To see the other types of publications on this topic, follow the link: Bismuth oxyiodide.

Journal articles on the topic 'Bismuth oxyiodide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Bismuth oxyiodide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Luo, Shunqin, Jinjia Xu, Zijing Li, Chen Liu, Jiawei Chen, Xin Min, Minghao Fang, and Zhaohui Huang. "Correction: Bismuth oxyiodide coupled with bismuth nanodots for enhanced photocatalytic bisphenol A degradation: synergistic effects and mechanistic insight." Nanoscale 9, no. 42 (2017): 16485. http://dx.doi.org/10.1039/c7nr90222k.

Full text
Abstract:
Correction for ‘Bismuth oxyiodide coupled with bismuth nanodots for enhanced photocatalytic bisphenol A degradation: synergistic effects and mechanistic insight’ by Shunqin Luo et al., Nanoscale, 2017, DOI: 10.1039/c7nr05320g.
APA, Harvard, Vancouver, ISO, and other styles
2

Han, Aijuan, Jiulong Sun, Xuanhao Lin, Cheng-Hui Yuan, Gaik Khuan Chuah, and Stephan Jaenicke. "Influence of facets and heterojunctions in photoactive bismuth oxyiodide." RSC Advances 5, no. 107 (2015): 88298–305. http://dx.doi.org/10.1039/c5ra18236k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kwolek, Przemysław, and Konrad Szaciłowski. "Photoelectrochemistry of n-type bismuth oxyiodide." Electrochimica Acta 104 (August 2013): 448–53. http://dx.doi.org/10.1016/j.electacta.2012.10.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Ai-Hsuan, Yi-Chuen Wang, and Chiing-Chang Chen. "Composite photocatalyst, tetragonal lead bismuth oxyiodide/bismuth oxyiodide/graphitic carbon nitride: Synthesis, characterization, and photocatalytic activity." Journal of Colloid and Interface Science 533 (January 2019): 319–32. http://dx.doi.org/10.1016/j.jcis.2018.08.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jagt, Robert A., Tahmida N. Huq, Katharina M. Börsig, Daniella Sauven, Lana C. Lee, Judith L. MacManus-Driscoll, and Robert L. Z. Hoye. "Controlling the preferred orientation of layered BiOI solar absorbers." Journal of Materials Chemistry C 8, no. 31 (2020): 10791–97. http://dx.doi.org/10.1039/d0tc02076a.

Full text
Abstract:
Bismuth oxyiodide has anisotropic transport properties, and optimal device performance requires control over its preferred orientation. We find that this preferred orientation can be finely tuned through the precursor and substrate temperatures.
APA, Harvard, Vancouver, ISO, and other styles
6

Park, Seohyun, Nanasaheb M. Shinde, Pritamkumar V. Shinde, Damin Lee, Je Moon Yun, and Kwang Ho Kim. "Chemically grown bismuth-oxy-iodide (BiOI/Bi9I2) nanostructure for high performance battery-type supercapacitor electrodes." Dalton Transactions 49, no. 3 (2020): 774–80. http://dx.doi.org/10.1039/c9dt04365a.

Full text
Abstract:
A dual phase bismuth oxyiodide (BiOI/Bi9I2) nanostructure battery type supercapacitor electrode is synthesized using chemical bath deposition (CBD) and the capacitance and energy/power density (ED/PD) reported.
APA, Harvard, Vancouver, ISO, and other styles
7

Chou, Shang-Yi, Chiing-Chang Chen, Yong-Ming Dai, Jia-Hao Lin, and Wenlian William Lee. "Novel synthesis of bismuth oxyiodide/graphitic carbon nitride nanocomposites with enhanced visible-light photocatalytic activity." RSC Advances 6, no. 40 (2016): 33478–91. http://dx.doi.org/10.1039/c5ra28024a.

Full text
Abstract:
The first systematic synthetic study of bismuth oxyiodide/graphitic carbon nitride (BiOxIy/g-C3N4) nanocomposite preparation using a controlled hydrothermal method is reported.
APA, Harvard, Vancouver, ISO, and other styles
8

Hsu, Chia-Lun, Chia-Wen Lien, Scott G. Harroun, Rini Ravindranath, Huan-Tsung Chang, Ju-Yi Mao, and Chih-Ching Huang. "Metal-deposited bismuth oxyiodide nanonetworks with tunable enzyme-like activity: sensing of mercury and lead ions." Materials Chemistry Frontiers 1, no. 5 (2017): 893–99. http://dx.doi.org/10.1039/c6qm00149a.

Full text
Abstract:
The enzyme-like activity of bismuth oxyiodide nanonetworks are tunable by in situ deposition with metal or metal oxide nanoparticles and the doped nanonetworks can selective detect Hg2+ and Pb2+ ions.
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Chiing-Chang, Jing-Ya Fu, Jia-Lin Chang, Shiuh-Tsuen Huang, Tsung-Wen Yeh, Jiun-Ting Hung, Peng-Hao Huang, Fu-Yu Liu, and Li-Wen Chen. "Bismuth oxyfluoride/bismuth oxyiodide nanocomposites enhance visible-light-driven photocatalytic activity." Journal of Colloid and Interface Science 532 (December 2018): 375–86. http://dx.doi.org/10.1016/j.jcis.2018.07.130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alam, Kazi M., Pawan Kumar, Piyush Kar, Ujwal K. Thakur, Sheng Zeng, Kai Cui, and Karthik Shankar. "Enhanced charge separation in g-C3N4–BiOI heterostructures for visible light driven photoelectrochemical water splitting." Nanoscale Advances 1, no. 4 (2019): 1460–71. http://dx.doi.org/10.1039/c8na00264a.

Full text
Abstract:
Heterojunctions of the low bandgap semiconductor bismuth oxyiodide (BiOI) with bulk multilayered graphitic carbon nitride (g-C3N4) and few layered graphitic carbon nitride sheets (g-C3N4-S) are synthesized and investigated as an active photoanode material for sunlight driven water splitting.
APA, Harvard, Vancouver, ISO, and other styles
11

Volkov, Sergey, Rimma Bubnova, Maria Krzhizhanovskaya, and Lydia Galafutnik. "The first bismuth borate oxyiodide, Bi4BO7I: commensurate or incommensurate?" Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 76, no. 6 (November 10, 2020): 992–1000. http://dx.doi.org/10.1107/s2052520620012640.

Full text
Abstract:
The first bismuth borate oxyiodide, Bi4BO7I, has been prepared by solid-state reaction in evacuated silica ampoules. Its crystal structure [space group Immm(00γ)000] comprises litharge-related layers of edge-sharing OBi4 tetrahedra; the interlayer space is filled by I− and [BO3]3− anions. The wavevector, q = 0.242 (3)c*, is very close to the rational value of c*/4, yet refinement based on commensurate modulation faces serious problems indicating the incommensurate nature of the modulation. The I-/[BO3]3− anions are ordered in a complex sequence along [001], i.e. –<–BO3–BO3–I–I–> n = 28–I–I–I–<–BO3–BO3–I–I–> n = 28–BO3–BO3–BO3–, leading to a structural modulation. The principal feature of the latter is the presence of –I–I–I– and –BO3–BO3–BO3– sequences that cannot be accounted for in the a × b × 4c supercell. The thermal expansion of Bi4BO7I is weakly anisotropic (αa = 8, αb = 15 and αc = 17 × 10−6 K−1 at 500 K) which is caused by preferential orientation of the borate groups.
APA, Harvard, Vancouver, ISO, and other styles
12

Mabuti, Levannie A., Ian Kenneth S. Manding, and Candy C. Mercado. "Photovoltaic and photocatalytic properties of bismuth oxyiodide–graphene nanocomposites." RSC Advances 8, no. 74 (2018): 42254–61. http://dx.doi.org/10.1039/c8ra07360k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Han, Aijuan, Siew Fung Chian, Xiu Yi Toy, Jiulong Sun, Stephan Jaenicke, and Gaik-Khuan Chuah. "Bismuth oxyiodide heterojunctions in photocatalytic degradation of phenolic molecules." Research on Chemical Intermediates 41, no. 12 (April 1, 2015): 9509–20. http://dx.doi.org/10.1007/s11164-015-1976-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Luo, Shunqin, Jiawei Chen, Zhaohui Huang, Chen Liu, and Minghao Fang. "Controllable synthesis of Titania-Supported Bismuth Oxyiodide Heterostructured Nanofibers with Highly Exposed (1 1 0) Bismuth Oxyiodide Facets for Enhanced Photocatalytic Activity." ChemCatChem 8, no. 24 (November 24, 2016): 3780–89. http://dx.doi.org/10.1002/cctc.201601047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Liu, Hong, Wei-Ran Cao, Yun Su, Zhen Chen, and Yong Wang. "Bismuth oxyiodide–graphene nanocomposites with high visible light photocatalytic activity." Journal of Colloid and Interface Science 398 (May 2013): 161–67. http://dx.doi.org/10.1016/j.jcis.2013.02.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Arumugam, Malathi, and Myong Yong Choi. "Recent progress on bismuth oxyiodide (BiOI) photocatalyst for environmental remediation." Journal of Industrial and Engineering Chemistry 81 (January 2020): 237–68. http://dx.doi.org/10.1016/j.jiec.2019.09.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Liao, Chenxing, Zhijun Ma, Xiaofeng Chen, Xin He, and Jianrong Qiu. "Controlled synthesis of bismuth oxyiodide toward optimization of photocatalytic performance." Applied Surface Science 387 (November 2016): 1247–56. http://dx.doi.org/10.1016/j.apsusc.2016.06.140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Baeissa, E. S. "Environmental remediation of Cr(VI) solutions using Ni-bismuth oxyiodide nanospheres." Desalination and Water Treatment 57, no. 59 (June 22, 2016): 28939–46. http://dx.doi.org/10.1080/19443994.2016.1195291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Long, Yang, Siyuan Tan, Qiang Han, Yongjian Ai, Yuqiang Sheng, Yi Wang, Haibo Wang, Youliang Xie, Qionglin Liang, and Mingyu Ding. "Efficient water-mediated synthesis of bismuth oxyiodide with several distinct morphologies." CrystEngComm 22, no. 10 (2020): 1754–61. http://dx.doi.org/10.1039/c9ce01835b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Liu, Hang, Jian Cai, Man Luo, Chang Chen, and Pei Hu. "Novel mesoporous bismuth oxyiodide single-crystal nanosheets with enhanced catalytic activity." RSC Advances 10, no. 10 (2020): 5913–18. http://dx.doi.org/10.1039/c9ra10451h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ekthammathat, Nuengruethai, Pornchai Pornharuthai, and Anukorn Phuruangrat. "Microwave Irradiation Synthesis and Characterization of Silver Doped Bismuth Oxyiodide Microflowers with Enhanced Daylight Photocatalytic Performance." International Journal of Materials, Mechanics and Manufacturing 6, no. 3 (June 2018): 238–42. http://dx.doi.org/10.18178/ijmmm.2018.6.3.383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Cao, Feng, Xin Lv, Jun Ren, Linqing Miao, Jianmin Wang, Song Li, and Gaowu Qin. "Preparation of Uniform BiOI Nanoflowers with Visible Light-Induced Photocatalytic Activity." Australian Journal of Chemistry 69, no. 2 (2016): 212. http://dx.doi.org/10.1071/ch15176.

Full text
Abstract:
Novel 3D flower-like bismuth oxyiodide (BiOI) nanomaterials were obtained via a facile solvothermal method using bismuth nitrate (Bi(NO3)3) and potassium iodide (KI) as precursors and diethylene glycol as the capping reagent. The morphology of the BiOI nanoarchitecture strongly depends on the experimental conditions such as the presence of diethylene glycol and hydrothermal time. The photocatalytic property of the BiOI nanostructures by monitoring the degradation of rhodamine B (RhB) and methyl orange (MO) mixed dyes was studied under visible light illumination, which has not been reported previously. The degradation of single cationic RhB dye is faster when compared with that of anionic MO dye. This result is due to the surface negative charges on the BiOI nanoflowers that display good selectivity towards positive RhB dye organic groups owing to electrostatic attraction.
APA, Harvard, Vancouver, ISO, and other styles
23

Lan, Meng, Nan Zheng, Xiaoli Dong, Chenghe Hua, Hongchao Ma, and Xiufang Zhang. "Bismuth-rich bismuth oxyiodide microspheres with abundant oxygen vacancies as an efficient photocatalyst for nitrogen fixation." Dalton Transactions 49, no. 26 (2020): 9123–29. http://dx.doi.org/10.1039/d0dt01332c.

Full text
Abstract:
A combined bismuth-rich and defect introduction strategy was used to prepare the H-Bi5O7I with abundant oxygen vacancies, which can effectively yield ammonia under visible light without any organic scavengers or noble-metal cocatalysts.
APA, Harvard, Vancouver, ISO, and other styles
24

Ma, Haipeng, Jing Zhang, and Zhifeng Liu. "Efficient tungsten oxide/bismuth oxyiodide core/shell photoanode for photoelectrochemical water splitting." Applied Surface Science 423 (November 2017): 63–70. http://dx.doi.org/10.1016/j.apsusc.2017.06.121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Abdul-Manaf, N. A., and A. H. Azmi. "Microstructure study of bismuth oxyiodide thin film prepared by SILAR dip coating." Journal of Physics: Conference Series 1816, no. 1 (February 1, 2021): 012115. http://dx.doi.org/10.1088/1742-6596/1816/1/012115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lee, Yu-Hsun, Yong-Ming Dai, Jing-Ya Fu, and Chiing-Chang Chen. "A series of bismuth-oxychloride/bismuth-oxyiodide/graphene-oxide nanocomposites: Synthesis, characterization, and photcatalytic activity and mechanism." Molecular Catalysis 432 (May 2017): 196–209. http://dx.doi.org/10.1016/j.mcat.2017.01.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Luo, Shunqin, Jinjia Xu, Zijing Li, Chen Liu, Jiawei Chen, Xin Min, Minghao Fang, and Zhaohui Huang. "Bismuth oxyiodide coupled with bismuth nanodots for enhanced photocatalytic bisphenol A degradation: synergistic effects and mechanistic insight." Nanoscale 9, no. 40 (2017): 15484–93. http://dx.doi.org/10.1039/c7nr05320g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Limatahu, Nur A., Indra Cipta, St Hayatun Nur Abu, Indriana Kartini, and Yateman Arryanto. "Adsorption and Photodegradation of Methylene Blue by Allophane and Nanocomposite Bismuth Oxyiodide-Allophane." Asian Journal of Chemistry 30, no. 1 (2017): 207–9. http://dx.doi.org/10.14233/ajchem.2018.20990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bao, Jiming, and Mohammadjavad Mohebinia. "(Invited) Ultrathin Bismuth Oxyiodide Nano-Sheets for Photocatalytic Nitrogen Fixation Under Visible Light." ECS Meeting Abstracts MA2020-01, no. 39 (May 1, 2020): 1700. http://dx.doi.org/10.1149/ma2020-01391700mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sajjad, Muhammad, Nirpendra Singh, and J. Andreas Larsson. "Bulk and monolayer bismuth oxyiodide (BiOI): Excellent high temperature p-type thermoelectric materials." AIP Advances 10, no. 7 (July 1, 2020): 075309. http://dx.doi.org/10.1063/1.5133711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chen, Chaoji, Pei Hu, Xianluo Hu, Yueni Mei, and Yunhui Huang. "Bismuth oxyiodide nanosheets: a novel high-energy anode material for lithium-ion batteries." Chemical Communications 51, no. 14 (2015): 2798–801. http://dx.doi.org/10.1039/c4cc09715g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hoye, Robert L. Z., Lana C. Lee, Rachel C. Kurchin, Tahmida N. Huq, Kelvin H. L. Zhang, Melany Sponseller, Lea Nienhaus, et al. "Strongly Enhanced Photovoltaic Performance and Defect Physics of Air-Stable Bismuth Oxyiodide (BiOI)." Advanced Materials 29, no. 36 (July 17, 2017): 1702176. http://dx.doi.org/10.1002/adma.201702176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wei, Yan, Hanrui Su, Yiwen Zhang, Longhui Zheng, Yue Pan, Chang Su, Wei Geng, and Mingce Long. "Efficient peroxodisulfate activation by iodine vacancy rich bismuth oxyiodide: A vacancy induced mechanism." Chemical Engineering Journal 375 (November 2019): 121971. http://dx.doi.org/10.1016/j.cej.2019.121971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yao, Shengnan, Min Lai, Jinyu Yang, Haibo Yong, Jialei Huang, Xiaoqing Wang, and Yan Ma. "Synthesis and photocatalytic properties of electrodeposited bismuth oxyiodide on rutile/anatase TiO2 heterostructure." Materials Research Express 6, no. 5 (February 6, 2019): 055905. http://dx.doi.org/10.1088/2053-1591/ab0226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Long, Mingce, Peidong Hu, Haodong Wu, Jun Cai, Beihui Tan, and Baoxue Zhou. "Efficient visible light photocatalytic heterostructure of nonstoichiometric bismuth oxyiodide and iodine intercalated Bi2O2CO3." Applied Catalysis B: Environmental 184 (May 2016): 20–27. http://dx.doi.org/10.1016/j.apcatb.2015.11.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wu, Gongjuan, Yan Zhao, Yawen Li, Hongmei Ma, and Jingzhe Zhao. "pH-dependent synthesis of iodine-deficient bismuth oxyiodide microstructures: Visible-light photocatalytic activity." Journal of Colloid and Interface Science 510 (January 2018): 228–36. http://dx.doi.org/10.1016/j.jcis.2017.09.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Imteyaz, Shahla, and Rafiuddin. "Electrochemical effect and permselectivity of monovalent ions in polystyrene-bismuth oxyiodide composite membrane." Groundwater for Sustainable Development 14 (August 2021): 100635. http://dx.doi.org/10.1016/j.gsd.2021.100635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cui, Baoyin, Haitao Cui, Zhenrong Li, Hongyu Dong, Xin Li, Liangfu Zhao, and Junwei Wang. "Novel Bi3O5I2 Hollow Microsphere and Its Enhanced Photocatalytic Activity." Catalysts 9, no. 9 (August 24, 2019): 709. http://dx.doi.org/10.3390/catal9090709.

