Academic literature on the topic 'Bipolar junction transistor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bipolar junction transistor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bipolar junction transistor"
Elamin, Abdenabi Ali, and Waell H. Alawad. "Effect of Gamma Radiation on Characteristic of bipolar junction Transistors (BJTs )." Journal of The Faculty of Science and Technology, no. 6 (January 12, 2021): 1–9. http://dx.doi.org/10.52981/jfst.vi6.597.
Full textMaftunzada, S. A. L. "The Structure and Working Principle of a Bipolar Junction Transistor (BJT)." Physical Science International Journal 26, no. 11-12 (December 31, 2022): 35–39. http://dx.doi.org/10.9734/psij/2022/v26i11-12772.
Full textRajabi, Mehran, Mina Amirmazlaghani, and Farshid Raissi. "Graphene-Based Bipolar Junction Transistor." ECS Journal of Solid State Science and Technology 10, no. 11 (November 1, 2021): 111004. http://dx.doi.org/10.1149/2162-8777/ac3551.
Full textGerding, M., T. Musch, and B. Schiek. "Generation of short electrical pulses based on bipolar transistorsny." Advances in Radio Science 2 (May 27, 2005): 7–12. http://dx.doi.org/10.5194/ars-2-7-2004.
Full textKnyaginin, D. A., E. A. Kulchenkov, S. B. Rybalka, and A. A. Demidov. "Study of characteristics of n-p-n type bipolar power transistor in small-sized metalpolymeric package type SOT-89." Journal of Physics: Conference Series 2086, no. 1 (December 1, 2021): 012057. http://dx.doi.org/10.1088/1742-6596/2086/1/012057.
Full textLenahan, Patrick M., N. T. Pfeiffenberger, T. G. Pribicko, and Aivars J. Lelis. "Identification of Deep Level Defects in SiC Bipolar Junction Transistors." Materials Science Forum 527-529 (October 2006): 567–70. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.567.
Full textDoja, M. N., Moinuddin, and Umesh Kumar. "High Speed Non-Linear Circuit Simulation of Bipolar Junction Transistors." Active and Passive Electronic Components 22, no. 1 (1999): 51–73. http://dx.doi.org/10.1155/1999/58424.
Full textRaissi, F. "Josephson Fluxonic Bipolar Junction Transistor." IEEE Transactions on Appiled Superconductivity 14, no. 1 (March 2004): 87–93. http://dx.doi.org/10.1109/tasc.2004.824337.
Full textPerkasa, Dedy Bagus, Trias Andromeda, and Munawar A. Riyadi. "PERANCANGAN PERANGKAT KERAS ALAT UJI BIPOLAR JUNCTION TRANSISTOR BERBASIS MIKROKONTROLER." Transmisi 21, no. 1 (April 22, 2019): 19. http://dx.doi.org/10.14710/transmisi.21.1.19-24.
Full textWu, Hongjun, Bangzheng Yin, and Zetao Chen. "Cross-platform Simulation of Bipolar Junction Transistor Electrical Principle." Journal of Physics: Conference Series 2068, no. 1 (October 1, 2021): 012035. http://dx.doi.org/10.1088/1742-6596/2068/1/012035.
Full textDissertations / Theses on the topic "Bipolar junction transistor"
Adachi, Kazuhiro. "Simulation and modelling of power devices based on 4H silicon carbide." Thesis, University of Newcastle Upon Tyne, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273406.
Full textLee, Hyung-Seok. "High power bipolar junction transistors in silicon carbide." Licentiate thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3854.
Full textGallagher, Jeanne M. B. "A monolithic bipolar junction transistor amplifier in the common emitter configuration." Honors in the Major Thesis, University of Central Florida, 1992. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/98.
Full textBachelors
Engineering
Electrical Engineering
SILVA, Malana Marcelina Almeida da. "Caracterização de transistor bipolar de Junção para medição em feixes de radioterapia." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/18420.
Full textMade available in DSpace on 2017-03-21T19:41:43Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO MALANA FINAL.pdf: 2413280 bytes, checksum: 40727bc7ff951331cb16c7c787dd0919 (MD5) Previous issue date: 2016-07-28
Capes
Transistores bipolares de junção - TBJ possuem uma característica inerente à sua construção física que é o fator de amplificação do sinal produzido, ou seja, amplificação da corrente. Fótons de megavoltagem, ao interagirem com o material semicondutor são capazes de produzir o que é chamado de fotocorrente, ao mesmo tempo em que provocam danos na estrutura cristalina do transistor. O objetivo desta dissertação foi caracterizar o TBJ do tipo BC846 para feixes de fótons de megavoltagem com a finalidade de entender o comportamento deste dispositivo para que futuramente seja desenvolvido um novo método dosimétrico visando complementar os métodos já existentes. O estudo concerniu em caracterizar um TBJ para se analisar como tal dispositivo eletrônico pode ser utilizado como detector de radiação no modo ativo, isto é, em mensurar em tempo real a dose, taxa de dose, dependência energética, e os efeitos direcional e de tamanho de campo de irradiação. Os experimentos foram realizados utilizando um simulador de placas de água sólida com o transistor posicionado no eixo central do feixe em uma profundidade de 5 cm, tamanho de campo padrão, 10 x 10 cm², e uma distância fonte-superfície de 100 cm. Os resultados mostram que o TBJ pode funcionar como detector em feixes de radioterapia desde que seja obedecido certos critérios técnicos relacionados ao comportamento elétrico do dispositivo antes e durante a irradiação. Uma perda percentual média de ±3% na sensibilidade do dispositivo foi registrada após cada irradiação. Essa variação guarda uma proporcionalidade com a dose absorvida e foi encontrada resposta semelhante mesmo com transistores que possuem diferentes fatores de amplificação da corrente.
Bipolar Junction Transistor - BJT have a characteristic inherent to their physical construction, which is the amplification factor of the produced signal, i.e., current amplification. Megavoltage photons interacting with the semiconductor material are capable of producing what is called photocurrent, while causing damage to the crystalline structure of the transistor. The aim of this work was to characterize the BJT type BC846 for MV photon beams in order to understand the behavior of this mechanism to be developed in the future a new dosimetric method to complement existing methods. The study's concerned characterization of a BJT to be analyzed as such electronic device may be used as a radiation detector in the active mode, i.e., measuring in real time the dose, dose rate, energy dependence, and directional effects and size radiation field. The experiments were performed using a solid water phantom with the transistor positioned at the central axis of the beam at a depth of 5 cm, standard field size, 10 x 10 cm², and a source-surface distance of 100 cm. The results show that the BJT may function as a detector in radiotherapy beam since certain technical criteria are met related to the electrical behavior of the device before and during the irradiation. An average percentage loss of ± 3% in the device sensitivity was recorded after each irradiation. This variation is in proportion to the dose absorbed and one can see similar response even with transistors having different amplification factors of the current.
Schaeffer, Daniel Dale. "Very High Frequency Bipolar Junction Transistor Frequency Multiplier Drive Network Design and Analysis." PDXScholar, 2019. https://pdxscholar.library.pdx.edu/open_access_etds/5031.
Full textOkuda, Takafumi. "Enhancement of Carrier Lifetimes in SiC and Fabrication of Bipolar Junction Transistors." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/202717.
Full textYu, Chi Sun. "Effectiveness of parallel diode linearizers on bipolar junction transistor and its use in dynamic linearization /." access full-text access abstract and table of contents, 2009. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ee-b23749362f.pdf.
Full text"Submitted to Department of Electronic Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves 129-134)
Rodriguez, Luis. "Design of a Monolithic Bipolar Junction Transistor Amplifier in the Common Emitter with Cascaded Common Collector Configuration." Honors in the Major Thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/724.
Full textBachelors
Engineering and Computer Science
Electrical Engineering
Dias, Pedro Carvalhaes 1983. "Um novo sensor de umidade de solo de pulso de calor de alta sensibilidade, baseado em um único transistor bipolar de junção npn = A novel high sensitivity single probe heat pulse soil moisture sensor based on a single npn bipolar junction transistor = A novel high sensitivity single probe heat pulse soil moisture sensor based on a single npn bipolar junction transistor." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261867.
Full textTexto em inglês
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-20T11:54:01Z (GMT). No. of bitstreams: 1 Dias_PedroCarvalhaes_M.pdf: 7362254 bytes, checksum: dd839cf652cbbda17a2a5d9b6cecbdc3 (MD5) Previous issue date: 2012
Resumo: A constante preocupação em aumentar a produtividade das plantações de uma forma sustentável e otimizando o uso dos insumos agrícolas (água, fertilizantes, pesticidas e produtos para correção do PH) levou ao desenvolvimento da agricultura de precisão, que permite determinar a quantidade correta de insumos para cada região do solo (tipicamente um hectare), evitando o desperdício. Sensores de umidade de solo de baixo custo e fácil aplicação no campo são fundamentais para permitir um controle preciso da atividade de irrigação, sendo que os sensores que melhor atendem estes requisitos são os chamados sensores de dissipação de calor ou sensores de transferência de calor. Estes sensores, entretanto, apresentam um problema de baixa sensibilidade na faixa de umidade mais importante para as plantas (umidade de solo 'teta'v variando entre 5% e 35%), pois, para cobrir esta variação de 30% em 'teta'v com resolução de 1%, é necessário medir variações de temperatura de aproximadamente 0,026 ºC nos sensores de pulso de calor a duas pontas e 0,05 ºC para os sensores de pulso de calor de ponta simples. Neste trabalho foi desenvolvido um novo sensor de umidade de solo do tipo pulso de calor de ponta simples, baseado em um único elemento: um transistor bipolar de junção npn, que é usado tanto como aquecedor e como sensor de temperatura de alta precisão. Resultados experimentais, obtidos em medidas realizadas através de uma técnica de interrogação especialmente desenvolvida para este novo sensor mostram que neste trabalho foi possível obter uma sensibilidade cerca de uma ordem de grandeza maior do que nos sensores de pulso de calor com uma ponta e cerca de 20 vezes maior do que nos sensores de pulso de calor de duas pontas. Outra vantagem da técnica desenvolvida é que o aumento da sensibilidade não é obtido às custas do aumento da corrente drenada da bateria para aquecer o sensor. No sensor desenvolvido é utilizada uma corrente de apenas 6 mA para gerar o aquecimento (com energia dissipada de 1,5 J), enquanto que que os sensores de pulso de calor com ponta simples requerem cerca de 50 mA (com 2,4 J de energia dissipada) para operar. Os sensores de pulso de calor de ponta dupla também são fabricados com resistores que requerem cerca de 50 mA para o aquecimento (0.8 J de energia dissipada) para operar corretamente
Abstract: The concern regarding sustainable development and crop inputs optimization (such as water, fertilizers, pesticides and soil PH correction products) has led to the development of the precision agriculture concept, that allows to determine the exact amount of each input required on each ground section (typically one hectare), avoiding waste of inputs. Low-cost and easily handled soil moisture sensors are very important for allowing a precise irrigation control. The class of sensors which fulfill those requirements are the heat transfer sensors, where there are basically two types of devices: dual (or multi) probe heat pulse sensors and single probe heat pulse sensors. However, these sensors have a low sensitivity in the most important range of soil humidity 'teta'v for plants (usually from 5% ? 'teta'v ? 35%). To cover this 30% soil humidity range with 1% resolution it is necessary to measure temperature with a resolution of 0,026 ºC in the dual/multi probe heat pulse sensors and 0,05 ºC in the single probe heat pulse sensor. In this work it was developed a new type of single probe heat pulse sensor, comprised of a single element: an npn junction bipolar transistor, that plays the role of both the heating element and a high accuracy temperature sensor. Experimental results, obtained through an interrogation technique especially developed for this sensor, show sensitivity about one order of magnitude greater than the typical sensitivity of the single probe heat pulse sensors and 20 times greater than dual probe heat pulse sensors. Another great advantage of the developed interrogation technique is that the increase in sensibility is not obtained through a higher current being drained from the batteries that power the sensor. The developed sensor operates at a much lower current level than the other sensors, draining only 6 mA from the battery (with an energy of 150 mW). The single probe heat pulse sensor requires 50 mA and 1.5 J of energy to operate, whilst the dual probe heat pulse sensors are manufactured with resistors which also drain 50 mA from the battery with 0.8 J of dissipated energy
Mestrado
Eletrônica, Microeletrônica e Optoeletrônica
Mestre em Engenharia Elétrica
Sandén, Martin. "Low-Frequency Noise in Si-Based High-Speed Bipolar Transistors." Doctoral thesis, KTH, Microelectronics and Information Technology, IMIT, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3203.
Full textBooks on the topic "Bipolar junction transistor"
Liou, Juin J. Principles and analysis of AlGaAs/GaAs heterojunction bipolar transistors. Boston: Artech House, 1996.
Find full textHuber, Dieter. InP/InGaAs single hetero-junction bipolar transistors for integrated photoreceivers operating at 40 Gb/s and beyond. Konstanz: Hartung-Gorre, 2002.
Find full textHammer, Urs. Sub-micron InP/GaAsSb/InP double heterojunction bipolar transistors for ultra high-speed digital integrated circuits. Konstanz: Hartung-Gorre, 2010.
Find full textJ, Frasca A., and United States. National Aeronautics and Space Administration., eds. Neutron and gamma irradiation effects on power semiconductor switches. [Washington, D.C.]: NASA, 1990.
Find full textJo, Myungsuk. Multi-regional charge-based small-signal bipolar junction transistor model. 1989.
Find full textNeudeck, George W. Modular Series on Solid State Devices, Volume III: The Bipolar Junction Transistor (2nd Edition). Prentice Hall, 1989.
Find full textF, Chang M., ed. Current trends in heterojunction bipolar transistors. Singapore: World Scientific, 1996.
Find full textWade, Thomas. Noise in Bipolar Junction Transistors at Cryogenic Temperatures. Dissertation Discovery Company, 2019.
Find full textBook chapters on the topic "Bipolar junction transistor"
Li, Sheng S. "Bipolar Junction Transistor." In Semiconductor Physical Electronics, 391–422. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4613-0489-0_13.
Full textGift, Stephan J. G., and Brent Maundy. "Bipolar Junction Transistor." In Electronic Circuit Design and Application, 41–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46989-4_2.
Full textGift, Stephan J. G., and Brent Maundy. "Bipolar Junction Transistor." In Electronic Circuit Design and Application, 45–96. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79375-3_2.
Full textDi Natale, Corrado. "Bipolar Junction Transistor." In Introduction to Electronic Devices, 151–80. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27196-0_6.
Full textSchubert, Thomas F., and Ernest M. Kim. "Bipolar Junction Transistor Characteristic." In Fundamentals of Electronics, 133–227. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-031-79873-3_3.
Full textPandey, O. N. "Bipolar Junction Transistor (BJT)." In Electronics Engineering, 79–183. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-78995-4_3.
Full textKolawole, Michael Olorunfunmi. "Structure of Bipolar Junction Transistor." In Electronics, 67–125. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003052913-3.
Full textN. Makarov, Sergey, Reinhold Ludwig, and Stephen J. Bitar. "Bipolar Junction Transistor and BJT Circuits." In Practical Electrical Engineering, 851–918. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21173-2_17.
Full textPrasad, R. "Transistor Bipolar Junction (BJT) and Field-Effect (FET) Transistor." In Undergraduate Lecture Notes in Physics, 457–581. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65129-9_6.
Full textLoan, Sajad A., Faisal Bashir, Asim M. Murshid, Humyra Shabir, M. Rafat, M. Nizamuddin, Abdul Rahman Alamoud, and Shuja A. Abbasi. "Charge Plasma Based Bipolar Junction Transistor on Silicon on Insulator." In Transactions on Engineering Technologies, 219–29. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9588-3_17.
Full textConference papers on the topic "Bipolar junction transistor"
Tianbing Chen and James Ma. "Advances in bipolar junction transistor modeling." In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667345.
Full textBelić, Milivoj R., Milan Petrović, Jörg Leonardy, and Friedemann Kaiser. "Optical Transistor Based on a Photorefractive Ring Cavity." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.ctue6.
Full textYourun Zhang, Bo Zhang, Zhaoji Li, Xilin liu, and Xiaochuan Deng. "Novel structure of 4H-SiC bipolar junction transistor." In 2009 International Conference on Communications, Circuits and Systems (ICCCAS). IEEE, 2009. http://dx.doi.org/10.1109/icccas.2009.5250432.
Full textJohnston-Halperin, E., M. E. Flatte, and D. D. Awschalom. "Experimental demonstration of a magnetic bipolar junction transistor." In SPIE NanoScience + Engineering, edited by Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2012. http://dx.doi.org/10.1117/12.933278.
Full textCausevic, A., H. S. Funk, D. Schwarz, K. Guguieva, and J. Schulze. "Processing sequence for a PureB bipolar junction transistor." In 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). IEEE, 2020. http://dx.doi.org/10.23919/mipro48935.2020.9245196.
Full textBucur, Viorel, Gabriel Banarie, Stefan Marinca, and Mircea Bodea. "Reducing the Bipolar Junction Transistor Vbe Non-Linearity." In 2019 MIXDES - 26th International Conference "Mixed Design of Integrated Circuits and Systems". IEEE, 2019. http://dx.doi.org/10.23919/mixdes.2019.8787201.
Full textHossain, Md Mahbub. "Thermal Node Characteristics of a Bipolar Junction Transistor." In 2019 IEEE International Conference on Electro Information Technology (EIT). IEEE, 2019. http://dx.doi.org/10.1109/eit.2019.8834123.
Full textShao-Yen Chiu, Wen-Shiung Lour, Jung-Hui Tsai, and Yu-Chi Kang. "High-Performance InGaP/GaAs pnp δ-Doped Heterojunction Bipolar Transistor." In 2006 International Workshop on Junction Technology. IEEE, 2006. http://dx.doi.org/10.1109/iwjt.2006.220911.
Full textHériveaux, Laurent, Jessy Clédière, and Stèphanie Anceau. "Electrical Modeling of the Effect of Photoelectric Laser Fault Injection on Bulk CMOS Design." In ISTFA 2013. ASM International, 2013. http://dx.doi.org/10.31399/asm.cp.istfa2013p0361.
Full textHo, Carl N. M., River T. H. Li, and Enea Bianda. "An efficient current-source power bipolar junction transistor driver." In 2014 IEEE International Power Electronics and Application Conference and Exposition (PEAC). IEEE, 2014. http://dx.doi.org/10.1109/peac.2014.7037873.
Full textReports on the topic "Bipolar junction transistor"
Schaeffer, Daniel. Very High Frequency Bipolar Junction Transistor Frequency Multiplier Drive Network Design and Analysis. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6907.
Full textZhang, Jiahui, Petre Alexandrov, Jian H. Zhao, and Terry Burke. 1677V, 5.7 mohm.cm2 4H-SiC Bipolar Junction Transistors. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada477420.
Full textWoywode, Oliver. Nonlinearities in the Base Emitter Junction of Heterojunction Bipolar Transistors. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7084.
Full textDoyle, Barney Lee, Daniel L. Buller, Harold Paul Hjalmarson, Robert M. Fleming, Edward Salvador Bielejec, and Gyorgy Vizkelethy. Simulation of neutron displacement damage in bipolar junction transistors using high-energy heavy ion beams. Office of Scientific and Technical Information (OSTI), December 2006. http://dx.doi.org/10.2172/913228.
Full textHembree, Charles E., and Perry J. Robertson. Radiation and Self Heating Effects in Hetero-Junction Bipolar Transistors: FY2019 L2 MileStone 6723 Report. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1592871.
Full text