Dissertations / Theses on the topic 'Birkhoff'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Birkhoff.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Cirilo, Patricia Romano. "Órbitas de Birkhoff e não Birkhoff para aplicações do tipo Twist." Universidade Federal de Minas Gerais, 2007. http://hdl.handle.net/1843/EABA-72VJWU.
Full textCosta, Liliana Manuela Gaspar Cerveira da. "Politopo de Birkhoff acíclico." Doctoral thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/8510.
Full textNeste trabalho estabelece-se uma interpreta c~ao geom etrica, em termos da teoria dos grafos, para v ertices, arestas e faces de uma qualquer dimens~ao do politopo de Birkho ac clico, Tn = n(T), onde T e uma arvore com n v ertices. Generaliza-se o resultado obtido por G. Dahl, [18], para o c alculo do di^ametro do grafo G( t n), onde t n e o politopo das matrizes tridiagonais duplamente estoc asticas. Adicionalmente, para q = 0; 1; 2; 3 s~ao obtidas f ormulas expl citas para a contagem do n umero de qfaces do politopo de Birkho tridiagonal, t n, e e feito o estudo da natureza geom etrica dessas mesmas faces. S~ao, tamb em, apresentados algoritmos para efectuar contagens do n umero de faces de dimens~ao inferior a de uma dada face do politopo de Birkho ac clico.
In this work using graph theory, we give a geometrical interpretation of vertices, edges, and faces of any dimension of the acyclic Birkho polytope, Tn = n(T), were T is a tree with n vertices. We generalize a proposition from G. Dahl, [18], that allows the calculation of the diameter of the graph G( t n), where t n denotes the polytope of tridiagonal doubly stochastic matrices. Furthermore, for q = 0; 1; 2; 3 we obtain some explicit formulae for counting the number of qfaces of the tridiagonal Birkho polytope, t n, and the study of its geometrical nature is done. For a given p-face of t n we determine the number of faces of lower dimension that are contained in it and we discuss its nature. Some algorithms allowing an exhaustive account on the number of edges and faces of the acyclic Birkho polytope are presented.
Le, Calvez Patrice. "Propriétés des attracteurs de Birkhoff." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb376071668.
Full textMARSON, Guilherme Porfírio. "Órbitas Birkhoff na Ferradura Rotacional." reponame:Repositório Institucional da UNIFEI, 2017. http://repositorio.unifei.edu.br/xmlui/handle/123456789/887.
Full textMade available in DSpace on 2017-08-08T17:54:49Z (GMT). No. of bitstreams: 1 dissertacao_marson_2017.pdf: 776627 bytes, checksum: df33dd3df7b05a7198177473faf66292 (MD5) Previous issue date: 2017-07
Neste trabalho, estudamos difeomorfismos de classe C¹ do anel com uma órbita homoclínica transversal K-rotacional a um ponto fixo hiperbólico. Primeiramente, recuperamos um resultado clássico de Poincaré, Birkhoff e Smale: Um ponto homoclínico implica a existência de uma ferradura topológica para alguma iterada. Além disso, obtemos informações interessantes sobre o comportamento rotacional das órbitas em um conjunto de Cantor invariante e maximal (chamado ferradura rotacional). Usando conjugação e dinâmica simbólica associada ao conjunto de Cantor não-errante da ferradura, provamos a existência de um intervalo de rotação não trivial I, e de incontáveis conjuntos de Cantor invariantes para cada número de rotação irracional em I. Finalizamos o trabalho caracterizando a codificação das órbitas Birkhoff da aplicação de duplicação em S¹, as quais implicam a existência de órbitas Birkhoff da ferradura rotacional.
Le, Calvez Patrice. "Proprietes des attracteurs de birkhoff." Paris 7, 1987. http://www.theses.fr/1987PA077014.
Full textPaolantoni, Thibault. "Application de Riemann-Hilbert-Birkhoff." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS410/document.
Full textThe exponential dual map is a way to encode Stokes data of a connection on a trivial vector bundle on the Riemann sphere with two poles: one double pole at 0 and one simple pole at infinity.We give here a formula for the exponential dual map expressed as a non commutative serie. Others generalizations of this formula are given
Palacios, Quiñonero Francesc. "Contribución al problema de interpolación de Birkhoff." Doctoral thesis, Universitat Politècnica de Catalunya, 2004. http://hdl.handle.net/10803/6711.