Full text
Abstract:
A new type of I-deficient bismuth oxyiodide Bi3O5I2 with a hollow morphology was prepared by the solvothermal process. The structure, composition, morphology, optical property and photoelectric property of the as prepared photocatalyst were investigated through some characterization methods. Those characterization results showed that Bi3O5I2 displayed a larger specific surface area, promising band structure and lower recombination of photoinduced carriers than pure BiOI. Bi3O5I2 had a higher photocatalytic activity than BiOI on the decomposition of methyl orange (MO) under simulated solar light irradiation. The superoxide (·O2−) and hole (h+) were the dominating active species during the degradation of MO. Its stability and reusability performance showed its great promising application in the degradation of organic pollutant.
APA, Harvard, Vancouver, ISO, and other styles
39

Siao, Ciao-Wei, Hung-Lin Chen, Li-Wen Chen, Jia-Lin Chang, Tsung-Wen Yeh, and Chiing-Chang Chen. "Controlled hydrothermal synthesis of bismuth oxychloride/bismuth oxybromide/bismuth oxyiodide composites exhibiting visible-light photocatalytic degradation of 2-hydroxybenzoic acid and crystal violet." Journal of Colloid and Interface Science 526 (September 2018): 322–36. http://dx.doi.org/10.1016/j.jcis.2018.04.097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Malathi, A., Prabhakarn Arunachalam, V. S. Kirankumar, J. Madhavan, and Abdullah M. Al-Mayouf. "An efficient visible light driven bismuth ferrite incorporated bismuth oxyiodide (BiFeO3/BiOI) composite photocatalytic material for degradation of pollutants." Optical Materials 84 (October 2018): 227–35. http://dx.doi.org/10.1016/j.optmat.2018.06.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Huq, Tahmida N., Lana C. Lee, Lissa Eyre, Weiwei Li, Robert A. Jagt, Chaewon Kim, Sarah Fearn, et al. "Electronic Structure and Optoelectronic Properties of Bismuth Oxyiodide Robust against Percent‐Level Iodine‐, Oxygen‐, and Bismuth‐Related Surface Defects." Advanced Functional Materials 30, no. 13 (March 2020): 1909983. http://dx.doi.org/10.1002/adfm.201909983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Huang, Yongchao, Haibo Li, Wenjie Fan, Fengyi Zhao, Weitao Qiu, Hongbing Ji, and Yexiang Tong. "Defect Engineering of Bismuth Oxyiodide by IO3– Doping for Increasing Charge Transport in Photocatalysis." ACS Applied Materials & Interfaces 8, no. 41 (October 7, 2016): 27859–67. http://dx.doi.org/10.1021/acsami.6b10653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gan, Jiayong, Bharath Bangalore Rajeeva, Zilong Wu, Daniel Penley, and Yuebing Zheng. "Hydrogen-reduced bismuth oxyiodide nanoflake arrays with plasmonic enhancements for efficient photoelectrochemical water reduction." Electrochimica Acta 219 (November 2016): 20–27. http://dx.doi.org/10.1016/j.electacta.2016.09.148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Yan, Qishe, Yalei Zhao, Mengmeng Xu, and Yanyan Wang. "Enhanced Visible-Light Photocatalytic Performance of Various Bismuth Oxyiodide with 3D Hierarchical Microspheres Architecture." Journal of Nanoscience and Nanotechnology 16, no. 7 (July 1, 2016): 7731–37. http://dx.doi.org/10.1166/jnn.2016.12585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Abuelwafa, A. A., R. MD Matiur, Anissa A. Putri, and T. Soga. "Synthesis, structure, and optical properties of the nanocrystalline bismuth oxyiodide (BiOI) for optoelectronic application." Optical Materials 109 (November 2020): 110413. http://dx.doi.org/10.1016/j.optmat.2020.110413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yin, Bing, and Chaohong Liu. "Wet Chemically Synthesized Bismuth Oxyiodide (BiOI) Quantum Dots for Photocatalytic Degradation of Malachite Green." Journal of Nanoscience and Nanotechnology 18, no. 5 (May 1, 2018): 3571–76. http://dx.doi.org/10.1166/jnn.2018.14656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jamil, Tarek S., Eman S. Mansor, and M. Azab El-Liethy. "Photocatalytic inactivation of E. coli using nano-size bismuth oxyiodide photocatalysts under visible light." Journal of Environmental Chemical Engineering 3, no. 4 (December 2015): 2463–71. http://dx.doi.org/10.1016/j.jece.2015.09.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Pan, Meilan, Haijun Zhang, Guandao Gao, Lu Liu, and Wei Chen. "Facet-Dependent Catalytic Activity of Nanosheet-Assembled Bismuth Oxyiodide Microspheres in Degradation of Bisphenol A." Environmental Science & Technology 49, no. 10 (April 30, 2015): 6240–48. http://dx.doi.org/10.1021/acs.est.5b00626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Huang, Yongchao, Haibo Li, Muhammad-Sadeeq Balogun, Wenyue Liu, Yexiang Tong, Xihong Lu, and Hongbing Ji. "Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably Increased Visible-Light Absorption and Superior Photocatalytic Performance." ACS Applied Materials & Interfaces 6, no. 24 (December 5, 2014): 22920–27. http://dx.doi.org/10.1021/am507641k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Yao, Xin, Changchang Ma, Hai Huang, Zhi Zhu, Hongjun Dong, Chunxiang Li, Wenli Zhang, Yongsheng Yan, and Yang Liu. "Solvothermal-Assisted Synthesis of Biomass Carbon Quantum Dots/Bismuth Oxyiodide Microflower for Enhanced Photocatalytic Activity." Nano 13, no. 03 (March 2018): 1850031. http://dx.doi.org/10.1142/s1793292018500315.

Full text
Abstract:
In this paper, the biomass carbon quantum dots (CQDs) modified flower-like BiOI (CQDs/BiOI) composite photocatalyst was synthesized by a facile solvothermal method. Compared with the pristine BiOI, the biomass CQDs/BiOI exhibited outstanding photocatalytic activity for degradation of the typical methylene blue (MB) under visible light irradiation since the biomass CQDs could act as electron acceptors to effectively facilitate the separation efficiency of photon-generated carriers and prolong their lifetime. Furthermore, the mechanism detection experiment showed that the [Formula: see text] and H[Formula: see text] were major activity species, and the photocatalytic electron transfer mechanism was further investigated. This work provided a new insight into biomass CQDs effects and took an important step toward the development of improving Bi-based semiconductor photocatalyst activity.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography