Academic literature on the topic 'Biot Savart's law'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biot Savart's law.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biot Savart's law"
Qihou, Z. "Proof of Biot-Savart's law for a discontinuous current-or another example of displacement current." European Journal of Physics 8, no. 2 (April 1, 1987): 128–30. http://dx.doi.org/10.1088/0143-0807/8/2/010.
Full textKim, Ki-Chan. "Comparison of Biot-Savart's Law and 3D FEM in the Study of Electromagnetic Forces Acting on End Winding." Journal of Electrical Engineering and Technology 6, no. 3 (May 2, 2011): 369–74. http://dx.doi.org/10.5370/jeet.2011.6.3.369.
Full textZhou, Zhen, Z. H. Guan, J. Luo, L. J. Wang, Y. Qin, and G. F. Sun. "Finite Element Analysis of Inductance Sensor Structure in the Measuring System of the Grade of the Iron Concentrate." Key Engineering Materials 458 (December 2010): 155–60. http://dx.doi.org/10.4028/www.scientific.net/kem.458.155.
Full textBARBOSA, DISTERFANO L. M., JERSON R. P. VAZ, SÁVIO W. O. FIGUEIREDO, MARCELO DE OLIVEIRA E. SILVA, ERB F. LINS, and ANDRÉ L. A. MESQUITA. "An Investigation of a Mathematical Model for the Internal Velocity Profile of Conical Diffusers Applied to DAWTs." Anais da Academia Brasileira de Ciências 87, no. 2 (April 28, 2015): 1133–48. http://dx.doi.org/10.1590/0001-3765201520140114.
Full textGanushkina, N. Yu, M. W. Liemohn, and T. I. Pulkkinen. "Storm-time ring current: model-dependent results." Annales Geophysicae 30, no. 1 (January 17, 2012): 177–202. http://dx.doi.org/10.5194/angeo-30-177-2012.
Full textHovey, Arthur. "The Biot-Savart Law—Another Approach." Physics Teacher 46, no. 5 (May 2008): 261–62. http://dx.doi.org/10.1119/1.2909737.
Full textOliveira, Mário H., and José A. Miranda. "Biot-Savart-like law in electrostatics." European Journal of Physics 22, no. 1 (January 1, 2001): 31–38. http://dx.doi.org/10.1088/0143-0807/22/1/304.
Full textPyati, Vittal P. "Simplified Biot-Savart Law for Planar Circuits." IEEE Transactions on Education E-29, no. 1 (February 1986): 32–33. http://dx.doi.org/10.1109/te.1986.5570681.
Full textKabbary, F. M., B. G. Stewart, and M. C. Hately. "Displacement Current and the Biot-Savart Law." International Journal of Electrical Engineering Education 27, no. 4 (October 1990): 344–55. http://dx.doi.org/10.1177/002072099002700412.
Full textPhillips, Jeffrey A., and Jeff Sanny. "The Biot-Savart Law: From Infinitesimal to Infinite." Physics Teacher 46, no. 1 (January 2008): 44–47. http://dx.doi.org/10.1119/1.2824000.
Full textDissertations / Theses on the topic "Biot Savart's law"
Gärskog, Gustav. "NUMERICAL CALCULATION METHOD FOR MAGNETIC FIELDS IN THE VICINITY OF CURRENT-CARRYING CONDUCTORS." Thesis, Uppsala universitet, Elektricitetslära, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353338.
Full textPereira, Arthur Melo. "Cálculo de campos elétricos e magnéticos nas proximidades de linhas de transmissão: uma abordagem analítica e numérica." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/7966.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-11-16T09:49:04Z (GMT) No. of bitstreams: 2 Dissertação - Arthur Melo Pereira - 2017.pdf: 8324435 bytes, checksum: a36f9e13810ace212ce9d44a66fc2fb4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-11-16T09:49:04Z (GMT). No. of bitstreams: 2 Dissertação - Arthur Melo Pereira - 2017.pdf: 8324435 bytes, checksum: a36f9e13810ace212ce9d44a66fc2fb4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-09-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In a society dependent on electric energy for the execution of various daily activities, it is normal that its use is increasingly increasing over time. In order to carry out the transportation of all electric energy, it is essential to use transmission lines, which with increasing energy demand inevitably have tended to multiply throughout the world, and especially in Brazil, given its continental dimensions. Considering the function of the transmission lines for the electrical system, its importance in the context of the electric power supply is remarkable. However, the lines constitute one of the great emitting sources of electric and magnetic fields of low frequency, which has caused concern and has been motivating fact of several studies, like the realized in this work. Therefore, in view of the scenario presented in the previous paragraph, it is necessary to establish ways of calculating the fields more and more precisely. For the calculation of the electric field is used the Image Method, the Maxwell Potential Coefficients Method and the Coulomb Law, and for the magnetic field the Biot-Savart's Law is used. The results obtained for the electric and magnetic fields were for infinite rectilinear geometries, finite rectilinear and for the conductors taking the form of a catenary, the latter geometry being the most real model for the arrangement of the conductors in a line. In all cases treated, an analytical and numerical approach was performed, in order to allow the calculation of the three geometries with accuracy. Taking advantage of the methodology of calculation of the fields, in addition this work proposes a method of support to the monitoring of transmission lines. The method consists of using the Genetic Algorithm associated to the values of the electric and magnetic fields measured to determine the parameters of the line, such as: phase spacing, cable-soil height, equivalent conductor diameter, current and operating voltage. Given the simplicity of implementation when compared to other methods, the achievement of satisfactory results and the need for a single measuring device to monitor the transmission line, the proposed method proves to be viable and promising to carry out the line monitoring process.
Em uma sociedade dependente da energia elétrica para a execução de diversas atividades do cotidiano, é normal que a sua utilização seja cada vez mais crescente no decorrer do tempo. Para realizar o transporte de toda energia elétrica é imprescindível o uso de linhas de transmissão, que com o aumento da demanda de energia inevitavelmente tenderam a se multiplicar pelo mundo e em especial pelo território brasileiro, dadas as suas dimensões continentais. Tendo em vista a função das linhas de transmissão para o sistema elétrico, é notável a sua importância no contexto do fornecimento de energia elétrica. No entanto, as linhas constituem uma das grandes fontes emissoras de campos elétricos e magnéticos de baixa frequência, o que tem causado preocupação e tem sido fato motivador de diversos estudos, como o realizado neste trabalho. Portanto, diante do cenário apresentado no parágrafo anterior, se faz necessário estabelecer formas de calcular os campos de maneira cada vez mais precisa. Para o cálculo do campo elétrico utiliza-se o Método das Imagens, o Método dos Coeficientes de Potencial de Maxwell e a Lei de Coulomb, já para o campo magnético a Lei de Biot-Savart é empregada. Os resultados obtidos para os campos elétricos e magnéticos foram para as geometrias retilíneas infinitas, retilíneas finitas e para os condutores assumindo a forma de uma catenária, sendo que essa última geometria constitui o modelo mais real quanto à disposição dos condutores em uma linha. Em todos os casos tratados foram realizadas uma abordagem analítica e numérica, de maneira a possibilitar o cálculo das três geometrias com exatidão. Aproveitando-se da metodologia de cálculo dos campos, adicionalmente este trabalho propõe um método de apoio ao monitoramento de linhas de transmissão. O método consiste em utilizar o Algoritmo Genético associado aos valores dos campos elétrico e magnético medidos para determinar os parâmetros da linha, como: espaçamento entre fases, altura cabo-solo, diâmetro equivalente dos condutores, corrente e tensão de operação. Dada a simplicidade de implementação quando comparado a outros métodos, a obtenção de resultados satisfatórios e a necessidade de um único aparelho de medição para monitorar a linha de transmissão, o método proposto mostra-se viável e promissor para realizar o processo de monitoramento de linhas.
Soukup, Lubomír. "Analýza proudění v potrubí kruhového i nekruhového průřezu metodou využívající rozložení hustoty vířivosti po průřezu." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-256580.
Full textBuzio, Marco. "Structural effects of plasma instabilities on the JET tokamak." Thesis, Imperial College London, 1999. http://hdl.handle.net/10044/1/7574.
Full textPaese, Evandro. "Estampagem eletromagnética de chapas finas : viabilidade técnica." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2010. http://hdl.handle.net/10183/23932.
Full textThis dissertation presents a mathematical model and numerical method to solve the problems of electromagnetic forming of thin circular metal sheets by using a flat spiral coil. The method focuses specifically on the calculation of the electromagnetic field generated by the coil flat and circuit analysis modeling system electromagnetic forming. The flat coil is approximated by concentric circles carrying a discharge current of capacitors. The calculations of induced currents and profile of the electromagnetic force on the plate and magnetic coupling between the coil and sheet metal are made to the initial time, before the plastic deformation of the plate. The method uses the law of Biot-Savart, and the solution of the integral obtained for magnetic induction is performed by numerical methods, considering the symmetries of the problem. To verify the mathematical model, the numerical solution and proving the technical feasibility of this process, a electromagnetic forming device was developed and several experiments were made with aluminum plates. The parameters investigated were the thickness of the plate to be deformed and the influence of the vacuum in the cavity of the tool. The experimental results show agreement with the results of the proposed model. The presence of vacuum also showed an increase in the deformation of the plate. A routine developed in software Matlab provide important information for the process and allow to make adjustments on the device.
劉家榮. "Interesting Application of Biot-Savart Law and Experiment." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/88867207385818421956.
Full textLiang, En-Wei, and 梁恩維. "Velocity-Vorticity Formulation for the 2D Stokes Flows by Biot-Savart Law and Boundary Element Method." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/90456421723735909036.
Full text國立臺灣大學
土木工程學研究所
88
In this study, velocity-vorticity formulation and Biot-Savart law are used to solve the two-dimensional steady incompressible stokes flow. The boundary element method is chosen to discrete the governing equations. The geometric shapes of the flow field include both the circular and square cavity flows which all exist exact or series solutions. The boundary conditions of vorticity for the vorticity transport equation are determined by the principle of the relationship between circulation and vorticity, namely, the Stokes theorems. To demonstrate the model feasibility, the results of two-dimensional steady incompressible Stokes flows of the square cavity flows are compared with the Fourier series solutions of [Burggraf , 1966] ;and results of the circular cavity flows are also used to compared with exact solution of [Hwu et al. , 1997]。 The present study show that good results are obtained for all the cases simulated except at the singular points of the boundary.
Alves, Rui Diogo Quesado. "EasyMAG – Toolbox para cálculo de campos magnéticos de baixa frequência." Master's thesis, 2018. http://hdl.handle.net/10316/86420.
Full textA evolução tecnológica e o elevado desenvolvimento industrial que caracteriza a civilização contemporânea, torna a sociedade fortemente dependente de energia. Devido a esta evolução, houve um aumento do uso de aparelhos elétricos e consequentemente um aumento das redes elétricas, surgindo assim um aumento na intensidade de campos magnéticos originados pela corrente elétrica que percorre as redes e os aparelhos. Este aumento intensidade de campos magnéticos originou uma preocupação na sociedade sobre os efeitos do campo magnético na saúde dos seres humanos. Foi esta a motivação para este trabalho: desenvolver o software ‘EASYMAG’ para calcular a densidade do fluxo magnético originado por correntes elétricas em condutores, utilizando a lei de Biot-Savart.O software desenvolvido tem incorporadas as seguintes funcionalidades: verificação da introdução correta dos dados, alertando o utilizador se um circuito constituído por várias linhas estiver aberto; visualização gráfica do circuito elétrico definido pelo utilizador com cores diferentes consoante o circuito seja unifilar ou bifilar; cálculo da densidade do fluxo magnético nos pontos indicados pelo utilizador, mostrando a localização onde esse valor é máximo e mínimo; visualização gráfica da densidade do fluxo magnético nos pontos definidos pelo utilizador; guardar simulação feita pelo utilizador.O software ‘EASYMAG’ é inovador comparado com os outros softwares existentes, porque utiliza o Excel como método de introdução de dados, conseguindo assim representar o circuito elétrico pretendido pelo utilizador, sem que este tenha que programar em Matlab o circuito, tornando ainda o software ‘EASYMAG’ acessível para todas as pessoas com conhecimento básico de Matlab.Para validar o software foram usados três exemplos teóricos. O software, nestes três exemplos, obteve resultados com um erro muito pequeno, dependendo do número de pontos usados para a representação dos elementos circuitais, curva e solenoide. O software desenvolvido é assim uma ferramenta fiável para o cálculo de casos teóricos e práticos da densidade do fluxo magnético originado por correntes elétricas em condutores, sendo o erro associado próximo de zero.
The technological evolution and the high industrial development that characterizes the contemporary civilization, makes the society strongly dependent on energy. Due to this evolution, there has been an increase of the electrical devices usage and consequently an increase of the electrical networks, arising an increase in the intensity of magnetic fields originated by the electric current that runs through the networks and electrical devices. This increased intensity of magnetic fields has given rise to the concern in the society about the effects of magnetic fields on human health. This was the motivation for this work: to develop the software 'EASYMAG' to calculate the magnetic flux density originated by electric currents in conductors, using the Biot-Savart law. The developed software incorporates the following functionalities: verification of the correct data entry, alerting the user if a circuit consisting of several lines is open; graphical visualization of the electrical circuit defined by the user with different colors depending on whether the circuit is unifilar or bifilar; calculation of the magnetic flux density at the points indicated by the user, showing the location where this value is maximum and minimum; graphical display of magnetic flux density at user-defined points; save simulation done by the user. The software 'EASYMAG' is innovative compared to other existing software, because it uses Excel as a data entry method, representing the desired electrical circuit without having to program the circuit in Matlab, making the software 'EASYMAG' accessible to all people with basic knowledge of Matlab. Three theoretical examples are presented to validate the software. The software, in these three examples, obtained results with a very small error, depending on the number of points used for the representation of the circuit elements, curve and solenoid. The developed software is a reliable tool for the calculation of theoretical and practical cases of the magnetic flux density originated by electric currents in conductors, the associated error being close to zero.
Books on the topic "Biot Savart's law"
Steinle, Friedrich. Electromagnetism and Field Physics. Edited by Jed Z. Buchwald and Robert Fox. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199696253.013.19.
Full textDeruelle, Nathalie, and Jean-Philippe Uzan. Constant fields. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0031.
Full textBook chapters on the topic "Biot Savart's law"
Weik, Martin H. "Biot-Savart law." In Computer Science and Communications Dictionary, 122. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_1573.
Full textPeratt, Anthony L. "Biot—Savart Law in Cosmic Plasma." In Physics of the Plasma Universe, 93–135. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2780-9_3.
Full textPeratt, Anthony L. "Biot-Savart Law in Cosmic Plasma." In Physics of the Plasma Universe, 93–137. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7819-5_3.
Full textDirickx, M., S. Denis, B. Vanderheyden, L. Dusoulier, and M. Ausloos. "Inversion of the Biot-Savart Law: An Approach Based on Discrete Sine and Cosine Transforms." In Magneto-Optical Imaging, 257–64. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-1007-8_33.
Full text"Interaction of currents, Biot–Savart law, and magnetic field." In Principles of Dielectric Logging Theory, 311–24. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-822283-6.00009-x.
Full textSASLOW, W. "How Electric Currents Make Magnetic FieldThe Biot-Savart Law and Ampère's Law." In Electricity, Magnetism, and Light, 460–504. Elsevier, 2002. http://dx.doi.org/10.1016/b978-012619455-5/50011-5.
Full textSaslow, Wayne M. "How Electric Currents Make Magnetic Fields: The Biot– Savart Law and Ampère's Law." In Electricity, Magnetism, and Light, 460–504. Elsevier, 2002. http://dx.doi.org/10.1016/b978-012619455-5.50011-5.
Full textPierrus, J. "Static magnetic fields in vacuum." In Solved Problems in Classical Electromagnetism. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198821915.003.0004.
Full text"Appendix F: Solution of the Biot–Savart Law for a Straight-Line Segment." In Introduction to Helicopter and Tiltrotor Flight Simulation, 559–72. Reston ,VA: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/5.9781600862083.0559.0572.
Full text"coils is also presented in Section 2. The simulation produced by the Helmholtz coils, which damages the results about the optimum parameter for Helmholtz uniform magnetic field. Therefore, theoretical coils are presented in Section 3. Finally, conclusion parameters of Helmholtz coils cannot be used and further work are outlined in Section 4. directly in edge detection. By extracting temperature information using COMSOL via the AC/DC module, we can confirm which optimum parameters 2 METHODOLOGY AND EXPERIMENT SETUP of Helmholtz coils can produce most effective Helmholtz coils are a special arrangement of air-excitation for edge detection. cored coils, and they are all used as a means of This simulation is conducted using COMSOL generating magnetic fields that are uniform over a multiphysics FEM simulation software via the volume (Cakir ). According to Biot-Savart AC/DC module. Fig. 1 shows the constitution of law, magnetic flux density at any point on the axis of Helmholtz coils testing, where r is the minor radius Helmholtz coils can be calculated from Equation (1) of Helmholtz coils, r is the major radius of (Bronaugh ): Helmholtz coils, h is the sample height, d is the N Ir N Ir distance between Helmholtz coils edge and sample H H H (1) edge, and z is the distance between Helmholtz coils. 2 r a 2 r a The physical characteristics of the model to be simulated and studied are given in Table 1. The According to the definition of Helmholtz coils, geometry of the sample is 40502 mm ; the r r r , N N 1 and 2a 2a r . major and minor radii of Helmholtz coils are equal Using Taylor series expansion and calculating the to 10 mm and 2 mm, respectively, and the turns differential of H (0) (when z 0 ), after some equal 1. The excitation module is a small period (0.3 s) of high-frequency current (256 kHz). manipulation, Equation (1) becomes Table 1. Electrical and thermal parameters for steel 144 z used in the simulation H ( z ) H (0) 1 125 r (2) ." In Structural Health Monitoring and Integrity Management, 200–202. CRC Press, 2015. http://dx.doi.org/10.1201/b18510-65.
Full textConference papers on the topic "Biot Savart's law"
Volkmar, Chris, Timo Baruth, Jens Simon, Ubbo Ricklefs, and Rainer Thueringer. "Arbitrarily shaped coils' inductance simulation based on a 3-dimensional solution of the Biot-Savart law." In 2013 36th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2013. http://dx.doi.org/10.1109/isse.2013.6648244.
Full textKi-Chan Kim and Soo-Jin Hwang. "Comparison study of Biot-Savart law and 3D FEM of electromagnetic forces acting on end windings." In 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2010). IEEE, 2010. http://dx.doi.org/10.1109/cefc.2010.5481680.
Full textOjima, Akira, and Kyoji Kamemoto. "Virtual Operation of Fluid Machinery by a Vortex Element Method." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45115.
Full textYoneda, Satoshi, Kenji Hirose, Akihto Kobayashi, Yuichi Sasaki, and Chiharu Miyazaki. "A study for designing an ESL-cancelling circuit for shunt capacitor filters based on the biot-savart law." In 2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI). IEEE, 2017. http://dx.doi.org/10.1109/isemc.2017.8077834.
Full textOjima, Akira, and Kyoji Kamemoto. "Applicability of the Vortex Methods for Automotive Flows." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45135.
Full textSaverin, Joseph, David Marten, George Pechlivanoglou, Christian Oliver Paschereit, and Arne van Garrel. "Implementation of the Multi-Level Multi-Integration Cluster Method to the Treatment of Vortex Particle Interactions for Fast Wind Turbine Wake Simulations." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76554.
Full textXu, Guanpeng, and Lakshmi N. Sankar. "Application of a Viscous Flow Methodology to the NREL Phase VI Rotor." In ASME 2002 Wind Energy Symposium. ASMEDC, 2002. http://dx.doi.org/10.1115/wind2002-30.
Full textKamemoto, Kyoji, and Akira Ojima. "Application of a Vortex Method to Fluid Dynamics in Sports Science." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37066.
Full textCuadrado, D. G., S. Lavagnoli, and G. Paniagua. "Methodology to Correct the Magnetic Field Effect on Thin Film Measurements." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42715.
Full textHu, Site, Chao Zhou, Zhenhua Xia, and Shiyi Chen. "LES and CDNS Investigation of T106C Low Pressure Turbine." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56838.
Full text