Academic literature on the topic 'Birkhoff'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Birkhoff.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Birkhoff"
Chen, Jin-Yue, and Yi Zhang. "Time-Scale Version of Generalized Birkhoffian Mechanics and Its Symmetries and Conserved Quantities of Noether Type." Advances in Mathematical Physics 2021 (April 26, 2021): 1–9. http://dx.doi.org/10.1155/2021/9982975.
Full textGehrke, Mai, and Michael Pinsker. "Uniform Birkhoff." Journal of Pure and Applied Algebra 222, no. 5 (May 2018): 1242–50. http://dx.doi.org/10.1016/j.jpaa.2017.06.016.
Full textBodirsky, Manuel, and Michael Pinsker. "Topological Birkhoff." Transactions of the American Mathematical Society 367, no. 4 (August 8, 2014): 2527–49. http://dx.doi.org/10.1090/s0002-9947-2014-05975-8.
Full textBiswas, HR, and MS Islam. "Ergodic theory of one dimensional Map." Bangladesh Journal of Scientific and Industrial Research 47, no. 3 (December 21, 2012): 321–26. http://dx.doi.org/10.3329/bjsir.v47i3.13067.
Full textKurnianto, Arik. "Analisis Layout Surat Kabar berdasarkan Prinsip-Prinsip Desain melalui Metode Estetika Birkhoff." Humaniora 4, no. 2 (October 31, 2013): 986. http://dx.doi.org/10.21512/humaniora.v4i2.3540.
Full textBuczolich, Zoltán, Balázs Maga, and Ryo Moore. "Generic Birkhoff spectra." Discrete & Continuous Dynamical Systems - A 40, no. 12 (2020): 6649–79. http://dx.doi.org/10.3934/dcds.2020131.
Full textMadden, James J. "Pierce-Birkhoff rings." Archiv der Mathematik 53, no. 6 (December 1989): 565–70. http://dx.doi.org/10.1007/bf01199816.
Full textMöller, Manfred. "Expansion theorems for Birkhoff-regular differential-boundary operators." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 107, no. 3-4 (1987): 349–74. http://dx.doi.org/10.1017/s0308210500031218.
Full textWÓJCIK, PAWEŁ. "BIRKHOFF ORTHOGONALITY IN CLASSICAL -IDEALS." Journal of the Australian Mathematical Society 103, no. 2 (November 8, 2016): 279–88. http://dx.doi.org/10.1017/s1446788716000537.
Full textSnamina, Mateusz, and Emil J. Zak. "Dynamical Semigroups in the Birkhoff Polytope of Order 3 as a Tool for Analysis of Quantum Channels." Open Systems & Information Dynamics 27, no. 01 (March 2020): 2050001. http://dx.doi.org/10.1142/s1230161220500018.
Full textDissertations / Theses on the topic "Birkhoff"
Cirilo, Patricia Romano. "Órbitas de Birkhoff e não Birkhoff para aplicações do tipo Twist." Universidade Federal de Minas Gerais, 2007. http://hdl.handle.net/1843/EABA-72VJWU.
Full textCosta, Liliana Manuela Gaspar Cerveira da. "Politopo de Birkhoff acíclico." Doctoral thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/8510.
Full textNeste trabalho estabelece-se uma interpreta c~ao geom etrica, em termos da teoria dos grafos, para v ertices, arestas e faces de uma qualquer dimens~ao do politopo de Birkho ac clico, Tn = n(T), onde T e uma arvore com n v ertices. Generaliza-se o resultado obtido por G. Dahl, [18], para o c alculo do di^ametro do grafo G( t n), onde t n e o politopo das matrizes tridiagonais duplamente estoc asticas. Adicionalmente, para q = 0; 1; 2; 3 s~ao obtidas f ormulas expl citas para a contagem do n umero de qfaces do politopo de Birkho tridiagonal, t n, e e feito o estudo da natureza geom etrica dessas mesmas faces. S~ao, tamb em, apresentados algoritmos para efectuar contagens do n umero de faces de dimens~ao inferior a de uma dada face do politopo de Birkho ac clico.
In this work using graph theory, we give a geometrical interpretation of vertices, edges, and faces of any dimension of the acyclic Birkho polytope, Tn = n(T), were T is a tree with n vertices. We generalize a proposition from G. Dahl, [18], that allows the calculation of the diameter of the graph G( t n), where t n denotes the polytope of tridiagonal doubly stochastic matrices. Furthermore, for q = 0; 1; 2; 3 we obtain some explicit formulae for counting the number of qfaces of the tridiagonal Birkho polytope, t n, and the study of its geometrical nature is done. For a given p-face of t n we determine the number of faces of lower dimension that are contained in it and we discuss its nature. Some algorithms allowing an exhaustive account on the number of edges and faces of the acyclic Birkho polytope are presented.
Le, Calvez Patrice. "Propriétés des attracteurs de Birkhoff." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb376071668.
Full textMARSON, Guilherme Porfírio. "Órbitas Birkhoff na Ferradura Rotacional." reponame:Repositório Institucional da UNIFEI, 2017. http://repositorio.unifei.edu.br/xmlui/handle/123456789/887.
Full textMade available in DSpace on 2017-08-08T17:54:49Z (GMT). No. of bitstreams: 1 dissertacao_marson_2017.pdf: 776627 bytes, checksum: df33dd3df7b05a7198177473faf66292 (MD5) Previous issue date: 2017-07
Neste trabalho, estudamos difeomorfismos de classe C¹ do anel com uma órbita homoclínica transversal K-rotacional a um ponto fixo hiperbólico. Primeiramente, recuperamos um resultado clássico de Poincaré, Birkhoff e Smale: Um ponto homoclínico implica a existência de uma ferradura topológica para alguma iterada. Além disso, obtemos informações interessantes sobre o comportamento rotacional das órbitas em um conjunto de Cantor invariante e maximal (chamado ferradura rotacional). Usando conjugação e dinâmica simbólica associada ao conjunto de Cantor não-errante da ferradura, provamos a existência de um intervalo de rotação não trivial I, e de incontáveis conjuntos de Cantor invariantes para cada número de rotação irracional em I. Finalizamos o trabalho caracterizando a codificação das órbitas Birkhoff da aplicação de duplicação em S¹, as quais implicam a existência de órbitas Birkhoff da ferradura rotacional.
Le, Calvez Patrice. "Proprietes des attracteurs de birkhoff." Paris 7, 1987. http://www.theses.fr/1987PA077014.
Full textPaolantoni, Thibault. "Application de Riemann-Hilbert-Birkhoff." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS410/document.
Full textThe exponential dual map is a way to encode Stokes data of a connection on a trivial vector bundle on the Riemann sphere with two poles: one double pole at 0 and one simple pole at infinity.We give here a formula for the exponential dual map expressed as a non commutative serie. Others generalizations of this formula are given
Palacios, Quiñonero Francesc. "Contribución al problema de interpolación de Birkhoff." Doctoral thesis, Universitat Politècnica de Catalunya, 2004. http://hdl.handle.net/10803/6711.
Full textEn la interpolación algebraica de Birkhoff se determina un polinomio de grado menor que n, para ello se emplean n condiciones que fijan el valor del polinomio o sus derivadas. Los problemas clásicos de interpolación de Lagrange, Taylor, Hermite, Hermite-Sylvester y Abel-Gontcharov son casos particulares de interpolación algebraica de Birkhoff.
Un espacio de polinomios lacunarios de dimensión n es el conjunto de los polinomios que pueden generarse por combinación lineal de n potencias distintas de grados, en general, no consecutivos. En particular, cuando tomamos potencias de grados 0,1,.,n-1, se obtiene el espacio de polinomios de grado menor que n, empleado en la interpolación algebraica clásica.
En la interpolación algebraica clásica, el número de condiciones determina el espacio de interpolación. En contraste, en la interpolación mediante polinomios lacunarios las condiciones de interpolación determinan únicamente la dimensión del espacio de interpolación y pueden existir una infinidad de espacios sobre los que realizar la interpolación. Esto nos permite construir mejores estrategias de interpolación en ciertos casos, como la interpolación de funciones de gran crecimiento (interpolación de exponenciales y de ramas asintóticas).
La aportación de la tesis consiste en la definición de un marco teórico adecuado para la interpolación de Birkhoff mediante polinomios lacunarios y en la extensión al nuevo marco de los principales elementos de la interpolación algebraica de Birkhoff. En concreto, se generaliza la condición de Pólya, se caracteriza la regularidad condicionada, se establecen condiciones suficientes de regularidad ordenada que extienden el teorema de Atkhison-Sharma, se extiende la descomposición normal y se establecen condiciones suficientes de singularidad en los casos indescomponibles.
Cortiñas, Guillermo. "Cuantización y teorema de Poincaré-Birkhoff-Witt." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/95761.
Full textNguyen, Thu Huong. "Strong Stability Preserving Hermite-Birkhoff Time Discretization Methods." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23491.
Full textReff, Nathan. "A generalization of the Birkhoff-von Neumann theorem /." Online version of thesis, 2007. http://hdl.handle.net/1850/5967.
Full textBooks on the topic "Birkhoff"
Lorentz, Rudolph A. Multivariate Birkhoff Interpolation. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0088788.
Full textLorentz, G. G. Three Papers on Bivariate Birkhoff Interpolation. Darmstadt: GMD, 1986.
Find full textRota, Gian-Carlo, and Joseph S. Oliveira, eds. Selected Papers on Algebra and Topology by Garrett Birkhoff. Boston, MA: Birkhäuser Boston, 1987. http://dx.doi.org/10.1007/978-1-4612-5373-0.
Full textAbgeleitete Birkhoff-Reihen bei Randeigenwertproblemen zu N(y) = [lambda] P(y) mit [lambda]-abhängigen Randbedingungen. Giessen: Selbstverlag des Mathematischen Instituts, 1989.
Find full textBook chapters on the topic "Birkhoff"
Kappeler, Thomas, and Jürgen Pöschel. "Birkhoff Coordinates." In KdV & KAM, 51–109. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08054-2_3.
Full textAmir, Dan. "Birkhoff Orthogolaity." In Operator Theory: Advances and Applications, 33–39. Basel: Birkhäuser Basel, 1986. http://dx.doi.org/10.1007/978-3-0348-5487-0_5.
Full textvan Oostrom, Vincent. "Sub-Birkhoff." In Functional and Logic Programming, 180–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24754-8_14.
Full textDurham, Ian T. "Birkhoff, George David." In Biographical Encyclopedia of Astronomers, 228–29. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-9917-7_160.
Full textBroer, Henk, Igor Hoveijn, Gerton Lunter, and Gert Vegter. "4. Birkhoff normalization." In Lecture Notes in Mathematics, 71–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36398-9_4.
Full textLorentz, G. G., and S. D. Riemenschneider. "Birkhoff Quadrature Matrices." In Mathematics from Leningrad to Austin, 352–67. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-5329-7_37.
Full textAmiraslani, Amir, Heike Faßbender, and Nikta Shayanfar. "Birkhoff Polynomial Basis." In Springer Proceedings in Mathematics & Statistics, 1–25. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49984-0_1.
Full textKappeler, Thomas, and Jürgen Pöschel. "Birkhoff Normal Forms." In KdV & KAM, 233–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08054-2_9.
Full textFlorence, Ronald, Steven N. Shore, Steven N. Shore, Christian Nitschelm, Thomas R. Williams, Raghini S. Suresh, Stephen Gaukroger, et al. "Birkhoff, George David." In The Biographical Encyclopedia of Astronomers, 128–29. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30400-7_160.
Full textPolishchuk, Alexander, and Leonid Positselski. "Poincaré-Birkhoff-Witt bases." In University Lecture Series, 81–99. Providence, Rhode Island: American Mathematical Society, 2005. http://dx.doi.org/10.1090/ulect/037/04.
Full textConference papers on the topic "Birkhoff"
Goswami, Rituparno, and George F. R. Ellis. "Almost Birkhoff theorem." In TOWARDS NEW PARADIGMS: PROCEEDING OF THE SPANISH RELATIVITY MEETING 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4734450.
Full textKarasev, M. "Birkhoff resonances and quantum ray method." In Proceedings of the International Seminar Days on Diffraction, 2004. IEEE, 2004. http://dx.doi.org/10.1109/dd.2004.186021.
Full textZhang, Jinghui, Tong Ye, Tony T. Lee, Fangfang Yan, and Weisheng Hu. "Deflection-compensated Birkhoff-von-Neumann switches." In 2013 22nd Wireless and Optical Communication Conference (WOCC 2013). IEEE, 2013. http://dx.doi.org/10.1109/wocc.2013.6676423.
Full textEscolano, Francisco, Edwin R. Hancock, and Miguel A. Lozano. "Birkhoff polytopes, heat kernels and graph complexity." In 2008 19th International Conference on Pattern Recognition (ICPR). IEEE, 2008. http://dx.doi.org/10.1109/icpr.2008.4761921.
Full textPUCACCO, GIUSEPPE. "ON BIRKHOFF METHOD FOR INTEGRABLE LAGRANGIAN SYSTEMS." In Proceedings of the International Conference on SPT 2004. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702142_0033.
Full textCroitoru, Anca, Alina Iosify, Nikos Mastorakisz, and Alina Gavrilut. "Fuzzy Multimeasures in Birkhoff Weak Set-Valued Integrability." In 2016 Third International Conference on Mathematics and Computers in Sciences and in Industry (MCSI). IEEE, 2016. http://dx.doi.org/10.1109/mcsi.2016.034.
Full textBAMBUSI, DARIO. "Birkhoff normal form for some quasilinear Hamiltonian PDEs." In XIVth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812704016_0024.
Full textBOCHI, JAIRO. "ERGODIC OPTIMIZATION OF BIRKHOFF AVERAGES AND LYAPUNOV EXPONENTS." In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0119.
Full textLEE, M. HOWARD. "BIRKHOFF THEOREM AND ERGOMETER: MEETING OF TWO CULTURES." In Proceedings of the 31st International Workshop. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812836625_0029.
Full textLawson, Jimmie, and Yongdo Lim. "A Birkhoff contraction formula with applications to Riccati Equations." In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4435043.
Full text