Full textEn la interpolación algebraica de Birkhoff se determina un polinomio de grado menor que n, para ello se emplean n condiciones que fijan el valor del polinomio o sus derivadas. Los problemas clásicos de interpolación de Lagrange, Taylor, Hermite, Hermite-Sylvester y Abel-Gontcharov son casos particulares de interpolación algebraica de Birkhoff.
Un espacio de polinomios lacunarios de dimensión n es el conjunto de los polinomios que pueden generarse por combinación lineal de n potencias distintas de grados, en general, no consecutivos. En particular, cuando tomamos potencias de grados 0,1,.,n-1, se obtiene el espacio de polinomios de grado menor que n, empleado en la interpolación algebraica clásica.
En la interpolación algebraica clásica, el número de condiciones determina el espacio de interpolación. En contraste, en la interpolación mediante polinomios lacunarios las condiciones de interpolación determinan únicamente la dimensión del espacio de interpolación y pueden existir una infinidad de espacios sobre los que realizar la interpolación. Esto nos permite construir mejores estrategias de interpolación en ciertos casos, como la interpolación de funciones de gran crecimiento (interpolación de exponenciales y de ramas asintóticas).
La aportación de la tesis consiste en la definición de un marco teórico adecuado para la interpolación de Birkhoff mediante polinomios lacunarios y en la extensión al nuevo marco de los principales elementos de la interpolación algebraica de Birkhoff. En concreto, se generaliza la condición de Pólya, se caracteriza la regularidad condicionada, se establecen condiciones suficientes de regularidad ordenada que extienden el teorema de Atkhison-Sharma, se extiende la descomposición normal y se establecen condiciones suficientes de singularidad en los casos indescomponibles.
Cortiñas, Guillermo. "Cuantización y teorema de Poincaré-Birkhoff-Witt." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/95761.
Full textNguyen, Thu Huong. "Strong Stability Preserving Hermite-Birkhoff Time Discretization Methods." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23491.
Full textReff, Nathan. "A generalization of the Birkhoff-von Neumann theorem /." Online version of thesis, 2007. http://hdl.handle.net/1850/5967.
Full textPremi, Lorenzo. "Geometria Proiettiva Sintetica, da Birkhoff a Faigle ed Herrmann." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14775/.
Full textSundararajan, Jay Kumar 1982. "Extending the Birkhoff-von Neumann switching strategy to multicast switching." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/30185.
Full textIncludes bibliographical references (p. 63-64).
The Birkhoff-von Neumann (BVN) strategy for offline switching does not support multicast, as it considers only permutation-based switch configurations. This thesis extends the BVN strategy to multicast switching. Using a graph theoretic model, we show that the capacity region for a traffic pattern is precisely the stable set polytope of the pattern's "conflict graph", in the no-fanout-splitting case. We construct examples to show that, if dynamic fanout splitting is excluded, there is no clear winner in terms of rate region among various fanout splitting strategies. The problem of deciding whether a given set of rates is achievable in a multicast switch is also addressed. We show that, in general, the problem is equivalent to the membership problem for the stable set polytope of a graph, and is therefore NP-hard. We also prove that the problem is NP-hard for the case that splitting of the set of destinations, or fanout, is allowed. However, in the no-splitting case, it is polynomial time solvable when the number of multicast flows in the N x N switch is O(logN). The algorithm naturally leads to a schedule to serve the flows in a stable manner, if the rates are achievable. For an arbitrary number of multicasts, we show that, computing the offline schedule is equivalent to fractional weighted graph coloring which takes polynomial time for perfect graphs. We present several types of traffic patterns whose conflict graphs are perfect. [18] proposed a simple online algorithm called i-SLIP based on parallel iterative matching, for online unicast scheduling. We propose an online algorithm for multicast, based on i-SLIP and the conflict graph idea, and compare them with ESLIP([19]) and the copy-and- use-i-SLIP strategy, through simulations.
by Jay Kumar Sundararajan.
S.M.
Cloutier, John. "A Combinatorial Analog of the Poincaré–Birkhoff Fixed Point Theorem." Scholarship @ Claremont, 2003. https://scholarship.claremont.edu/hmc_theses/145.
Full textAlbishi, Njwd. "Three-and four-derivative Hermite-Birkhoff-Obrechkoff solvers for stiff ODE." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34332.
Full textBozic, Vladan. "Three-stage Hermite-Birkhoff-Taylor ODE solver with a C++ program." Thesis, University of Ottawa (Canada), 2008. http://hdl.handle.net/10393/27751.
Full textRonchetti, Niccolò. "Il Diamond lemma e il teorema di Poincaré-Birkhoff-Witt sugli anelli." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amslaurea.unibo.it/1185/.
Full textDemeneghi, Paulinho. "Aplicações completamente positivas em algebras de matrizes e o teorema de Birkhoff." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/109992.
Full textWe describe spectral properties of positive maps over nite dimensional C* -algebras, following the classical work of Evans and H egh-Krohn [EH-K]. We also study the extremal points of the set of completely positive doubly-stochastic maps over Mn(C), following Landau and Streater [LS].
Berger, Roland. "Propriété de Poincaré-Birkhoff-Witt dans les espaces et groupes quantiques différentiels." Lyon 1, 1992. http://www.theses.fr/1992LYO10001.
Full textHabermas, Derek. "Compact Symmetric Spaces, Triangular Factorization, and Cayley Coordinates." Diss., The University of Arizona, 2006. http://hdl.handle.net/10150/195953.
Full textSilva, Giovane Ferreira. "Formalismo termodinâmico do conjunto irregular para médias de Birkhoff e expoentes de Lyapunov." Universidade Federal de Alagoas, 2011. http://repositorio.ufal.br/handle/riufal/1050.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico
Neste trabalho, estudamos o conjunto X ̇(φ,f) de pontos tal que as médias de Birkhoff não existe. Seguindo Thompson, nosso resultado principal aqui é mostrar que a pressão topológica de X ̇(φ,f) é total. Como corolário, damos o mesmo resultado para o conjunto Irregular de Oseledets para os expoentes de Lyapunov em dimensão um. Para dimensões maiores, esta questão está em aberto.
Karouma, Abdulrahman. "A Class of Contractivity Preserving Hermite-Birkhoff-Taylor High Order Time Discretization Methods." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32403.
Full textWallez, Thomas. "Invariants iso-spectraux et théorèmes KAM." Thesis, Nantes, 2018. http://www.theses.fr/2018NANT4067/document.
Full textThe aim of this work is to obtain spectral rigidity results for C1 families of elliptic self-adjoint (pseudo-)differential operators Pt, t ϵ [0, ẟ], on a smooth closed manifold M of dimension n ≥ 2. In the first two chapters, we investigate Hamiltonians close to a given integrable Hamiltonian which is non-degenerate in the sense of Kolmogorov (KAM system). This allows us to obtain a Birkhoff normal form in a neighborhood of any KAM tori with a Diophantine frequency. In the third and fourth chapters, we construct a quantum Birkhoff normal form and obtain C1 families of quasimodes. Using the quasi-modes, we establish a connection between the spectral properties of Pt and the dynamical properties of the KAM tori. The last two chapters provide applications of these results to the Radon transform and the surfaces of revolution
Yagoub, Hemza. "Variable-step variable-order 3-stage Hermite-Birkhoff ODEDDE solver of order 5 to 15." Thesis, University of Ottawa (Canada), 2009. http://hdl.handle.net/10393/28075.
Full textSilva, Romenique da Rocha. "Toros incompressíveis para ações Anosov de \'R POT. k\' sobre uma variedade de dimensão K+2." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-14102011-160937/.
Full textAmong all dynamical systems the Anosov systems has attracted the attention of many mathematicians. In the case of an Anosov flow in a closed manifold M of dimension three, Sérgio Fenley defined the concept of lozenges in the universal covering of M and obtained important results involving lozenges and covering automorphism. Following what was made by Fenley, and using the concept of lozenge on the orbit space of the lifted flow (in the universal covering). Thierry Barbot obtains sufficient conditions for an incompressible torus in a closed 3-manifold supporting an Anosov flow to be isotopic to another which is transverse to flow. If this work we considered Anosov of \'R POT. k\' on a closed manifold M of dimension k + 2. First, we obtain analogous results those of Fenley (about existence of lozenges) for this actions, and using this, finally we obtain sufficient conditions for an incompressible torus to be isotopic to another torus which is transverse to action. This last result is a generalization of Barbot\'s result mentioned above
Niles, David G. "Problème inverse de Riemann-Hilbert-Birkhoff et formules de connexion pour les transendentes [sic] de Painlevé III." Dijon, 2009. http://www.theses.fr/2009DIJOS069.
Full textA linear system of ordinary differential equations corresponding by the isomonodromy deformation method to the third Painlevé equation is considered. The surjectivity of the monodromy map generated by this system is proven using the Riemann-Hilbert factorization method. This allows a complete determination of the small x asymptotic behavior of the Painlevé III functions in a sector containing the positive real line. The locations of the singularities within this sector are also given
Thomine, Damien. "Théorèmes limites pour les sommes de Birkhoff de fonctions d'intégrale nulle en théorie ergodique en mesure infinie." Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S194/document.
Full textThis work is focused on some classes of ergodic dynamical systems endowed with an infinite invariant measure, such as transformations of the interval with a neutral fixed point or random walks. The asymptotic behavior of the Birkhoff sums of observables with a non-zero integral is well known, as long as the system shows some kind of hyperbolicity. The towers over a Gibbs-Markov map are especially interesting. In this context, we aim to study the case of observables whose integral is zero. We get the equivalent of a central limit theorem for some dynamical systems endowed with an infinite measure. After we introduce the necessary definitions, we adapt some results by E. Csáki and A. Földes on random walks to the case of Gibbs-Markov maps. We derive a theorem on the asymptotic independence of Birhoff sums, which is the core of this thesis, and from this point we work out a generalised central limit theorem. We also prove a few variations on this generalised central limit theorem. Then, we study dynamical systems in continuous time, such as semi-flows and flows. We first work on the asymptotic properties of the first return time and the local time for extensions of dynamical systems; this is done by spectral methods. Finally, step by step, we extend our generalised central limit theorem to cover some periodic flows, and in particular the geodesic flow on the unitary tangent bundle of some hyperbolic periodic manifolds
Alzahrani, Abdulrahman. "Contractivity-Preserving Explicit 2-Step, 6-Stage, 6-Derivative Hermite-Birkhoff–Obrechkoff Ode Solver of Order 13." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32564.
Full textGill, Jonna. "The k-assignment Polytope and the Space of Evolutionary Trees." Licentiate thesis, Linköping : Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5677.
Full textMatacchione, Roberto. "Una rassegna di teoremi ergodici. Dal teorema ergodico di Birkhoff Khinchin al teorema ergodico quantistico di von Neumann." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/6958/.
Full textChoirat, Christine. "Contributions à l'étude du théorème ergodique de Birkhoff, de l'épiconvergence et des ensembles aléatoires : aspects théoriques et applications." Paris 9, 2003. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2003PA090008.
Full textPereira, Miriam da Silva [UNESP]. "Teoria de singularidades e classificação de problemas de bifurcação Z2-equivariantes de Corank 2." Universidade Estadual Paulista (UNESP), 2006. http://hdl.handle.net/11449/94214.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Neste trabalho classificamos problemas de bifurcação Z2-equivariantes de corank 2 até co- dimensão 3 via técnicas da Teoria de Singularidades. A abordagem para classificar tais problemas é baseada no processo de redução à forma normal de Birkhoff para estudar a interação de modos Hopf-Pontos de Equilíbrio. O comportamento geométrico das soluções dos desdobramentos das formas normais obtidas é descrito pelos diagramas de bifurcação e estudamos a estabilidade assintótica desses ramos.
In this work we classify the Z2-equivariant corank 2 bifurcation problems up to codimension 3 via Singularity Theory techniques. The approach to classify such problems is based on the Birkhoff normal form to study Hopf-Steady- State mode interaction. The geometrical behavior of the solutions of the unfolding of the normal forms is described by the bifurcation diagrams and we study the asymptotic stability of such branches.
Li, Yi. "Variable-step variable-order 3-stage Hermite-Birkhoff ODE solver of order 5 to 15 with a C++ program." Thesis, University of Ottawa (Canada), 2008. http://hdl.handle.net/10393/28001.
Full textZhang, Yu. "Variable-step variable-order 3-stage Hermite-Birkhoff-Obrechkoff ODE solver of order 4 to 14 with a C program." Thesis, University of Ottawa (Canada), 2007. http://hdl.handle.net/10393/27500.
Full textZhuang, Yuchuan. "Variable-step variable-order 2-stage Hermite-Birkhoff-Obrechkoff ODE solver of order 3 to 14 with a C program." Thesis, University of Ottawa (Canada), 2008. http://hdl.handle.net/10393/27746.
Full textPittman-Polletta, Benjamin Rafael. "Factorization in unitary loop groups and reduced words in affine Weyl groups." Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/194348.
Full textAbbondanza, Nicola. "Trasformazioni che conservano la misura." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9688/.
Full textPereira, Miriam da Silva. "Teoria de singularidades e classificação de problemas de bifurcação Z2-equivariantes de Corank 2 /." São José do Rio Preto : [s.n.], 2006. http://hdl.handle.net/11449/94214.
Full textBanca: Maria Aparecida Soares Ruas
Banca: Claudio Aguinaldo Buzzi
Resumo: Neste trabalho classificamos problemas de bifurcação Z2-equivariantes de corank 2 até co- dimensão 3 via técnicas da Teoria de Singularidades. A abordagem para classificar tais problemas é baseada no processo de redução à forma normal de Birkhoff para estudar a interação de modos Hopf-Pontos de Equilíbrio. O comportamento geométrico das soluções dos desdobramentos das formas normais obtidas é descrito pelos diagramas de bifurcação e estudamos a estabilidade assintótica desses ramos.
Abstract: In this work we classify the Z2-equivariant corank 2 bifurcation problems up to codimension 3 via Singularity Theory techniques. The approach to classify such problems is based on the Birkhoff normal form to study Hopf-Steady- State mode interaction. The geometrical behavior of the solutions of the unfolding of the normal forms is described by the bifurcation diagrams and we study the asymptotic stability of such branches.
Mestre
Rodríguez, Ruiz José. "Integración en espacios de Banach." Doctoral thesis, Universidad de Murcia, 2006. http://hdl.handle.net/10803/10963.
Full textThe general framework of this memoir is the theory of integration of functions with values in Banach spaces. We analyze in detail the Birkhoff integral of vector-valued functions, as well as its corresponding versions within the settings of integration with respect to vector measures and integration of multi-valued functions. We compare these methods of integration with others which are well known (Bochner, Pettis, McShane, Debreu, etc.). We characterize, in terms of vector integration, some properties of the Banach spaces where the (multi-) functions take their values.
Shannon, Mario. "Dehn surgeries and smooth structures on 3-dimensional transitive Anosov flows." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCK035.
Full textThe present thesis is about Dehn surgeries and smooth structures associated with transitive Anosov flows in dimension three. Anosov flows constitute a very important class of dynamical systems, because of its persistent chaotic behaviour, as well as for its rich interaction with the topology of the ambient space. Even if a lot is known about the dynamical and ergodic properties of these systems, there is not a clear understanding about how to classify its different orbital equivalence classes. Until now, the biggest progress has been done in dimension three, where there is a family of techniques intended for the construction of Anosov flows called surgeries.During the realization of this thesis, in a first time we have been interested in a particular surgery method, known as the Goodman surgery. This method consists in make a Dehn surgery on a chosen periodic orbit, but adapted to the flow, in such a way to obtain a new manifold equipped with an Anosov flow. For making this surgery, one of the parameters that has to be chosen is an embedded surface in the 3-manifold and a diffeomorphism defined on it. Thus, the parameter space is, a priori, of infinite dimension and it is not easy to have control on the orbital equivalence class of the obtained flow. There exists a second method, that can be interpreted as an infinitesimal version of the previous one, known as the Fried surgery. It consists in making a blow-up of the flow along the periodic orbit, obtaining in this way a flow in a manifold with boundary, for then blowing-down the boundary component in a non-trivial way and produce a new flow. This surgery produces flows defined in a unique way, but they are not equipped with a natural uniformly hyperbolic structure. They are, by construction, topological Anosov flows.Our contribution is to show that, if we assume that the flow is transitive, then a Goodman surgery or a Fried surgery performed on a periodic orbit produce orbitally equivalent flows, for the same choice of integer parameters.In a second time, we have been interested for a more abstract question, but which is also related to some technical issues in the construction of hyperbolic flows. It is the problem of determining if every topologically Anosov flow (i.e. expansive and satisfying the Bowen shadowing property) correspond to a smooth hyperbolic flow, up to orbital equivalence. In the particular case that the flow is transitive, it has been known that there exists a non-uniformly hyperbolic structure defined in the complement of a finite set of periodic orbits. The main difficulty is the construction of (global) hyperbolic models associated to the original flow.In this setting, our contribution is to show that every transitive topologically Anosov flow on a closed manifold is orbital equivalent to a smooth Anosov flow
Shonoda, Emad N. Naseem. "On Ruled Surfaces in three-dimensional Minkowski Space." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63555.
Full textDucatez, Raphaël. "Analyse mathématique de divers systèmes de particules en milieu désordonné." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED013/document.
Full textThis thesis is devoted to the mathematical study of some systems of classical and quantum particles, in a disordered medium. It comprises four published or submitted works. In the first one we provide a new formula allowing to prove Anderson localisation in one space dimension and to characterise the decay at infinity of the eigenfunctions. The second contains one of the first proofs of localisation for infinitely many particles in interaction, in the Hartree-Fock approximation. The third work is dedicated to the Anderson model in a time-periodic perturbation. Under certain conditions on the oscillation frequency we prove the absence of diffusion. In the last work we show the decay of correlations for the one-dimensional Jellium model in an inhomogeneous background, using the Hilbert distance on cones and the Birkhoff-Hopf theorem
Imekraz, Rafik. "Etude dynamique de quelques équations aux dérivées partielles hamiltoniennes non linéaires à potentiel confinant." Nantes, 2010. http://archive.bu.univ-nantes.fr/pollux/show.action?id=f78473aa-7d4c-4a95-a2c8-e6d600ac58cd.
Full textThis thesis is concerned by stability of solutions of some non linear Schroedinger partial differential equations (PDE) on Rn with a confining potential and a regular initial condition. Two potentials are studied : the harmonic oscillator multidimensional and the polynomial confining potential unidimensional. In our context, the stability means roughly the following : the solution exists on a time-interval whose length depends polynomially on the smallness of the initial condition (almost global existence) and stays near the solution of an explicit completely integrable equation with the same initial condition. We use the Birkhoff's normal forms theory to handle our issue. The key point is the Hamiltonian structure of our PDE. We create an abstract differential model (which encompasses our PDE) and prove that it has a Birkhoff's normal form of all order, ie a proper renormalization of the Hamiltonian which ensures in particular the stability
Herlemont, Basile. "Differential calculus on h-deformed spaces." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0377/document.
Full textThe ring $\Diff(n)$ of $\h$-deformed differential operators appears in the theory of reduction algebras. In this thesis, we construct the rings of generalized differential operators on the $\h$-deformed vector spaces of $\gl$-type. In contrast to the $q$-deformed vector spaces for which the ring of differential operators is unique up to an isomorphism, the general ring of $\h$-deformed differential operators $\Diffs(n)$ is labeled by a rational function $\sigma$ in $n$ variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system. We show that the center of $\Diffs(n)$ is a ring of polynomials in $n$ variables. We construct an isomorphism between certain localizations of $\Diffs(n)$ and the Weyl algebra $\W_n$ extended by $n$ indeterminates. We present some conditions for the irreducibility of the finite dimensional $\Diffs(n)$-modules. Finally, we discuss difficulties for finding analogous constructions for the ring $\Diff(n, N)$ formed by several copies of $\Diff(n)$
Belhaj, Mohamed Mohamed. "Renormalisation dans les algèbres de HOPF graduées connexes." Thesis, Clermont-Ferrand 2, 2014. http://www.theses.fr/2014CLF22515/document.
Full textIn this thesis, we study the renormalization of Connes-Kreimer in the contex of specified Feynman graphs Hopf algebra. We construct a Hopf algebra structure $\mathcal{H}_\mathcal{T}$ on the space of specified Feynman graphs of a quantum field theory $\mathcal{T}$. We define also a doubling procedure for the bialgebra of specified Feynman graphs, a convolution product and a group of characters of this Hopf algebra with values in some suitable commutative algebra taking momenta into account. We then implement the renormalization described by A. Connes and D. Kreimer and the Birkhoff decomposition for two renormalization schemes: the minimal subtraction scheme and the Taylor expansion scheme.We recall the definition of Feynman integrals associated with a graph. We prove that these integrals are holomorphic in a complex variable D in the case oh Schwartz functions, and that they extend in a meromorphic functions in the case of a Feynman type functions. Finally, we determine the finite parts of Feynman integrals using the BPHZ algorithm after dimensional regularization procedure
Eloy, Anton. "Classification et géométrie des équations aux q-différences : étude globale de q-Painlevé, classification non isoformelle et Stokes à pentes arbitraires." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30223/document.
Full textThis thesis falls within the context of global and local geometric classification of q-difference equations. In a first part we study the global behaviour of some systems derived from q-Painlevé equations and introduced by Murata. We do so by constructing a Riemann-Hilbert-Birkhoff correspondence between such systems and their connexion matrices. In a second part we work on local classification by providing a construction of an equivariant vector bundle over the space of all formal classes with two slopes, the fibre over a formal class being the space of its isoformal analytic classes. As the action of the group of automorphisms of the graded module arises naturally when we study this bundle, we take an interest in the study of the space of analytic classes, which is the space of isoformal analytic classes modulo this action. We propose a first approach of such a classification by using toric varieties. In a third part we construct q-Stokes, i.e. meromorphic solutions of systems, in the context of systems with one non-integral slope and one equal to zero, this by using q-Borel and q-Laplace transforms
Nguyen, Tien Zung. "A la recherche des tores perdus." Habilitation à diriger des recherches, Université Montpellier II - Sciences et Techniques du Languedoc, 2001. http://tel.archives-ouvertes.fr/tel-00001283.
Full textdans la jungle des systèmes complètement intégrables. Il a trouvé des feuilles
particulières et des tores pour construire une petite cabane qui donne une vue
topologique sur la jungle.
Yan, Jingzhi. "Utilisation de feuilletages transverse à l'étude d'homéomorphismes préservant l'aire de surfaces." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066458/document.
Full textThis thesis concerns homeomorphisms of surfaces.Let f be an area preserving diffeomorphism of an oriented surface M isotopic to the identity. If f has an isolated degenerate contractible fixed point z0 with Lefschetz index one, and if the area of M is finite, we will prove in Chapter 3 that z0 is accumulated not only by periodic points, but also by periodic orbits in the measure sense. More precisely, the Dirac measure at z0 is the limit in weak-star topology of a sequence of invariant probability measures supported on periodic orbits. Our proof is purely topological and will works for homeomorphisms and is related to the notion of local rotation set.In chapter 4, we will define a kind of identity isotopies: torsion-low isotopies. In particular, when f is a diffeomorphism with finitely many fixed points such that every fixed point is not degenerate, an identity isotopy I of f is torsion-low if and only if for every point z fixed along the isotopy, the (real) rotation number ρ(I,z), which is well defined when one blows-up f at z, is contained in (-1,1). We will prove the existence of torsion-low maximal identity isotopies, and we will deduce the local dynamics of the transverse foliations of any torsion-low maximal isotopy near any isolated singularity.In chapter 5, we will generalize a local Poincaré-Birkhoff theorem to the case where there exist fixed points on the boundary
Deneufchâtel, Matthieu. "Intégrales Itérées en Physique Combinatoire." Phd thesis, Université Paris-Nord - Paris XIII, 2012. http://tel.archives-ouvertes.fr/tel-00736727.
Full textDecaens, Simon. "Une histoire de la théorie des treillis au sein de l'American Mathematical Society entre 1933 et 1948." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC308.
Full textIntroduced in 1933 by Garrett Birkhoff, Lattice Theory seems to settle, in about fifteen years, as an autonomous domain of mathematics, whose rise takes place in a context of circulation of modern algebra in the United-States. The current work questions the appearance and development of a theory of lattices, its links to modern algebra and the role of the American Mathematical Society (AMS) in this process. After problematizing the historiographical category of a theory, we will consider the theory of lattices through three different biases. First, we will approach it through the article of G. Birkhoff and Øystein Ore, often considered as founders for the theory. Here, the theory is an object explicitly identified by the actors to designate and link their works together. However, as an analytical category, it hides their diversity by joining them into a same non-problematized denomination. Secondly, the theory will be considered at a larger scale, from the publications of members of the AMS interested in lattices. From here, it appears as a set of practices shared by a collective of mathematicians. Finally, in a last chapter we will approach the promotion of Lattice Theory within the AMS. I will try to show that it benefits from both the status of an « american abstract algebra » and the positions of its promoters within the society
Wu, Senlin. "Geometry of Minkowski Planes and Spaces -- Selected Topics." Doctoral thesis, [S.l. : s.n.], 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200900226.
Full text