically. Dry biofilm density was determined by using a helium pycnometer. Biofilm differentiation was detennined by taking samples for image analysis, using a Scanning Electron Microscope at various phases of the biofilm growth. Substrate consumption was detennined by using relevant test kits to quantify the amount, which was consumed at different times, using a varying amount of spore concentrations. Growth kinetic constants were detennined by using the substrate consumption and the dry biofilm density model. Oxygen mass transfer parameters were determined by using the Clark type oxygen microsensors. Pressure transducers were used to measure the pressure, which was needed to model the liquid medium momentum transfer in the lumen of the polysulphone membranes. An attempt was made to measure the glucose mass transfer across the biofilm, which was made by using a hydrogen peroxide microsensor, but without success.
APA, Harvard, Vancouver, ISO, and other styles
2

Myers, Michael John. "Laboratory Scale Solid State Landfill Bioreactor Design." The Ohio State University, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=osu1393077896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goh, Shireen. "Micro-bioreactor design for Chinese hamster ovary cells." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82368.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 195-203).
The research objective is to design a micro-bioreactor for the culture of Chinese Hamster Ovary (CHO) cells. There is an increasing demand for upstream development in high-throughput micro-bioreactors specifically for the recombinant CHO cell line, an important cell line for producing recombinant protein therapeutics. In order to translate a micro-bioreactor originally designed by our group for bacteria to CHO cells, there would need to be significant modifications in the design of the micro-bioreactor due to the extreme sensitivity of CHO cells to physical and chemical stresses. Shear stresses inside the growth chamber will have to be reduced by three orders of magnitude. Moreover, the long doubling time of CHO cells requires a 2 weeks long culture. In a high surface to volume ratio micro-bioreactor, evaporation becomes a major problem. Contamination control is also vital for CHO cultures. In addition, the offline sampling volume required for validation necessitates a doubling of the working volume to 2mL. The newly designed Resistive Evaporation Compensated Actuated (RECA) micro-bioreactor is fully characterized in this thesis to ensure that the design meets the physical specifications of the required CHO cell culture conditions. The RECA micro-bioreactor will be tested with industrial recombinant CHO cell lines. This work is done in collaboration with Genzyme, USA and Sanofi-Aventis, Frankfurt. In this thesis, we also propose the use of dielectric spectroscopy electrodes for online cell viability sensing of CHO cells in micro-bioreactors. The electrodes are fabricated on polycarbonate, a biocompatible and optically clear thermoplastic that will be one of the future base material for microfluidic devices which can be rapidly prototyped. To demonstrate the viability of dielectric spectroscopy as an online viability sensor for CHO cells in a micro-bioreactor, the electrodes are used to characterize samples taken daily from a CHO shake flask batch culture without any sample modifications. Two different electrode geometries and correction methods will be compared to find the optimal system for viability measurements in a micro-bioreactor.
by Shireen Goh.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Ernest S. (Ernest Soonho) 1974. "Design of a single capillary-parenchymal co-culture bioreactor." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/89889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mascarenhas, Craig Anthony. "Design and development of components of a modular bioreactor." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112524.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.
Page 206 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (pages 196-205).
Biologic drug manufacturing is traditionally conducted in large-scale, industrial bioreactors. The emergence of interest in disposable, bench-top bioreactors as a viable alternative is due to potential advantages such as lower contamination risk, time and cost savings, and ease of handling. The challenges associated with disposable, bench-top bioreactors include poor mixing, limited oxygen transfer, and a scarcity of non-invasive sensors for process control. This thesis investigates multiple aspects of a disposable, perfusion-capable bioreactor, in order to facilitate an optimal design. In order to determine an impeller configuration that improves the mixing and mass transfer characteristics of a i-liter bioreactor, Computational Fluid Dynamics (CFD) was used. The potential benefits of switching to a dual-Marine impeller system was revealed, which was then validated during fermentation experiments. Further predictions of a merging flow pattern in the i-liter vessel was consistent with the literature based on the impeller spacing. A scaled-up 5-liter vessel was designed with Rushton impellers spaced so as to create a parallel flow pattern, which was later successfully predicted in the CFD simulations. Flow patterns were analyzed at various locations in both vessels to aid future design iterations. Monitoring of process parameters, including liquid level, is important for automated control in bioreactors. Three novel, non-invasive, optical liquid level sensing methods were conceptualized, prototyped, and successfully tested. These solutions relied on self-developed image processing algorithms. Additionally, a magnetic liquid level sensor was also developed and tested that relied on a magnetic float and a series of reed switches. In order to increase the perfusion membrane surface area and reduce complexity, the switch to a hollow-fiber harvest probe was examined. CFD studies guided design iterations by modeling the flow around the probe, giving insight into the stagnation properties and shear forces acting on the fibers. Additionally, experimental testing of the new harvest probe revealed its successful functionality and viability in the bioreactor.
by Craig Anthony Mascarenhas.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
6

Gerontas, Spyridon. "Bioreactor design for the controlled formation of engineered tissues." Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1445509/.

Full text
Abstract:
The availability of large numbers of engineered organs would offer significant benefits to the clinical management of surgery. Tissue engineering offers the potential of providing tissues that can mimic the morphology, function and physiologic environment of native ones. Cells could grow in vitro within a biodegradable polymer to construct tissue for implantation. However no generic bioreactor design currently exists. There is now a need to establish a robust process for the production of engineered tissues using autologous cells. A key challenge will be the prediction of the supply of nutrients and removal of metabolites. Models of transport phenomena were developed in order to predict the fluid flow and mass transfer requirements of a prototype bioreactor for the formation of engineered tissues. These models were solved to generate windows of operation which relate key operating parameters with the feasibility of tissue preparation. Examples highlight how the windows of operation can be used to visualize rapidly the region of operating conditions that satisfy the design constraints. The impact of the cell concentration, tube geometry, alginate diffusivity, substrate and metabolite concentration levels, feed and recycle rate on the design of the bioreactor is illustrated. The result of this analysis determines the best configuration of the bioreactor which can meet the cellular transport requirements as well as being reliable in performance whist seeking to reduce the amount of valuable nutrients to be used. Micro scale experiments were designed in order to evaluate from measurements, effective diffusivities of substrates and metabolites in alginate matrices as well as substrate consumption and metabolite production rates in matrices with immobilized growing cells. The oxygen diffusivity and oxygen uptake rate of alginate immobilized neonatal fibroblasts were evaluated using integrated oxygen sensor spots. Additionally, alginate cylindrical constructs with immobilized neonatal fibroblasts were prepared in transwells in order to evaluate the effective diffusivities of glucose and lactate as well as the glucose consumption and lactate production rate. The advantage of such micro scale experiments was that greater data sets could be generated with the small number of cells available but in a way which predicts the larger scale. The database which was created was used to construct the windows of operation to give quantitative solutions of how engineered tissues may be prepared and to visualize process operability in a more explicit way.
APA, Harvard, Vancouver, ISO, and other styles
7

Williams, Chrysanthi. "Perfusion bioreactor for tissue-engineered blood vessels." Diss., Available online, Georgia Institute of Technology, 2004:, 2003. http://etd.gatech.edu/theses/available/etd-06072004-131410/unrestricted/williams%5Fchrysantyhi%5F200405%5Fphd.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Winton. "Design of bioreactor for reducing sulphate in cattle drinking water." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/17422.

Full text
Abstract:
A 5 litre laboratory-scale upflow anaerobic sludge blanket (UASB) bioreactor was constructed and operated for approximately one year to reduce sulphate in water using an agricultural byproduct, silage, as carbon source. The purpose of this water treatment system was to test the suitability of the UASB design to treat simulated ground water with high sulphate concentrations destined to be used as cattle drinking water. The UASB reactor design was selected after performing an extensive literature review of all available sulphate-reduction processes. A previous MASc project (Amber Brown, 2007) demonstrated the suitability of silage as a carbon source for sulphate reducing bacteria and, furthermore, in this thesis, fate of the organic compounds in the silage leachate during sulphate-reduction was determined. Six particular tests were performed in order to quantify the type of organics in the feed and effluent: chemical oxygen demand (COD), total organic carbon (TOC), total carbohydrates, total alcohols, total phenols, and selected organic and volatile fatty acids (VFA). The reactor ran continuously for approximately one year with a constant silage leachate feed COD concentration of 10,000 mg L₋−¹, and sulphate feed concentrations varying from 2,000 to 3,200 mg L−¹. The flow rates for each feed stream were maintained at ~0.5 mL min−¹ for silage leachate and ~1 mL min−¹ for sulphate feed for most of the experiment. The sulphate reduction rates (SRR) ranged from 368 to 845 mg L−¹ d−¹ and the amount of organics consumed was between 80-90%. Sulphide levels in the UASB bioreactor were consistently high for most of the experiment, ranging from 600-800 mg L−¹. When the sulphate feed concentration was increased to a maximum of 3,282 (± 27.22) mg L−¹, the sulphide concentration within the bioreactor reached a maximum of 1,273 (± 473.5) mg L−¹. A sulphide stripping column was introduced midway through the experiment in an attempt to reduce the sulphide concentration in the system. Short-term results were promising, however, prolonged sulphide removal in the system could not be maintained due to operational problems. Interestingly, during the last month of operation, despite the high sulphide levels, the SRR was at its highest with an upward trend.
APA, Harvard, Vancouver, ISO, and other styles
9

Beatty, Amanda Marie. "Design and Validation of a Complex Loading Whole Spinal Segment Bioreactor." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5618.

Full text
Abstract:
Intervertebral disc (IVD) degeneration is a prevalent health problem that is highly linked to back pain. To understand the disease and tissue response to therapies, ex-vivo whole IVD organ culture systems have recently been introduced. The goal of this study was to develop and validate a whole spinal segment culturing system that loads the disc in complex loading similar to the in-vivo condition, while preserving the adjacent endplates and vertebral bodies. The complex loading applied to the spinal segment was achieved with three pneumatic cylinders. The pneumatic cylinders were rigidly attached to two triangular alumni plates at each corner, comprising the loading mechanism. By extending or compressing the pneumatic cylinders, three modes of loading were achieved: flexion-extension, bi-lateral bending, and cyclic compression. The cylinders were controlled via microcontroller, and the entire system was fully automated. The culture container, which housed the spinal segment during culturing, was a flexible silicone container with an aluminum base and lid. The culture container attached to the loading mechanism allows for loading of the spinal segment. It had a vent attached to the aluminum lid that allowed for gas exchange in the system. The dynamic bioreactor was able to achieve physiologic loading conditions with 100 N of applied compression and approximately 2-4 N-m of applied torque. The function of the bioreactor was validated through testing of bovine caudal IVDs with intact endplates and vertebral bodies that were isolated within 2 hours of death and cultured for 14 days under a diurnal cycle. The resulting IVD cell viability following 14 days of loading was approximately 43% and 20% for the nucleus pulposus and annulus fibrosus respectively, which was significantly higher than the unloaded controls. The loading system accurately mimicked flexion-extension, bi-lateral bending, and compression motions seen during daily activities. Results indicate that this complex dynamic bioreactor may be appropriate for extended pre-clinical testing of vertebral mounted spinal devices and therapies.
APA, Harvard, Vancouver, ISO, and other styles
10

Hubbard, Brian. "Design and operation of novel up-flow bioreactor for microbial perchlorate removal." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 72 p, 2009. http://proquest.umi.com/pqdweb?did=1674961741&sid=2&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Bioreactor design"

1

1949-, Tramper J., ed. Basic bioreactor design. New York: M. Dekker, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bioreactor design fundamentals. Boston: Butterworth-Heinemann, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mota, Manuel, and Johannes Tramper. Multiphase Bioreactor Design. Edited by Joaquim M. S. Cabral. Abingdon, UK: Taylor & Francis, 2001. http://dx.doi.org/10.4324/9780203303047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Reinhart, Debra R. Landfill bioreactor design and operation. Boca Raton, Fla: Lewis Publishers, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

(Project), BIOTOL, Open Universiteit (Heerlen Netherlands), and Thames Polytechnic, eds. Bioreactor design and product yield. Oxford: Butterworth-Heinemann, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jan, Chao-Hsiang. Bioreactor design for intensification of mammalian cell culture. Birmingham: University of Birmingham, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chamsāt, Sētthawat. Rāingān kānwičhai rư̄ang kānʻō̜kbǣp phatthanā læ kānkhayāi sūan patikō̜n chīwaphāp bǣp thangkūan samrap kānsalāi pǣng mansampalang =: Design, development, and scale-up of stirred tank lysis bioreactor for enzymatic hydrolysis of cassava starch. [Chonburi]: Khana Witthayāsāt, Mahāwitthayālai Būraphā, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1962-, Mitchell David A., Krieger Nadia, and Berovic M, eds. Solid-state fermentation bioreactors: Fundamentals of design and operation. Berlin: Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Zhao. Design and Testing of Digital Microfluidic Biochips. New York, NY: Springer New York, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1982-, Xu Tao, ed. Digital microfluidic biochips: Design automation and optimization. Boca Raton: Taylor & Francis, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Bioreactor design"

1

Zeilinger, Katrin, and Jörg C. Gerlach. "Artificial Liver Bioreactor Design." In Bioreactors, 147–74. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mandenius, Carl-Fredrik. "Challenges for Bioreactor Design and Operation." In Bioreactors, 1–34. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rathore, Anurag S., Lalita Kanwar Shekhawat, and Varun Loomba. "Computational Fluid Dynamics for Bioreactor Design." In Bioreactors, 295–322. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gros, Jean-Bernard, and Christian Larroche. "Bioreactor Analysis and Design." In Enzyme Technology, 479–514. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-35141-4_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mandenius, Carl-Fredrik, and Robert Gustavsson. "Soft Sensor Design for Bioreactor Monitoring and Control." In Bioreactors, 391–420. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Catapano, G., P. Czermak, R. Eibl, D. Eibl, and R. Pörtner. "Bioreactor Design and Scale-Up." In Cell and Tissue Reaction Engineering, 173–259. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-68182-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moser, Anton. "Bioreactor Performance: Process Design Methods." In Bioprocess Technology, 307–405. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4613-8748-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mandenius, Carl-Fredrik. "Design-of-Experiments for Development and Optimization of Bioreactor Media." In Bioreactors, 421–52. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527683369.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fish, Jeff, Craig Halberstadt, Darell W. McCoy, and Neil Robbins. "Bioreactor Design Considerations for Hollow Organs." In Methods in Molecular Biology, 207–14. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-363-3_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sarkar, Sushovan. "Experimental Validation of the Model Developed and Process Design of Fixed-Bed Hybrid Bioreactor." In Fixed Bed Hybrid Bioreactor, 107–21. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4546-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bioreactor design"

1

Kadic, Enes, and Theodore J. Heindel. "Hydrodynamic Considerations in Bioreactor Selection and Design." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30367.

Full text
Abstract:
The biological production of renewable fuels and chemicals, medicines, and proteins is not possible without a properly functioning bioreactor. Bioreactors are expected to meet several basic requirements and create conditions favorable to the biological material such that the desired production is maximized. The basic requirements, which are strongly influenced by fluid mechanic principles, may include minimum damage to the biological material, maximum reactor volume utilization, optimized gas-liquid mass transfer, and/or enhanced mass transfer from the liquid to the biological species. Each of these goals may be achieved within any of the major bioreactor designs, which generally fall under the categories of stirred tank, bubble column, or airlift bioreactor. Yet, each of the bioreactor designs has strengths and weaknesses. This paper provides an overview of bioreactor hydrodynamic developments and the fluid mechanic issues that should to be considered when selecting a bioreactor for experimental and production purposes.
APA, Harvard, Vancouver, ISO, and other styles
2

Cruel, Magali, Morad Bensidhoum, Laure Sudre, Guillaume Puel, Virginie Dumas, and Thierry Hoc. "Study of the Effect of Mechanical Loading on Cell Cultures in Bone Tissue Engineering." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82989.

Full text
Abstract:
Bone tissue engineering currently represents one of the most interesting alternatives to autologous transplants and their drawbacks in the treatment of large bone defects. Mesenchymal stem cells are used to build new bone in vitro in a bioreactor. Their stimulation and our understanding of the mechanisms of mechanotransduction need to be improved in order to optimize the design of bioreactors. In this study, several geometries of bioreactor were analyzed experimentally and biological results were linked with numerical simulations of the flow inside the bioreactor. These results will constitute a base for an improved design of the existing bioreactor.
APA, Harvard, Vancouver, ISO, and other styles
3

Patenaude, Jeffrey A., Aaron Desjarlais, Jessica Kornfeld, Michael Lee, Matthew McGrath, Jeffrey Perry, and Jeffrey W. Ruberti. "Design of Optically Accessible, Ultra Low-Volume, Tissue Loading Bioreactor." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206675.

Full text
Abstract:
Given mounting evidence that mechanical force is a critical parameter in the normal development and remodeling of load-bearing tissue, there is a critical need for a new class of bioreactors which can apply controlled loads/strains to tissues or engineered constructs while permitting high-powered optical accessibility. We have developed a novel bioreactor which can be mounted onto the stage of an inverted microscope which permits direct 600× observation of a perfused specimen while the specimen is held in either load or strain control. Further, the chamber has been designed to minimize free volume to reduce the cost of reagents.
APA, Harvard, Vancouver, ISO, and other styles
4

Korin, Natanel, Avishay Bransky, Uri Dinnar, and Shulamit Levenberg. "Modeling and Studying Human Embryonic Stem Cell Culture Conditions in Pulsed Flow Micro-Reactors." In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59168.

Full text
Abstract:
Embryonic stem (ES) cells research is a promising field for tissue engineering due to their proliferative capacity and differentiation abilities. The culture of Human Embryonic Stem Cells (hESC) in microchannel bioreactors can be valuable for hESC cell biology studies and hESC tissue engineering applications. We have previously demonstrated the long-term culture of mammalian (HFF-Human Foreskin Fibroblasts) cells in a microchannel (130μm) bioreactor under constant perfusion in a simple approach. However, hESC were found to be highly sensitive to flow and did not grow under flow rates which were proper for HFF long-term culture. Here, we propose the use of a novel automated periodic perfusion system to co-culture hESC with HFF in a microchannel bioreactor. The method is based on short temporal pulsed flows of medium renewal followed by long static incubation periods. The short pulsed exposure to shear enables shear sensitive cells (e.g., hESC) to withstand the medium flow. The present work studies experimentally and via numerical simulations the conditions required for hESC culture in a microchannel bioreactor using the periodic perfusion method. Conventional soft-lithography techniques were used to fabricate PDMS microchannels (100 μm) sealed reversibly with glass cover slides. HESC were seeded in the microchannel with HFF, incubated for several hours and then connected to a perfusion system which contained: a syringe pump, a permeable tube oxygenator, and waste container. The ability of the periodic perfusion protocols to prevent hESC de-attachment and maintain their culture was examined. Mass transport and fluid mechanics models were used to evaluate the culture conditions within the micro-bioreactor (shear stress, oxygen level, nutritious etc.). 3D finite element mass transport analysis (Comsol 3.3) was preformed to examine the oxygen levels in the microchannel as a function of time and design parameters. Altogether, the experimental results and the theoretical model indicate that the use of a periodic perfusion bioreactor is a suitable and promising method to culture hESC in a microreactor. Culturing undifferentiated human ES cell colonies in a micro-bioreactor is an initial step toward utilizing microfluidic techniques to investigate embryonic stem cell biology.
APA, Harvard, Vancouver, ISO, and other styles
5

Neitzel, G. Paul, Robert M. Nerem, Athanassios Sambanis, Marc K. Smith, Timothy M. Wick, Jason B. Brown, Christopher Hunter, et al. "Effect of Fluid-Mechanical and Chemical Environments on Cell Function and Tissue Growth: Experimental and Modeling Studies." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0794.

Full text
Abstract:
Abstract Bioreactors are widely used for the growth and maintenance of tissue-engineered constructs. In this paper, we report on work directed toward a better understanding of the chemical and fluid-mechanical environments that are needed to enhance cell function and tissue growth in bioreactors. We have conducted cell-growth studies in well-controlled flow conditions that indicate the effect of shear stress and oxygen tension on cellular function. In more complicated bioreactors, like the NASA rotating-wall vessel bioreactor, we have done experimental and numerical fluid-mechanical studies that quantify the velocity and shear-rate fields near a three-dimensional construct suspended by the flow inside the bioreactor. All of these results will be used to develop the tools needed to properly design and operate bioreactors for the optimal growth of tissue substitutes.
APA, Harvard, Vancouver, ISO, and other styles
6

Bertrand, Robert S., Emmanuel Revellame, Lisa Stephanie Dizon, Kristel Gatdula, and Remil Aguda. "Measurement of Volumetric Mass Transfer Coefficient in Lab-scale Stirred Tank Reactors: Is There a Point of Diminishing Returns for Impeller Speed and Gas Flowrate?" In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/zrrh2541.

Full text
Abstract:
The transfer of species from gas to liquid across the phase interface is generally regarded as the greatest challenge and limitation in bioreactor design and operation. This is true for both oxygen and other gases used in bioreactors, such as methane. In this study, the volumetric oxygen transfer coefficient was observed for a bioreactor at various sparger flowrates and impeller rotational speeds. Specifically targeted was a point at which increasing the impeller speed or gas flowrate resulted in reduced returns on the observed value of the transfer coefficient. This was to be expected, but much greater influence was observed for impeller speed than there was for gas flowrate. At impeller speeds of 600 rpm, quadrupling the gas flowrate from 2.5L/min to 10L/min only resulted in an increase of approximately 40%. At 0 rpm, the quadrupling of the gas flowrate resulted in a nearly quadrupled kLa value, indicating that at no agitation, the gas flowrate is closely tied to the kLa of the bioreactor, if much lower than under agitation. The study thus concludes that the kLa in these bioreactors is nearly directly influenced by gas inlet flowrate under tranquil conditions, but when agitation is present, it is a much more determining factor for kLa than gas inlet flowrate. This is likely due to the ability of the impeller to break up large bubbles introduced by the sparger to increase the area available for mass transfer. This may be used in experiments involving bioreactors to save on gas costs and more appropriately select a rotational speed to target certain bioreactor output parameters.
APA, Harvard, Vancouver, ISO, and other styles
7

Deng, Zhiyi, Ka Y. Fung, Ka M. Ng, and Chaohai Wei. "Design of Anaerobic Fluidized Bed Bioreactor." In 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Laura Christianson, Matt Helmers, and Alok Bhandari. "Bioreactor Design Geometry Effects on Nitrate Removal." In 9th International Drainage Symposium held jointly with CIGR and CSBE/SCGAB Proceedings, 13-16 June 2010, Québec City Convention Centre, Quebec City, Canada. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2010. http://dx.doi.org/10.13031/2013.32111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xiang, Hongbiao, Shoujun Wang, Chunqiu Zhang, Xingfei Li, and Jun Liu. "Design of dual-frequency bioreactor control system." In 2015 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2015. http://dx.doi.org/10.1109/icma.2015.7237598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Wen, Qingjin Peng, and Malcolm Xing. "Bioreactor Improvement Based on Design for Assembly in Virtual Environments." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47916.

Full text
Abstract:
A Bioreactor is a device used in tissue engineering to simulate the physiological environment required for cell growth, attachment, and immigration. The existing bioreactor is not user-friendly and difficult to operate. A great care has to be paid in the device application, such as assembly and disassembly in the operation. This research seeks to use design for assembly (DFA) methods to analyze and improve the design of the current bioreactor. Product difficulty levels are introduced to the DFA analysis. A new design is proposed to ease operation, save time and increase the application efficiency. The proposed solution is evaluated in a virtual environment using 3D assembly modeling and simulation.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bioreactor design"

1

Shuler, Michael L. Development of Cell Models as a Basis for Bioreactor Design for Genetically Modified Bacteria. Fort Belvoir, VA: Defense Technical Information Center, October 1986. http://dx.doi.org/10.21236/ada174571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kendall, Edward. Bioreactors: Design, Background, and Applications. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1887112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Knotek-Smith, Heather, and Catherine Thomas. Microbial dynamics of a fluidized bed bioreactor treating perchlorate in groundwater. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45403.

Full text
Abstract:
Optimization of operation and performance of the groundwater treatment system regarding perchlorate removal at Longhorn Army Ammunition Plant (LHAAP) is dependent on specific conditions within the reactor and the larger groundwater treatment process. This study evaluated the microbial community compositions within the plant during periods of adequate perchlorate degradation, sub-adequate perchlorate degradation, and non-operating conditions. Factors affecting the performance of the LHAAP ground water treatment system (GWTS) perchlorate de-grading fluidized bed reactor (FBR) are identified and discussed. Isolation of the FBR from naturally occurring microbial populations in the groundwater was the most significant factor reducing system effectiveness. The microbial population within the FBR is highly susceptible to system upsets, which leads to declining diversity within the reactor. As designed, the system operates for extended periods without the desired perchlorate removal without intervention such as a seed inoculant. A range of modifications and the operation of the system are identified to increase the effectiveness of perchlorate removal at LHAAP.
APA, Harvard, Vancouver, ISO, and other styles
4

Husson, Scott M., Viatcheslav Freger, and Moshe Herzberg. Antimicrobial and fouling-resistant membranes for treatment of agricultural and municipal wastewater. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598151.bard.

Full text
Abstract:
This research project introduced a novel membrane coating strategy to combat biofouling, which is a major problem for the membrane-based treatment of agricultural and municipal wastewaters. The novelty of the strategy is that the membrane coatings have the unique ability to switch reversibly between passive (antifouling) and active (antimicrobial) fouling control mechanisms. This dual-mode approach differs fundamentally from other coating strategies that rely solely on one mode of fouling control. The research project had two complementary objectives: (1) preparation, characterization, and testing of dual-mode polymer nanolayers on planar surfaces and (2) evaluation of these nanolayers as membrane modifiers. The first objective was designed to provide a fundamental understanding of how polymer nanolayer chemistry and structure affect bacterial deposition and to demonstrate the reversibility of chemical switching. The second objective, which focused on membrane development, characterization, and testing, was designed to demonstrate methods for the production of water treatment membranes that couple passive and active biofouling control mechanisms. Both objectives were attained through synergistic collaboration among the three research groups. Using planar silicon and glass surfaces, we demonstrated using infrared spectroscopy that this new polymer coating can switch reversibly between the anti-fouling, zwitterion mode and an anti-microbial, quaternary amine mode. We showed that switching could be done more than 50 times without loss of activity and that the kinetics for switching from a low fouling zwitterion surface to an antimicrobial quaternary amine surface is practical for use. While a low pH was required for switching in the original polymer, we illustrated that by slightly altering the chemistry, it is possible to adjust the pH at which the switching occurs. A method was developed for applying the new zwitterionic surface chemistry onto polyethersulfone (PES) ultrafiltration membranes. Bacteria deposition studies showed that the new chemistry performed better than other common anti-fouling chemistries. Biofilm studies showed that PESultrafiltration membranes coated with the new chemistry accumulated half the biomass volume as unmodified membranes. Biofilm studies also showed that PES membranes coated with the new chemistry in the anti-microbial mode attained higher biofilm mortality than PES membranes coated with a common, non-switchablezwitterionic polymer. Results from our research are expected to improve membrane performance for the purification of wastewaters prior to use in irrigation. Since reduction in flux due to biofouling is one of the largest costs associated with membrane processes in water treatment, using dual-mode nanolayer coatings that switch between passive and active control of biofouling and enable detachment of attached biofoulants would have significant economic and societal impacts. Specifically, this research program developed and tested advanced ultrafiltration membranes for the treatment of wastewaters. Such membranes could find use in membrane bioreactors treating municipal wastewater, a slightly upgraded version of what presently is used in Israel for irrigation. They also may find use for pretreatment of agricultural wastewaters, e.g., rendering facility wastewater, prior to reverse osmosis for desalination. The need to desalinate such impaired waters water for unlimited agricultural use is likely in the near future.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography