Academic literature on the topic 'Bird recognition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bird recognition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bird recognition"
A. Tayal, Madhuri. "Bird Identification by Image Recognition." HELIX 8, no. 6 (October 31, 2018): 4349–52. http://dx.doi.org/10.29042/2018-4349-4352.
Full textZhao, Zhicheng, Ze Luo, Jian Li, Kaihua Wang, and Bingying Shi. "Large-Scale Fine-Grained Bird Recognition Based on a Triplet Network and Bilinear Model." Applied Sciences 8, no. 10 (October 13, 2018): 1906. http://dx.doi.org/10.3390/app8101906.
Full textHeller, Jason R., and John D. Pinezich. "Automatic recognition of harmonic bird sounds." Journal of the Acoustical Society of America 118, no. 3 (September 2005): 2000. http://dx.doi.org/10.1121/1.4785665.
Full textMohanty, Ricky, Bandi Kumar Mallik, and Sandeep Singh Solanki. "Recognition of bird species based on spike model using bird dataset." Data in Brief 29 (April 2020): 105301. http://dx.doi.org/10.1016/j.dib.2020.105301.
Full textDawkins, Marian Stamp. "How Do Hens View Other Hens? the Use of Lateral and Binocular Visual Fields in Social Recognition." Behaviour 132, no. 7-8 (1995): 591–606. http://dx.doi.org/10.1163/156853995x00225.
Full textEt. al., Chandra B,. "Automated Bird Species Recognition System Based on Image Processing and Svm Classifier." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 2 (April 11, 2021): 351–56. http://dx.doi.org/10.17762/turcomat.v12i2.813.
Full textWang, Zhaojun, Jiangning Wang, Congtian Lin, Yan Han, Zhaosheng Wang, and Liqiang Ji. "Identifying Habitat Elements from Bird Images Using Deep Convolutional Neural Networks." Animals 11, no. 5 (April 27, 2021): 1263. http://dx.doi.org/10.3390/ani11051263.
Full textSharp, Stuart P., Andrew McGowan, Matthew J. Wood, and Ben J. Hatchwell. "Learned kin recognition cues in a social bird." Nature 434, no. 7037 (April 2005): 1127–30. http://dx.doi.org/10.1038/nature03522.
Full textStrickler, Stephanie A. "Recognition of Young in A Colonially Nesting Bird." Ethology 119, no. 2 (December 6, 2012): 130–37. http://dx.doi.org/10.1111/eth.12041.
Full textSchimmel, Leah, and Frederick Wasserman. "An Interspecific Comparison of Individual and Species Recognition in the Passerines Turdus Migratorius and Cyanocitta Cristata." Behaviour 118, no. 1-2 (1991): 115–26. http://dx.doi.org/10.1163/156853991x00238.
Full textDissertations / Theses on the topic "Bird recognition"
Van, der Merwe Hugo Jacobus. "Bird song recognition with Hidden Markov Models /." Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/914.
Full textBastas, Selin A. "Nocturnal Bird Call Recognition System for Wind Farm Applications." University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1325803309.
Full textReyes, Elsa. "A Comparison of Image Processing Techniques for Bird Detection." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1239.
Full textPatton, Tadd B. "Altered features of female pigeons (Columba livia) elicit preference behavior in male pigeons." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001656.
Full textKahl, Stefan. "Identifying Birds by Sound: Large-scale Acoustic Event Recognition for Avian Activity Monitoring." Universitätsverlag Chemnitz, 2019. https://monarch.qucosa.de/id/qucosa%3A36986.
Full textDie automatisierte Überwachung der Vogelstimmenaktivität und der Artenvielfalt kann ein revolutionäres Werkzeug für Ornithologen, Naturschützer und Vogelbeobachter sein, um bei der langfristigen Überwachung kritischer Umweltnischen zu helfen. Tiefe künstliche neuronale Netzwerke haben die traditionellen Klassifikatoren im Bereich der visuellen Erkennung und akustische Ereignisklassifizierung übertroffen. Dennoch erfordern tiefe neuronale Netze Expertenwissen, um leistungsstarke Modelle zu entwickeln, trainieren und testen. Mit dieser Einschränkung und unter Berücksichtigung der Anforderungen zukünftiger Anwendungen wurde eine umfangreiche Forschungsplattform zur automatisierten Überwachung der Vogelaktivität entwickelt: BirdNET. Das daraus resultierende Benchmark-System liefert state-of-the-art Ergebnisse in verschiedenen akustischen Bereichen und wurde verwendet, um Expertenwerkzeuge und öffentliche Demonstratoren zu entwickeln, die dazu beitragen können, die Demokratisierung des wissenschaftlichen Fortschritts und zukünftige Naturschutzbemühungen voranzutreiben.
Whitwell, Sarah Margaret. "The impact of isolation from mammalian predators on the anti-predator behaviours of the North Island robin (Petroica longipes) : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Conservation Biology at Massey University, Auckland, New Zealand." Massey University, 2009. http://hdl.handle.net/10179/1142.
Full textMovin, Andreas, and Jonathan Jilg. "Kan datorer höra fåglar?" Thesis, KTH, Skolan för teknikvetenskap (SCI), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254800.
Full textSound recognition is made possible through spectral analysis, computed by the fast Fourier transform (FFT), and has in recent years made major breakthroughs along with the rise of computational power and artificial intelligence. The technology is now used ubiquitously and in particular in the field of bioacoustics for identification of animal species, an important task for wildlife monitoring. It is still a growing field of science and especially the recognition of bird song which remains a hard-solved challenge. Even state-of-the-art algorithms are far from error-free. In this thesis, simple algorithms to match sounds to a sound database were implemented and assessed. A filtering method was developed to pick out characteristic frequencies at five time frames which were the basis for comparison and the matching procedure. The sounds used were pre-recorded bird songs (blackbird, nightingale, crow and seagull) as well as human voices (4 young Swedish males) that we recorded. Our findings show success rates typically at 50–70%, the lowest being the seagull of 30% for a small database and the highest being the blackbird at 90% for a large database. The voices were more difficult for the algorithms to distinguish, but they still had an overall success rate between 50% and 80%. Furthermore, increasing the database size did not improve success rates in general. In conclusion, this thesis shows the proof of concept and illustrates both the strengths as well as short-comings of the simple algorithms developed. The algorithms gave better success rates than pure chance of 25% but there is room for improvement since the algorithms were easily misled by sounds of the same frequencies. Further research will be needed to assess the devised algorithms' ability to identify even more birds and voices.
Mann, Richard Philip. "Prediction of homing pigeon flight paths using Gaussian processes." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:bf6c3fb5-5208-4dfe-aa0a-6e6da45c0d87.
Full textFox, Elizabeth J. S. "Call-independent identification in birds." University of Western Australia. School of Animal Biology, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0218.
Full textWeary, Daniel Martin. "Inter- and intra-specific recognition by song in the veery (Catharus fuscescens)." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=64479.
Full textBooks on the topic "Bird recognition"
How to know the birds: An introduction to bird recognition. New York: Gramercy Pub. Co., 1986.
Find full textFuchs, Roman, Petr Veselý, and Jana Nácarová. Predator Recognition in Birds. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12404-5.
Full textEasy Way to Bird Recognition (Larousse Easy Way Guides). Kingfisher Books Ltd, 1995.
Find full textMartin, Graham R. The Sensory Ecology of Collisions and Entrapment. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199694532.003.0009.
Full textOlsen, Jerry. Australian High Country Owls. CSIRO Publishing, 2011. http://dx.doi.org/10.1071/9780643104105.
Full textFuchs, Roman, Petr Veselý, and Jana Nácarová. Predator Recognition in Birds: The Use of Key Features. Springer, 2019.
Find full textGrubb, T. G. Pattern recognition--a simple model for evaluating wildlife habitat. 1988.
Find full textMartin, Graham R. Hearing and Olfaction. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199694532.003.0003.
Full textCriss, Amy H., and Marc W. Howard. Models of Episodic Memory. Edited by Jerome R. Busemeyer, Zheng Wang, James T. Townsend, and Ami Eidels. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199957996.013.8.
Full textBook chapters on the topic "Bird recognition"
Brandão, André, Pedro Pires, and Petia Georgieva. "Reinforcement Learning and Neuroevolution in Flappy Bird Game." In Pattern Recognition and Image Analysis, 225–36. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31332-6_20.
Full textZhao, Yili, and Hua Zhou. "YNBIRDS: A System for Fine-Grained Bird Image Recognition." In Pattern Recognition and Computer Vision, 325–36. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31654-9_28.
Full textReyes, Angie K., Juan C. Caicedo, and Jorge E. Camargo. "Identifying Colombian Bird Species from Audio Recordings." In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 274–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52277-7_34.
Full textMohanty, Ricky, Bandi Kumar Mallik, and Sandeep Singh Solanki. "Automatic Bird Species Recognition Based on Spiking Neural Network." In Nanoelectronics, Circuits and Communication Systems, 343–53. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2854-5_30.
Full textBang, Arti V., and Priti P. Rege. "Automatic Recognition of Bird Species Using Human Factor Cepstral Coefficients." In Smart Computing and Informatics, 363–73. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5544-7_35.
Full textZhi, Xuye, and Chengan Guo. "Bird Species Recognition Based on Deep Learning and Decision Fusion." In Advances in Neural Networks – ISNN 2018, 568–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92537-0_65.
Full textRuiz-Muñoz, José Francisco, Mauricio Orozco-Alzate, and César Germán Castellanos-Domínguez. "Feature and Dissimilarity Representations for the Sound-Based Recognition of Bird Species." In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 451–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25085-9_53.
Full textKaplan, Gisela. "Visual Recognition in Birds." In Encyclopedia of Animal Cognition and Behavior, 1–5. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-47829-6_638-1.
Full textVagg, R. S., K. A. Vickery, and P. A. Williams. "Development of Ruthenium Probes Designed to Bind Enantio- and Stereospecifically to DNA." In Molecular Recognition and Inclusion, 239–44. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5288-4_31.
Full textMachin, Karen L. "Recognition and Treatment of Pain in Birds." In Pain Management in Veterinary Practice, 407–15. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118999196.ch37.
Full textConference papers on the topic "Bird recognition"
Hodon, Michal, Peter Sarafin, and Peter Sevcik. "Monitoring and recognition of bird population in protected bird territory." In 2015 20th IEEE Symposium on Computers and Communication (ISCC). IEEE, 2015. http://dx.doi.org/10.1109/iscc.2015.7405516.
Full textTahmoush, David. "Improved bird micro-doppler simulation for bird versus UAV recognition." In Radar Sensor Technology XXV, edited by Ann M. Raynal and Kenneth I. Ranney. SPIE, 2021. http://dx.doi.org/10.1117/12.2587214.
Full textShim, Joo Yong, Joongheon Kim, and Jong-Kook Kim. "S2I-Bird: Sound-to-Image Generation of Bird Species using Generative Adversarial Networks." In 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021. http://dx.doi.org/10.1109/icpr48806.2021.9412721.
Full textWielgat, Robert, Tomasz P. Zielinski, Tomasz Potempa, Agnieszka Lisowska-Lis, and Daniel Krol. "HFCC based recognition of bird species." In 2007 Signal Processing Algorithms, Architectures, Arrangements, and Applications (SPA 2007). IEEE, 2007. http://dx.doi.org/10.1109/spa.2007.5903313.
Full textIncze, Agnes, Henrietta-Bernadett Jancso, Zoltan Szilagyi, Attila Farkas, and Csaba Sulyok. "Bird Sound Recognition Using a Convolutional Neural Network." In 2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY). IEEE, 2018. http://dx.doi.org/10.1109/sisy.2018.8524677.
Full textGraciarena, Martin, Michelle Delplanche, Elizabeth Shriberg, and Andreas Stolcke. "Bird species recognition combining acoustic and sequence modeling." In ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5946410.
Full textGraciarena, Martin, Michelle Delplanche, Elizabeth Shriberg, Andreas Stolcke, and Luciana Ferrer. "Acoustic front-end optimization for bird species recognition." In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2010. http://dx.doi.org/10.1109/icassp.2010.5495923.
Full textVilches, E., I. A. Escobar, E. E. Vallejo, and C. E. Taylor. "Data Mining Applied to Acoustic Bird Species Recognition." In 18th International Conference on Pattern Recognition (ICPR'06). IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.426.
Full text"BiRD'19: BiRD'19 - International Workshop on Behavior analysis and Recognition for knowledge Discovery - Program." In 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, 2019. http://dx.doi.org/10.1109/percomw.2019.8730878.
Full textPham, Tuan D. "Bird-Like Information Processing for AI-based Pattern Recognition." In 2013 12th Mexican International Conference on Artificial Intelligence (MICAI). IEEE, 2013. http://dx.doi.org/10.1109/micai.2013.27.
Full text