Academic literature on the topic 'Biosurfactant'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biosurfactant.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biosurfactant"
Brinda, C. M., R. Ragunathan R. Ragunathan, and Jesteena Johney. "Diversity and Distribution of Potential Biosurfactant Producing Bacillus Sp MN 243657, GC-MS Analysis and its Antimicrobial Study." Biosciences Biotechnology Research Asia 20, no. 1 (March 30, 2023): 271–91. http://dx.doi.org/10.13005/bbra/3088.
Full textLiepins, Janis, Karina Balina, Raimonda Soloha, Ieva Berzina, Liva Kristiana Lukasa, and Elina Dace. "Glycolipid Biosurfactant Production from Waste Cooking Oils by Yeast: Review of Substrates, Producers and Products." Fermentation 7, no. 3 (July 29, 2021): 136. http://dx.doi.org/10.3390/fermentation7030136.
Full textOyedeji, Olaoluwa, Deborah Ifeoluwa Onifade, and Anthony Abiodun Onilude. "Production, Characterization, and Application of Biosurfactant From Lactobacillus plantarum OG8 Isolated From Fermenting Maize (Zea Mays) Slurry." Acta Universitatis Cibiniensis. Series E: Food Technology 26, no. 2 (December 1, 2022): 271–86. http://dx.doi.org/10.2478/aucft-2022-0022.
Full textAmraini, Said Zul, Sri Rezeki Muria, Bahruddin Bahruddin, Irdoni HS, Ulfa Dwi Artha, and Reno Susanto. "Biosurfactant Production from Pseudomonas aeruginosa ATCC27853 with Carbon Source from Crude Palm Oil for Oil Recovery." Indo. J. Chem. Res. 10, no. 1 (May 31, 2022): 47–52. http://dx.doi.org/10.30598/ijcr.2022.10-sai.
Full textGunjal, Aparna. "Biosurfactants from renewable sources - A review." Nepal Journal of Environmental Science 10, no. 2 (December 31, 2022): 15–23. http://dx.doi.org/10.3126/njes.v10i2.48538.
Full textYoussef, Noha H., Kathleen E. Duncan, and Michael J. McInerney. "Importance of 3-Hydroxy Fatty Acid Composition of Lipopeptides for Biosurfactant Activity." Applied and Environmental Microbiology 71, no. 12 (December 2005): 7690–95. http://dx.doi.org/10.1128/aem.71.12.7690-7695.2005.
Full textJavadi, Ali, Mohamad Reza Pourmand, Javad Hamedi, Fatemeh Gharebaghi, Zohre Baseri, Razieh Mohammadzadeh, and Seyyed Saeed Eshraghi. "Evaluation of anti-biofilm potential of biosurfactant extracted from Nocardia species." Folia Medica 63, no. 3 (June 30, 2021): 392–99. http://dx.doi.org/10.3897/folmed.63.e54386.
Full textFachria, Rizqy. "APLIKASI BIOSURFAKTAN Bacillus subtilis ATCC 19659 DENGAN MEDIA PRODUKSI LIMBAH TAHU UNTUK ENHACED OIL RECOVERY." Jurnal Teknologi Lingkungan Lahan Basah 9, no. 2 (August 29, 2021): 101. http://dx.doi.org/10.26418/jtllb.v9i2.48221.
Full textSena, Hellen Holanda, Michele Alves Sanches, Diego Fernando Silva Rocha, Walter Oliva Pinto Filho Segundo, Érica Simplício de Souza, and João Vicente Braga de Souza. "Production of Biosurfactants by Soil Fungi Isolated from the Amazon Forest." International Journal of Microbiology 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/5684261.
Full textVaijayanti, Mahulkar Ankita Vidyadhar. "Comparative study of antimicrobial efficiency of biosurfactant producing Pseudomonas spp. from different soil samples." Journal of Applied and Advanced Research 5 (September 6, 2020): 1. http://dx.doi.org/10.21839/jaar.2020.v5.318.
Full textDissertations / Theses on the topic "Biosurfactant"
Chen, Chien-Yen. "Biosurfactant production." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419243.
Full textDomingues, Patrícia Maia. "Isolation of estuarine biosurfactant-producing bacteria." Master's thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/7773.
Full textBioremediation has proven to be an effective strategy in the recuperation of oil contaminated ecosystems. However most bacteria used in this processes, while being able to degrade a wide range of the oil hydrocarbons, have limited action due to the low water solubility of these compounds. Hence, a possible solution for this problem would be the use of biosurfactant-producing bacteria, since the presence of surfactants help improve the hydrocarbons dispersal, solubilization and bioavailability. The objective of this work was to assess the biotechnological potential of Ria de Aveiro estuarine system regarding the presence of hydrocarbonoclastic biosurfactant-producing bacteria and to evaluate different combinations of environmental inocula and carbon sources for the isolation of biosurfactants producing bacteria. Selective cultures (diesel, crude and paraffin) were prepared using inocula from different environmental matrixes: samples from the surface microlayer (SML), bulk estuarine sediments and sediments of the rhizosphere of Halimione portulacoides, a characteristic halophyte from the salt marshes of Ria de Aveiro. During the incubation period, the development of the selective cultures was assessed by quantification of colony forming units (CFU). The highest value of CFU was obtained in the crude-sediment culture, while the lowest value was found with the diesel-rhizosphere combination. The DGGE profiles of the 16s rRNA gene fragments of the total community DNA extracted at the end of the incubation of the selective cultures, show that communities were different in terms of structural diversity. The values of the Shannon-Weaver index of diversity indicate that the higher diversity was achieved in the selective cultures with paraffin as carbon source (2.5231), followed by the crude oil (2.2509), and diesel (1.6726) selective cultures. From the selective cultures, 111 presumably hydrocarbonoclastic isolates were obtained after isolation and purification. Of these, 66 were tested for biosurfactant production by the atomized oil assay, with positive results for 17 isolates (25.8%). The environmental matrix with best results was the SML water and diesel was the most effective carbon source. Having in consideration the high number of isolates obtained from the selective cultures and the percentage of biosurfactant producers, the estuarine system of Ria the Aveiro, and in particular the SML, can be regarded as an interesting seedbank for the prospection of hydrocarbonoclastic and biosurfactants producing bacteria. The SML microhabitat shows particularly high biotechnological potential for the isolation of bacterial strains with interesting properties for application in bioremediation strategies in coastal and estuarine areas.
A biorremediação é tida como uma possível estratégia na recuperação de ecossistemas contaminados com hidrocarbonetos. A aplicação eficaz desta tecnologia é, no entanto, muitas vezes limitada pela natureza hidrofóbica dos contaminantes. O recurso a estirpes bacterianas simultaneamente degradadoras de hidrocarbonetos e produtoras de biossurfactantes apresenta um enorme potencial na reciclagem de compostos hidrofóbicos. Assim, o objectivo deste trabalho consistiu em avaliar o potencial biotecnológico do sistema estuarino da Ria de Aveiro quanto à presença de bactérias hidrocarbonoclásticas produtoras de biossurfactantes e a avaliação de várias combinações de inóculos ambientais e fontes de carbono para a obtenção de isolados bacterianos de interesse. Para tal foram realizadas experiências em meios selectivos (diesel, crude e parafina) a partir de inóculos de diferentes matrizes ambientais: amostras da microcamada superficial (SML), sedimentos estuarinos e rizosfera de bancos de Halimione portulacoides, uma planta halófita dos sapais da Ria de Aveiro. O desenvolvimento da cultura ao longo do período de incubação foi avaliado pela contagem de unidades formadoras de colónias (CFUs). A cultura selectiva com maior teor de bactérias cultiváveis foi a de crude-sedimento e aquela em que a abundância bacteriana foi mais baixa foi a de diesel-rizosfera. A partir da análise dos perfis de DGGE dos fragmentos do gene 16s rRNA do DNA total extraído das culturas selectivas verificou-se que no fim do período de incubação, o grau de semelhança entre as comunidades bacterianas das culturas selectivas é relativamente baixo. Pelo índice de diversidade de Shannon-Weaver a maior diversidade estrutural das comunidades bacterianas encontra-se nas culturas selectivas de parafina (2,5231), seguidas das de crude (2.2509) e das de diesel (1.6727). Das culturas selectivas, foi obtido um conjunto de isolados que foi testado quanto à capacidade de produção de biossurfactantes pelo método atomized oil. De 66 isolados testados, 17 produziram resultado positivo (25,8%), sendo a água da SML a matriz ambiental com melhores resultados e o diesel a melhor fonte de carbono para o isolamento de bactérias produtoras de biossurfactantes. Tendo em conta o elevado número de isolados obtidos e a percentagem de produtores de biossurfactantes, pode concluir-se que na Ria de Aveiro, particularmente na SML, existem comunidades bacterianas adaptadas à utilização se substratos hidrofóbicos, com uma boa representação de produtores de biossurfactantes. Os resultados confirmam a perspectiva de que a SML da Ria de Aveiro é um microhabitat com elevado potencial biotecnológico para isolamento de estirpes de bactérias hidrocarbonoclásticas produtoras de biossurfactantes com promissoras aplicações em processos de biorremediação de regiões estuarinas e costeiras após contaminação acidental com hidrocarbonetos de petróleo.
Bamara, Prosper. "Conversion of hydrocarbons to biosurfactants : an insight into the bioprocess optimisation of biosurfactant production using alkanes as inducers." Master's thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/5344.
Full textShen, Hsin-Hui. "Neutron reflection study of the biosurfactant surfactin." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491968.
Full textChen, Zixi. "Polyurethane-Based Biosurfactant Mimics as Antibiofilm Agents." University of Akron / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=akron1619217360880311.
Full textJiménez, Peñalver Pedro. "Sophorolipids production by solid-state fermentation: from lab-scale to pilot plant." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/458652.
Full textEn este trabajo se propone una tecnología alternativa para producir soforolípidos (SLs), un tipo de biosurfactante, presentados como alternativa a los surfactantes producidos químicamente debido a su mayor eficiencia y mejor perfil medioambiental. En este trabajo se han explorado dos estrategias para mejorar la relación coste-eficiencia de los SLs respecto a los surfactantes producidos químicamente, que es lo que determina su viabilidad económica. Ambas estrategias están basadas en la producción de SLs mediante la fermentación en estado sólido (FES) de Starmerella bombicola. La primera estrategia consistió en el uso de un residuo de winterización (RW) con el fin de disminuir el precio de los sustratos. Se utilizó melaza de azúcar como co-sustrato y paja de trigo como soporte inerte. El proceso fue optimizado en base a la ratio de sustratos, la velocidad de aireación y el tamaño del inóculo a escala de 100-g obteniendo un rendimiento de 0.261 g de SLs por g de sustrato a día 10. El proceso fue escalado satisfactoriamente a un biorreactor de lecho fijo de 40-L, pero se observaron problemas asociados con la eliminación del calor durante el escalado a un biorreactor de 100-L. Los SLs producidos a partir del RW fueron caracterizados durante una estancia en el Rensselaer Polytechnic Institute (RPI) en NY, EEUU. La segunda estrategia consistió en el uso de ácido esteárico (C18:0) para obtener SLs con una estructura específica que mejore las propiedades fisicoquímicas de la mezcla natural de SLs y, por tanto, su eficiencia. Se utilizó melaza de azúcar como co-sustrato y espuma de poliuretano como soporte inerte. Se evaluó el efecto de la densidad de la espuma de poliuretano y la capacidad de retención hídrica y el proceso fue optimizado en base a la ratio de sustratos e inóculo obteniendo un rendimiento final de 0.211 g de SLs por g de sustrato. Los SLs producidos presentaron contenidos elevados de SLs diacetilados C18:0 acídico y lactónico. Se observaron correlaciones significativas entre el rendimiento de SLs y el oxígeno consumido (COA). Esto sugiere que el COA puede ser usado como medida indirecta de la producción de SLs para la monitorización on-line de procesos de FES. Esta tesis representa el comienzo de una nueva línea de investigación centrada en la producción de SLs por FES en el Grupo de Investigación en Compostaje (GICOM) del Departamento de Ingeniería Química, Biológica y Ambiental de la Universitat Autònoma de Barcelona.
This work proposes a potential alternative approach to produce sophorolipids (SLs), a type of biosurfactant, which are presented as an alternative to chemically-produced surfactants due to their higher efficiency and better environmental compatibility. Two strategies have been performed in this work to increase their cost-performance relative to petroleum based surfactants, which determines their commercial viability. Both are based in the production of SLs by the solid-state fermentation (SSF) of solid hydrophobic substrates by the yeast Starmerella bombicola. The first strategy was to use winterization oil cake (WOC), an oil cake that comes from the oil refining industry, to decrease the price of the substrates and, therefore, the final production costs of SLs. Sugar-beet molasses was used as co-substrate and wheat straw was chosen as inert support. The process was optimized in terms of substrates ratio, aeration rate and inoculum size at 0.5-L scale to obtain a yield of 0.261 g of SLs per g of substrate at day 10. The optimized process was successfully scale-up to a 40-L packed-bed bioreactor but problems associated with heat removal were found during the scale-up to a 100-L intermittently-mixed bioreactor. The chemical structure and interfacial properties of the SL natural mixture produced from the WOC were studied during a research stay at the Rensselaer Polytechnic Institute (RPI) in NY, USA. The second strategy consisted in the use of stearic acid (C18:0) to obtain SLs with a specific structure that improves the physicochemical properties of the SL natural mixture and, therefore, their performance. Sugar-beet molasses was used as co-substrate and polyurethane foam (PUF) functioned as inert support. The effect of PUF density and water holding capacity was assessed and the process was optimized in terms of substrate and inoculum ratio to obtain a final yield of 0.211 g of SLs per g of substrate. SLs produced herein had high contents of diacetylated acidic and lactonic C18:0 SLs. There were significant correlations between the SL yield and the oxygen consumed (COC). This suggests that the respiration parameter COC, can be used as an indirect measurement of the production of SLs for the on-line monitoring of SSF processes. This thesis represents the beginning of a new research line focused on the production of SLs by SSF in the Composting Research Group (GICOM) at the Department of Chemical, Biological and Environmental Engineering of the Universitat Autònoma de Barcelona.
Weber, Andreas [Verfasser]. "Process Analysis of Biosurfactant Downstream Processing / Andreas Weber." München : Verlag Dr. Hut, 2014. http://d-nb.info/1063222281/34.
Full textPerfumo, Amedea. "Investigation of bacterial biosurfactant production for industrial use." Thesis, University of Ulster, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.554284.
Full textUrum, Kingsley. "Biosurfactant enhanced treatment of petroleum oil contaminated soils." Thesis, Heriot-Watt University, 2004. http://hdl.handle.net/10399/232.
Full textGidudu, Brian. "Biosurfactant Enhanced Bioelectrokinetic Remediation of Petrochemical Contaminated Soil." Diss., University of Pretoria, 2019. http://hdl.handle.net/2263/79238.
Full textDissertation (MEng)--University of Pretoria, 2019.
Environmental Engineering
MEng
Unrestricted
Books on the topic "Biosurfactant"
Kumar, Rajesh, and Amar Jyoti Das. Rhamnolipid Biosurfactant. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1289-2.
Full textSoberón-Chávez, Gloria, ed. Biosurfactants. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14490-5.
Full textSen, Ramkrishna, ed. Biosurfactants. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5979-9.
Full text1966-, Sen Ramkrishna, ed. Biosurfactants. New York, N.Y: Springer Science+Business Media, 2010.
Find full textInamuddin, Mohd Imran Ahamed, and Ram Prasad, eds. Microbial Biosurfactants. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-6607-3.
Full textSharma, Deepansh. Biosurfactants in Food. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39415-2.
Full text1928-, Kosaric Naim, Cairns W. L. 1942-, and Gray, Neil C. C., 1954-, eds. Biosurfactants and biotechnology. New York: M. Dekker, 1987.
Find full textKumar, Pankaj, and Ramesh Chandra Dubey, eds. Multifunctional Microbial Biosurfactants. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-31230-4.
Full textAslam, Ruby, Mohammad Mobin, Jeenat Aslam, and Saman Zehra, eds. Advancements in Biosurfactants Research. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21682-4.
Full text1928-, Kosaric Naim, ed. Biosurfactants: Production, properties, applications. New York: M. Dekker, 1993.
Find full textBook chapters on the topic "Biosurfactant"
Kronemberger, Frederico de Araujo. "Biosurfactant." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_61-1.
Full textVadivel, Tamil Elakkiya, Krishnan Ravi Shankar, Tholan Gajendran, Theresa Veeranan, and Renganathan Sahadevan. "Biosurfactant." In Sustainable Bioprocessing for a Clean and Green Environment, 217–33. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003035398-12.
Full textde Kronemberger, Frederico Araujo. "Biosurfactant Production." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_62-1.
Full textKonwar, Bolin Kumar. "Biosurfactant Genetics." In Bacterial Biosurfactants, 49–70. Boca Raton: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003188131-5.
Full textKumar, Rajesh, and Amar Jyoti Das. "Rhamnolipid Biosurfactants and Their Properties." In Rhamnolipid Biosurfactant, 1–13. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1289-2_1.
Full textKumar, Rajesh, and Amar Jyoti Das. "Rhamnolipid-Assisted Synthesis of Stable Nanoparticles: A Green Approach." In Rhamnolipid Biosurfactant, 111–24. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1289-2_10.
Full textKumar, Rajesh, and Amar Jyoti Das. "Quorum Sensing: Its Role in Rhamnolipid Production." In Rhamnolipid Biosurfactant, 125–35. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1289-2_11.
Full textKumar, Rajesh, and Amar Jyoti Das. "Future Prospects and Scenario of Rhamnolipids." In Rhamnolipid Biosurfactant, 137–41. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1289-2_12.
Full textKumar, Rajesh, and Amar Jyoti Das. "Extraction, Detection, and Characterization of Rhamnolipid Biosurfactants from Microorganisms." In Rhamnolipid Biosurfactant, 15–28. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1289-2_2.
Full textKumar, Rajesh, and Amar Jyoti Das. "Production of Rhamnolipids." In Rhamnolipid Biosurfactant, 29–41. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1289-2_3.
Full textConference papers on the topic "Biosurfactant"
Baccile, Niki, Alexandre Poirier, and Chloe Seyrig. "Biosurfactants and biopolymers: Between interactions, orthogonality and mutual responsivity." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/taly8346.
Full textBhattacharjee, Saurav, Borkha Mech, Naved Wasim Ahmed, Ankita Khataniar, and Aparoov Das. "Metagenomic Sequencing of Formation Water Sample of Upper Assam Oil Fields and Its Possible Applications in Microbial Enhanced Oil Recovery." In ADIPEC. SPE, 2023. http://dx.doi.org/10.2118/216577-ms.
Full textAdeyemi, Gbadegesin Abiodun, Sven Egenhoff, Adesina Fadairo, kegang Ling, Olusegun Tomomewo, Adebowale Oladepo, Ayodeji Ayoola, and Jeffery Okonji. "Investigating Suitability of Microbial Derived Biosurfactant for Deliquefying Gas Well - An Experimental Approach." In SPE Nigeria Annual International Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/217253-ms.
Full textAlahmari, M. M., A. A. Humam, I. M. Zefzafy, C. Sanchez-Huerta, P. Y. Hong, and S. Zhang. "Hybrid Solution to Remediate Groundwater Contaminated by Petroleum-Hydrocarbons." In SPE Water Lifecycle Management Conference and Exhibition. SPE, 2024. http://dx.doi.org/10.2118/218976-ms.
Full textFitriyani, L. "Biosurfactant Addition into Solvent Extraction Process of Oily Contaminated Solid Waste." In Digital Technical Conference. Indonesian Petroleum Association, 2020. http://dx.doi.org/10.29118/ipa20-o-435.
Full textOnaizi, Sagheer A. "Enzymatic Treatment of Phenolic Wastewater: Effects of Salinity and Biosurfactant Addition." In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21349-ms.
Full textMelo, Palloma M. J. de, Nathália S. A. A. Marques, Adriana F. de Souza, Gabriela R. P. de Andrade, and Galba M. de Campos-Takaki. "Strategy for sustainable biosurfactant production by mucor circinelloides UCP0017." In III SEVEN INTERNATIONAL MULTIDISCIPLINARY CONGRESS. Seven Congress, 2023. http://dx.doi.org/10.56238/seveniiimulti2023-267.
Full textAraújo, H. W. C., B. S. O. Ceballos, and G. M. Campos-Takaki. "Biosurfactant production by Chromobacterium prodigiosum." In Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007). WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837554_0140.
Full textCoscia, Benjamin, Andrea Browning, Jeffrey Sanders, and Mat Halls. "Molecular simulation as a tool for the design of biosurfactant-based cosmetic formulations." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/jdlz5827.
Full textAu Yong, Hin Cheong, Kortney Tooker, Khanh Van Pham, Richard Arriaga, and Amir Mahmoudkhani. "Multifunctional Biosurfactants with Unusual pH Sensitive Interfacial Behavior for Remediation of Iron and Zinc Sulfide Formation Damage." In SPE International Conference on Oilfield Chemistry. SPE, 2023. http://dx.doi.org/10.2118/213799-ms.
Full textReports on the topic "Biosurfactant"
M.J. McInerney, S.K. Maudgalya, R. Knapp, and M. Folmsbee. DEVELOPMENT OF BIOSURFACTANT-MEDIATED OIL RECOVERY IN MODEL POROUS SYSTEMS AND COMPUTER SIMULATIONS OF BIOSURFACTANT-MEDIATED OIL RECOVERY. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/834170.
Full textM.J. McInerney, R.M. Knapp, Kathleen Duncan, D.R. Simpson, N. Youssef, N. Ravi, M.J. Folmsbee, et al. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery. Office of Scientific and Technical Information (OSTI), September 2007. http://dx.doi.org/10.2172/943328.
Full textM.J. McInerney, N. Youssef, T. Fincher, S.K. Maudgalya, M.J. Folmsbee, R. Knapp, and D. Nagle. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/834168.
Full textM.J. McInerney, K.E. Duncan, N. Youssef, T. Fincher, S.K. Maudgalya, M.J. Folmsbee, R. Knapp, Randy R. Simpson, N.Ravi, and D. Nagle. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/860919.
Full textM.J. McInerney, R.M. Knapp, Jr D.P. Nagle, Kathleen Duncan, N. Youssef, M.J. Folmsbee, and S. Maudgakya. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/822122.
Full textKatan, Jaacov, and Michael E. Stanghellini. Clinical (Major) and Subclinical (Minor) Root-Infecting Pathogens in Plant Growth Substrates, and Integrated Strategies for their Control. United States Department of Agriculture, October 1993. http://dx.doi.org/10.32747/1993.7568089.bard.
Full textM.J. McInerney, M. Folmsbee, and D. Nagle. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/834171.
Full textSpetzler, Hartmut. Seismic Absorption and Modulus Measurements in Porous Rocks in Lab and Field: Physical, Chemical, and Biological Effects of Fluids (Detecting a Biosurfactant Additive in a Field Irrigation Experiment). Office of Scientific and Technical Information (OSTI), May 2006. http://dx.doi.org/10.2172/1010627.
Full textMcInerney, J. J., S. O. Han, S. Maudgalya, H. Mouttaki, M. Folmsbee, R. Knapp, D. Nagle, B. E. Jackson, M. Stuadt, and W. Frey. Development of More Effective Biosurfactants for Enhanced Oil Recovery. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/806980.
Full textMcInerney, M. J., H. Mouttaki, M. Folmsbee, R. Knapp, and D. Nagle. Development of More Effective Biosurfactants for Enhanced Oil Recovery. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/807189.
Full text