Academic literature on the topic 'Biosensiing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biosensiing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biosensiing"
Kumar, Ravinder, Somvir ., Surender Singh, and Kulwant . "A Review on application of Nanoscience for Biosensing." International Journal of Engineering Research 3, no. 4 (April 1, 2014): 279–85. http://dx.doi.org/10.17950/ijer/v3s4/423.
Full textZhou Xue, 周雪, 闫欣 Yan Xin, 张学楠 Zhang Xuenan, 王方 Wang Fang, 李曙光 Li Shuguang, 郎雷 Lang Lei, and 程同蕾 Cheng Tonglei. "软玻璃光纤在生物传感领域应用的研究进展." Laser & Optoelectronics Progress 58, no. 15 (2021): 1516019. http://dx.doi.org/10.3788/lop202158.1516019.
Full textP.Sangeetha, P. Sangeetha, and Dr A. Vimala Juliet. "Biosensing by Cantilever Resonator for Disease Causing Pathogen Detection." Indian Journal of Applied Research 4, no. 3 (October 1, 2011): 174–75. http://dx.doi.org/10.15373/2249555x/mar2014/51.
Full textCurtin, Kathrine, Bethany J. Fike, Brandi Binkley, Toktam Godary, and Peng Li. "Recent Advances in Digital Biosensing Technology." Biosensors 12, no. 9 (August 23, 2022): 673. http://dx.doi.org/10.3390/bios12090673.
Full textWu, Jiyun, and Qiuyao Wu. "The Review of Biosensor and its Application in the Diagnosis of COVID-19." E3S Web of Conferences 290 (2021): 03028. http://dx.doi.org/10.1051/e3sconf/202129003028.
Full textHowell, Noura, John Chuang, Abigail De Kosnik, Greg Niemeyer, and Kimiko Ryokai. "Emotional Biosensing." Proceedings of the ACM on Human-Computer Interaction 2, CSCW (November 2018): 1–25. http://dx.doi.org/10.1145/3274338.
Full textMejía-Salazar, J. R., and Osvaldo N. Oliveira. "Plasmonic Biosensing." Chemical Reviews 118, no. 20 (September 24, 2018): 10617–25. http://dx.doi.org/10.1021/acs.chemrev.8b00359.
Full textFink, Dietmar, Gerardo Munoz Hernandez, Jiri Vacik, and Lital Alfonta. "Pulsed Biosensing." IEEE Sensors Journal 11, no. 4 (April 2011): 1084–87. http://dx.doi.org/10.1109/jsen.2010.2073461.
Full textBellassai, Noemi, Roberta D’Agata, and Giuseppe Spoto. "Novel nucleic acid origami structures and conventional molecular beacon–based platforms: a comparison in biosensing applications." Analytical and Bioanalytical Chemistry 413, no. 24 (April 6, 2021): 6063–77. http://dx.doi.org/10.1007/s00216-021-03309-4.
Full textSoleymani, Leyla, Sudip Saha, Amanda Victorious, Sadman Sakib, and Igor Zhitomirsky. "(Invited) Development of New Strategies for Bringing Photoelectrochemical Biosensing to the Point-of-Need." ECS Meeting Abstracts MA2022-01, no. 53 (July 7, 2022): 2178. http://dx.doi.org/10.1149/ma2022-01532178mtgabs.
Full textDissertations / Theses on the topic "Biosensiing"
Mickan, Samuel Peter. "T-ray biosensing /." Title page, table of contents and abstract only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phm6253.pdf.
Full textD'Imperio, Luke A. "Biosensing-inspired Nanostructures:." Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108627.
Full textNanoscale biosensing devices improve and enable detection mechanisms by taking advantage of properties inherent to nanoscale structures. This thesis primarily describes the development, characterization and application of two such nanoscale structures. Namely, these two biosensing devices discussed herein are (1) an extended-core coaxial nanogap electrode array, the ‘ECC’ and (2) a plasmonic resonance optical filter array, the ‘plasmonic halo’. For the former project, I discuss the materials and processing considerations that were involved in the making of the ECC device, including the nanoscale fabrication, experimental apparatuses, and the chemical and biological materials involved. I summarize the ECC sensitivity that was superior to those of conventional detection methods and proof-of-concept bio-functionalization of the sensing device. For the latter project, I discuss the path of designing a biosensing device based on the plasmonic properties observed in the plasmonic halo, including the plasmonic structures, materials, fabrication, experimental equipment, and the biological materials and protocols
Thesis (PhD) — Boston College, 2019
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Ravindran, Ramasamy. "An electronic biosensing platform." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44774.
Full textLai, Ming-Liang. "Developing piezoelectric biosensing methods." Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/6109/.
Full textMuñoz, Berbel Xavier. "Microsystems based on microbial biosensing." Doctoral thesis, Universitat Autònoma de Barcelona, 2008. http://hdl.handle.net/10803/3587.
Full textSekretaryova, Alina. "Novel reagentless electrodes for biosensing." Licentiate thesis, Linköpings universitet, Kemiska och optiska sensorsystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112345.
Full textArchibald, Michelle M. "Novel nanoarchitectures for electrochemical biosensing." Thesis, Boston College, 2016. http://hdl.handle.net/2345/bc-ir:106807.
Full textSensitive, real-time detection of biomarkers is of critical importance for rapid and accurate diagnosis of disease for point-of-care (POC) technologies. Current methods, while sensitive, do not adequately allow for POC applications due to several limitations, including complex instrumentation, high reagent consumption, and cost. We have investigated two novel nanoarchitectures, the nanocoax and the nanodendrite, as electrochemical biosensors towards the POC detection of infectious disease biomarkers to overcome these limitations. The nanocoax architecture is composed of vertically-oriented, nanoscale coaxial electrodes, with coax cores and shields serving as integrated working and counter electrodes, respectively. The dendritic structure consists of metallic nanocrystals extending from the working electrode, increasing sensor surface area. Nanocoaxial- and nanodendritic-based electrochemical sensors were fabricated and developed for the detection of bacterial toxins using an electrochemical enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV). Proof-of-concept was demonstrated for the detection of cholera toxin (CT). Both nanoarchitectures exhibited levels of sensitivity that are comparable to the standard optical ELISA used widely in clinical applications. In addition to matching the detection profile of the standard ELISA, these electrochemical nanosensors provide a simple electrochemical readout and a miniaturized platform with multiplexing capabilities toward POC implementation. Further development as suggested in this thesis may lead to increases in sensitivity, enhancing the attractiveness of the architectures for future POC devices
Thesis (PhD) — Boston College, 2016
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Llandro, Justin. "Magnetic rings for digital biosensing." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611941.
Full textWang, Wenxing. "Development of microcantilever biosensing platforms." Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2722.
Full textTriggs, Graham J. "Resonant grating surfaces for biosensing." Thesis, University of York, 2016. http://etheses.whiterose.ac.uk/13210/.
Full textBooks on the topic "Biosensiing"
Schultz, Jerome, Milan Mrksich, Sangeeta N. Bhatia, David J. Brady, Antonio J. Ricco, David R. Walt, and Charles L. Wilkins. Biosensing. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x.
Full textBhattacharya, Enakshi. Biosensing with Silicon. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-92714-1.
Full textChandra, Pranjal, and Kuldeep Mahato, eds. Miniaturized Biosensing Devices. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9897-2.
Full textSchöning, Michael J., and Arshak Poghossian, eds. Label-Free Biosensing. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75220-4.
Full textMerkoi, Arben, ed. Biosensing Using Nanomaterials. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470447734.
Full textBiosensing using nanomaterials. Hoboken: Wiley, 2009.
Find full textBorse, Vivek, Pranjal Chandra, and Rohit Srivastava, eds. BioSensing, Theranostics, and Medical Devices. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-2782-8.
Full textChandra, Pranjal, ed. Biosensing and Micro-Nano Devices. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8333-6.
Full textRenneberg, Reinhard, and Fred Lisdat, eds. Biosensing for the 21st Century. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75201-1.
Full textZhu, Jun-Jie, Jing-Jing Li, Hai-Ping Huang, and Fang-Fang Cheng. Quantum Dots for DNA Biosensing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-44910-9.
Full textBook chapters on the topic "Biosensiing"
Schultz, Jerome. "Infrastructure Overview." In Biosensing, 1–29. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_1.
Full textWalt, David R. "Optical Biosensing." In Biosensing, 31–43. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_2.
Full textMrksich, Milan. "Electro-Based Sensors and Surface Engineering." In Biosensing, 45–53. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_3.
Full textBhatia, Sangeeta N. "Cell and Tissue-Based Sensors." In Biosensing, 55–65. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_4.
Full textWilkins, Charles L. "Mass Spectrometry and Biosensing Research." In Biosensing, 67–78. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_5.
Full textRicco, Antonio J. "Microfabricated Biosensing Devices: MEMS, Microfluidics, and Mass Sensors." In Biosensing, 79–106. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_6.
Full textBrady, David J. "Information Systems for Biosensing." In Biosensing, 107–19. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_7.
Full textKheyraddini Mousavi, Arash, Zayd Chad Leseman, Manuel L. B. Palacio, Bharat Bhushan, Scott R. Schricker, Vishnu-Baba Sundaresan, Stephen Andrew Sarles, et al. "Biosensing." In Encyclopedia of Nanotechnology, 329. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100084.
Full textWolf, Jean-Pierre. "Biosensing Instrumentation." In NATO Science for Peace and Security Series B: Physics and Biophysics, 131–52. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9133-5_4.
Full textMaeda, Mizuo. "Biosensing Materials." In Encyclopedia of Polymeric Nanomaterials, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_230-1.
Full textConference papers on the topic "Biosensiing"
Zhang, Bing, Kai Pang, Yi Sun, and Xiaoping Wang. "High-peformance bimetallic SPR sensor for ciprofloxacin based on molecularly imprinted polymer." In Biosensing and Nanomedicine XI, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320083.
Full textEscobar Acevedo, Marco Antonio, J. R. Guzman-Sepulveda, Carlos G. Martínez-Arias, Miguel Torres-Cisneros, and Rafael Guzman-Cabrera. "Biosensing using long-range surface plasmon structures." In Biosensing and Nanomedicine XI, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320281.
Full textRagan, Regina, and William Thrift. "Quantitative single molecule SERS sensing enabled by machine learning (Conference Presentation)." In Biosensing and Nanomedicine XI, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320297.
Full textCojocaru, Ivan, Jing-Wei Fan, Joe Becker, Ilya V. Fedotov, Masfer H. Alkahtani, Abdulrahman Alajlan, Sean Blakley, et al. "All-optical high resolution thermometry with color centers in diamond (Conference Presentation)." In Biosensing and Nanomedicine XI, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320316.
Full textChang, An-Yi, and Prabhu Arumugam. "Fabrication and characterization of boron-doped ultrananocrystalline diamond microelectrodes modified with multi-walled carbon nanotubes and nafion." In Biosensing and Nanomedicine XI, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320417.
Full textNishino, Tomoki, Hiroshi Tanigawa, and Jun Sekiguchi. "Antifouling technology of metamaterial structure using biomimetic technology." In Biosensing and Nanomedicine XI, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320471.
Full textDubolazov, Olexander V., Mikhailo Sakhnovskiy, M. S. Garazduyk, A. V. Syvokorovskaya, G. B. Bodnar, V. A. Ushenko, O. I. Olar, and O. Tsyhykalo. "Correlation structure of Stokes parametric images of polycrystalline films of human biological fluids." In Biosensing and Nanomedicine XI, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320512.
Full textSokolnyk, S. O., M. I. Sidor, Olexander V. Dubolazov, Leonid Pidkamin, Yuriy Ushenko, O. V. Olar, G. B. Bodnar, and O. Prydiy. "Clinical applications of the Mueller-matrix reconstruction of the polycrystalline structure of multiple-scattering biological tissues." In Biosensing and Nanomedicine XI, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320527.
Full textUshenko, Alexander, V. G. Zhytaryuk, M. I. Sidor, A. V. Motrich, O. V. Pavliukovich, O. Ya Wulchulyak, I. V. Soltys, and N. Pavliukovich. "Diffuse tomography of optical anisotropy of tumors of the uterus wall." In Biosensing and Nanomedicine XI, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320529.
Full textSyvokorovskaya, A. V., M. P. Gorsky, R. Besaga, Yuriy Ushenko, Yuriy Tomka, S. O. Sokolnuik, O. Bakun, L. Yu Kushnerik, and S. Golub. "System of 3D Mueller-matrix reconstruction of fibrillar networks of biological tissues of various morphological structure and physiological state." In Biosensing and Nanomedicine XI, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320535.
Full textReports on the topic "Biosensiing"
Anderson, G., M. Mauro, H. Mattoussi, and R. Banahalli. Luminescent Nanoparticles for High Sensitivity Biosensing. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada399563.
Full textYan, Hao. Self-Assembled Combinatorial Nanoarrays for Multiplex Biosensing. Fort Belvoir, VA: Defense Technical Information Center, February 2010. http://dx.doi.org/10.21236/ada518368.
Full textMartinez, Jennifer. Genetically encoded functional materials: regenerative medicine, optoelectronics, biosensing. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1169673.
Full textBroach, James, Alexandre Morozov, and Ron Weiss. Highly Extensible Programmed Biosensing Circuits with Fast Memory. Fort Belvoir, VA: Defense Technical Information Center, December 2011. http://dx.doi.org/10.21236/ada559064.
Full textSlipher, Geoffrey, Randy Mrozek, W. D. Hairston, Joseph Conroy, Wosen Wolde, and William Nothwang. Stretchable Conductive Elastomers for Soldier Biosensing Applications: Final Report. Fort Belvoir, VA: Defense Technical Information Center, March 2016. http://dx.doi.org/10.21236/ad1005120.
Full textShtenberg, Giorgi, and Shelley Minteer. Dual mode detection of heavy metal pollutants: A real-time biosensing method. United States Department of Agriculture, January 2018. http://dx.doi.org/10.32747/2018.7604937.bard.
Full textDel Vecchio, Domitilla. Quantitative Analysis, Design, and Fabrication of Biosensing and Bioprocessing Devices in Living Cells. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada582056.
Full textDel Vecchio, Domitilla. Quantitative Analysis, Design, and Fabrication of Biosensing and Bioprocessing Devices in Living Cells. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada616874.
Full textStukes, James, Frank Weaver, Bettye Stokes, Nancy O'Connor, and Charlie Barans. Marine Science Initiative at South Carolina State College: An Investigation of the Biosensing Parameters Regulating Bacterial and Larval Attachment on Substrata. Fort Belvoir, VA: Defense Technical Information Center, August 1993. http://dx.doi.org/10.21236/ada268910.
Full text