To see the other types of publications on this topic, follow the link: Bit Patterned Media (BPM).

Journal articles on the topic 'Bit Patterned Media (BPM)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Bit Patterned Media (BPM).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kaewrawang, Arkom. "L10-CoPt Bit Patterned Media with Tilted Easy Axis for Ultrahigh Areal Density over 2.5 Tb/in2." Advanced Materials Research 931-932 (May 2014): 1255–59. http://dx.doi.org/10.4028/www.scientific.net/amr.931-932.1255.

Full text
Abstract:
Ultrahigh areal density is the key target of hard disk drive technology. Hence, writing field strength from head and switching field, Hsw, of media should be improved. In this work, we propose the one of alternative method to increase data density and reduce Hsw of the media by using tilted easy axis technology for bit patterned media (BPM) at areal density beyond 2.5 Tb/in2. Moreover, transition noise and superparamagnetic limit have been eliminated owing to characteristics of BPM. The effect of exchange coupled between adjacent bits, Adot, of tilted easy axis of BPM is analyzed by micromagnetic simulation software - the object oriented micromagnetic framework based on Landau-Lifshitz-Gilbert equation. The BPM with tilted easy axis perform clearly the reduction of Hsw below perpendicular media and available writing head field. The Adot of BPM has no effect on decreasing Hsw. Anisotropy and Zeeman energy density of BPM with tilted easy axis are higher and lower than perpendicular BPM, respectively. Thereby, BPM with tilted easy axis have high potentiality to improve Hsw of media at ultrahigh data density.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, X. G., Z. J. Liu, A. G. Kang, and X. Y. Xie. "Writing Field Analysis for Shingled Bit-Patterned Magnetic Recording." Journal of Nanomaterials 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/4254029.

Full text
Abstract:
A novel method utilizing response surface methodology (RSM) is proposed for effective analysis of the combined influence of writing head geometry and media properties on writing field performance. The method comprises two main modules: (1) a parametric writing head model based on finite element electromagnetic field analysis and (2) an effective writing field gradient model based on RSM. Using the method proposed, the writing performance of an asymmetrically shielded writing head for shingled magnetic recording on bit-patterned media (SMR-BPM) is analyzed. The results show that the shielding trailing gap and medium coercivity primarily impact the effective writing field (EWF) gradient and that the shielding side gap has a secondary impact. More importantly, the analysis shows a strong interaction effect between the influences of writing head geometry and medium coercivity on the EWF gradient, which indicates the need for inclusive design.
APA, Harvard, Vancouver, ISO, and other styles
3

Tipcharoen, Warunee, Arkom Kaewrawang, and Apirat Siritaratiwat. "Design and Micromagnetic Simulation of Fe/L10-FePt/Fe Trilayer for Exchange Coupled Composite Bit Patterned Media at Ultrahigh Areal Density." Advances in Materials Science and Engineering 2015 (2015): 1–5. http://dx.doi.org/10.1155/2015/504628.

Full text
Abstract:
Exchange coupled composite bit patterned media (ECC-BPM) are one candidate to solve the trilemma issues, overcome superparamagnetic limitations, and obtain ultrahigh areal density. In this work, the ECC continuous media and ECC-BPM of Fe/L10-FePt/Fe trilayer schemes are proposed and investigated based on the Landau-Lifshitz-Gilbert equation. The switching field,Hsw, of the hard phase in the proposed continuous ECC trilayer media structure is reduced below the maximum write head field at interlayer exchange coupling between hard and soft phases,Aex, higher than 20 pJ/m and its value is lower than that for continuousL10-FePt single layer media andL10-FePt/Fe bilayer. Furthermore, theHswof the proposed ECC-BPM is lower than the maximum write head field with exchange coupling coefficient between neighboring dots of 5 pJ/m andAexover 10 pJ/m. Therefore, the proposed ECC-BPM trilayer has the highest potential and is suitable for ultrahigh areal density magnetic recording technology at ultrahigh areal density. The results of this work may be gainful idea for nanopatterning in magnetic media nanotechnology.
APA, Harvard, Vancouver, ISO, and other styles
4

Huda, Miftakhul, Zulfakri bin Mohamad, Takuya Komori, You Yin, and Sumio Hosaka. "Fabrication of CoPt Nanodot Array with a Pitch of 33 nm Using Pattern-Transfer Technique of PS-PDMS Self-Assembly." Key Engineering Materials 596 (December 2013): 83–87. http://dx.doi.org/10.4028/www.scientific.net/kem.596.83.

Full text
Abstract:
The progress of information technology has increased the demand of the capacity of storage media. Bit patterned media (BPM) has been known as a promising method to achieve the magnetic-data-storage capability of more than 1 Tb/in.2. In this work, we demonstrated fabrication of magnetic nanodot array of CoPt with a pitch of 33 nm using a pattern-transfer method of block copolymer (BCP) self-assembly. Carbon hard mask (CHM) was adopted as a mask to pattern-transfer self-assembled nanodot array formed from poly (styrene)-b-poly (dimethyl siloxane) (PS-PDMS) with a molecular weight of 30,000-7,500 mol/g. According to our experiment results, CHM showed its high selectivity against CoPt in Ar ion milling. Therefore, this result boosted the potential of BCP self-assembly technique to fabricate magnetic nanodot array for the next generation of hard disk drive (HDD) due to the ease of large-area fabrication, and low cost.
APA, Harvard, Vancouver, ISO, and other styles
5

Kaewrawang, Arkom. "Effects of Magnetic Properties of L10-CoPt based Bit Patterned Media with Tilted-Easy Axis on Switching Field at Areal Density over 2 Tb/in2." Applied Mechanics and Materials 781 (August 2015): 207–10. http://dx.doi.org/10.4028/www.scientific.net/amm.781.207.

Full text
Abstract:
Decrease of a switching field, Hsw, of the magnetic media with high magnetocrystalline anisotropy constant, Ku, can be handled by tilted-easy axis. Not only tilting easy direction of crystal but also optimum magnetic properties can improve writability. The effects of Ku and saturation magnetization, Ms, of L10-CoPt material of BPM with 45° tilted-easy axis are investigated in this article. The object oriented micromagnetic framework package based on Landau - Lifshitz - Gilbert equation has been used to analyze the magnetic properties of media in this paper. The results indicate that the Hsw decreases with decreasing Ku and increasing Ms. To achieve the Hsw lower than the maximum write head field, the Ku and Ms values should not be over 1.30 MJ/m3 and should exceed 0.30 MA/m, respectively.
APA, Harvard, Vancouver, ISO, and other styles
6

Brombacher, C., M. Grobis, J. Lee, J. Fidler, T. Eriksson, T. Werner, O. Hellwig, and M. Albrecht. "L10FePtCu bit patterned media." Nanotechnology 23, no. 2 (December 14, 2011): 025301. http://dx.doi.org/10.1088/0957-4484/23/2/025301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Guo, Shanshan, Feng Xu, Baomin Wang, Ning Wang, Huali Yang, Pravarthana Dhanapal, Fei Xue, Junling Wang, and Run-Wei Li. "Bit Patterned Media: 2D Magnetic Mesocrystals for Bit Patterned Media (Adv. Mater. Interfaces 21/2018)." Advanced Materials Interfaces 5, no. 21 (November 2018): 1870102. http://dx.doi.org/10.1002/admi.201870102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krone, P., D. Makarov, T. Schrefl, and M. Albrecht. "Exchange coupled composite bit patterned media." Applied Physics Letters 97, no. 8 (August 23, 2010): 082501. http://dx.doi.org/10.1063/1.3481668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yawshing Tang, Kiseok Moon, and Hyung Jai Lee. "Write Synchronization in Bit-Patterned Media." IEEE Transactions on Magnetics 45, no. 2 (February 2009): 822–27. http://dx.doi.org/10.1109/tmag.2008.2010642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

XiaoMin Yang, Yuan Xu, Kim Lee, Shuaigang Xiao, D. Kuo, and D. Weller. "Advanced Lithography for Bit Patterned Media." IEEE Transactions on Magnetics 45, no. 2 (February 2009): 833–38. http://dx.doi.org/10.1109/tmag.2008.2010647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Richter, H. J., A. Y. Dobin, R. T. Lynch, D. Weller, R. M. Brockie, O. Heinonen, K. Z. Gao, et al. "Recording potential of bit-patterned media." Applied Physics Letters 88, no. 22 (May 29, 2006): 222512. http://dx.doi.org/10.1063/1.2209179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chen, Yunjie, Jun Ding, Jie Deng, Tianli Huang, Siang Huei Leong, Jianzhong Shi, Baoyu Zong, et al. "Switching Probability Distribution of Bit Islands in Bit Patterned Media." IEEE Transactions on Magnetics 46, no. 6 (June 2010): 1990–93. http://dx.doi.org/10.1109/tmag.2010.2043064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Jeong, Seongkwon, and Jaejin Lee. "Three Typical Bit Position Patterns of Bit-Patterned Media Recording." IEEE Magnetics Letters 9 (2018): 1–4. http://dx.doi.org/10.1109/lmag.2018.2863210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Moser, Andreas, Olav Hellwig, Dan Kercher, and Elisabeth Dobisz. "Off-track margin in bit patterned media." Applied Physics Letters 91, no. 16 (October 15, 2007): 162502. http://dx.doi.org/10.1063/1.2799174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Greaves, Simon, Yasushi Kanai, and Hiroaki Muraoka. "Shingled Magnetic Recording on Bit Patterned Media." IEEE Transactions on Magnetics 46, no. 6 (June 2010): 1460–63. http://dx.doi.org/10.1109/tmag.2010.2043221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Guo, Shanshan, Feng Xu, Baomin Wang, Ning Wang, Huali Yang, Pravarthana Dhanapal, Fei Xue, Junling Wang, and Run-Wei Li. "2D Magnetic Mesocrystals for Bit Patterned Media." Advanced Materials Interfaces 5, no. 21 (August 6, 2018): 1800997. http://dx.doi.org/10.1002/admi.201800997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Li, Hui, Hao Zheng, Yeoungchin Yoon, and Frank E. Talke. "Air Bearing Simulation for Bit Patterned Media." Tribology Letters 33, no. 3 (January 30, 2009): 199–204. http://dx.doi.org/10.1007/s11249-009-9409-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Nishiyama, N., K. Takenaka, N. Saidoh, M. Futamoto, Y. Saotome, and Akihisa Inoue. "Glassy alloy composites for bit-patterned-media." Journal of Alloys and Compounds 509 (June 2011): S145—S147. http://dx.doi.org/10.1016/j.jallcom.2010.12.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kato, Takeshi, Daiki Oshima, Edi Suharyadi, Satoshi Iwata, and Shigeru Tsunashima. "Recent Progress of Ion Irradiation Bit Patterned Media." IEEJ Transactions on Fundamentals and Materials 130, no. 7 (2010): 613–20. http://dx.doi.org/10.1541/ieejfms.130.613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Huang, Ping. "Research on Error Diffusion in Bit Patterned Media." Advanced Materials Research 677 (March 2013): 286–89. http://dx.doi.org/10.4028/www.scientific.net/amr.677.286.

Full text
Abstract:
The presence on any variation in the magnetization direction of an island has a detrimental effect on the ability to recover recorded data.To approve this,Ansys Finite Element Method software has been used to simulate the magnetic field intensity distribution in bit patterned media,from the result, It is seen the magnetization direction variations because of thermal fluctuation can cause errors,But this errors can not diffusion, It is isolated.
APA, Harvard, Vancouver, ISO, and other styles
21

Degawa, N., S. J. Greaves, H. Muraoka, and Y. Kanai. "Optimisation of bit patterned media for 1Tb/in2." Journal of Magnetism and Magnetic Materials 320, no. 22 (November 2008): 3092–95. http://dx.doi.org/10.1016/j.jmmm.2008.08.097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Pfau, B., C. M. Günther, T. Hauet, S. Eisebitt, and O. Hellwig. "Thermally induced magnetic switching in bit-patterned media." Journal of Applied Physics 122, no. 4 (July 28, 2017): 043907. http://dx.doi.org/10.1063/1.4992808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Iyengar, Aravind Raghava, Paul H. Siegel, and Jack Keil Wolf. "Write Channel Model for Bit-Patterned Media Recording." IEEE Transactions on Magnetics 47, no. 1 (January 2011): 35–45. http://dx.doi.org/10.1109/tmag.2010.2080667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Chang, Wu, and J. R. Cruz. "Intertrack Interference Mitigation on Staggered Bit-Patterned Media." IEEE Transactions on Magnetics 47, no. 10 (October 2011): 2551–54. http://dx.doi.org/10.1109/tmag.2011.2151839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Saga, Hideki, Kazuki Shirahata, Kaname Mitsuzuka, Takehito Shimatsu, Hajime Aoi, and Hiroaki Muraoka. "Experimental write margin analysis of bit patterned media." Journal of Applied Physics 109, no. 7 (April 2011): 07B721. http://dx.doi.org/10.1063/1.3554201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Matsuura, N., K. Miura, and H. Muraoka. "Resolution of Shielded MR Head for Bit Patterned Media." Journal of the Magnetics Society of Japan 37, no. 3-1 (2013): 49–55. http://dx.doi.org/10.3379/msjmag.1302r004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Jeong, Seongkwon, and Jaejin Lee. "Two Dimensional Intersymbol Interference Compensation for Bit Patterned Media." Journal of the Institute of Electronics and Information Engineers 52, no. 6 (June 25, 2015): 15–20. http://dx.doi.org/10.5573/ieie.2015.52.6.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Greaves, S. J., H. Muraoka, and Y. Kanai. "The potential of bit patterned media in shingled recording." Journal of Magnetism and Magnetic Materials 324, no. 3 (February 2012): 314–20. http://dx.doi.org/10.1016/j.jmmm.2010.12.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Koonkarnkhai, S., N. Chirdchoo, and P. Kovintavewat. "Iterative Decoding for High-Density Bit-Patterned Media Recording." Procedia Engineering 32 (2012): 323–28. http://dx.doi.org/10.1016/j.proeng.2012.01.1274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Li, Shaojing, Boris Livshitz, H. Neal Bertram, Akihiro Inomata, Eric E. Fullerton, and Vitaliy Lomakin. "Capped bit patterned media for high density magnetic recording." Journal of Applied Physics 105, no. 7 (April 2009): 07C121. http://dx.doi.org/10.1063/1.3074781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Shiiki, Kazuo, Munehito Furusawa, and Eijiro Atarashi. "Stability of transverse and longitudinal bit in patterned media." Journal of Magnetism and Magnetic Materials 226-230 (May 2001): 2048–50. http://dx.doi.org/10.1016/s0304-8853(00)00821-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Chang, Long, Rene Vande Veerdonk, Sakhrat Khizroev, and Dmitri Litvinov. "Scanning Magnetoresistance Microscopy Analysis of Bit Patterned Media Playback." IEEE Transactions on Magnetics 47, no. 10 (October 2011): 2548–50. http://dx.doi.org/10.1109/tmag.2011.2153836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Baoxi Xu, Jiaping Yang, Hongxing Yuan, Jun Zhang, Qide Zhang, and Tow Chong Chong. "Thermal Effects in Heat Assisted Bit Patterned Media Recording." IEEE Transactions on Magnetics 45, no. 5 (May 2009): 2292–95. http://dx.doi.org/10.1109/tmag.2009.2016466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Moritz, Jérôme, Christophe Arm, Giovanni Vinai, Eric Gautier, Stéphane Auffret, Alain Marty, Pascale Bayle-Guillemaud, and Bernard Dieny. "Two-Bit-Per-Dot Patterned Media for Magnetic Storage." IEEE Magnetics Letters 2 (2011): 4500104. http://dx.doi.org/10.1109/lmag.2010.2098852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Nguyen, Chi Dinh, and Jaejin Lee. "Twin Iterative Detection for Bit-Patterned Media Recording Systems." IEEE Transactions on Magnetics 53, no. 11 (November 2017): 1–4. http://dx.doi.org/10.1109/tmag.2017.2700290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Dong, Yan, Yao Wang, and R. H. Victora. "Micromagnetic specifications for recording self-assembled bit-patterned media." Journal of Applied Physics 111, no. 7 (April 2012): 07B904. http://dx.doi.org/10.1063/1.3675152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lin, Maria Yu, Kheong Sann Chan, Melissa Chua, Songhua Zhang, Cai Kui, and Moulay Rachid Elidrissi. "Modeling for write synchronization in bit patterned media recording." Journal of Applied Physics 111, no. 7 (April 2012): 07B918. http://dx.doi.org/10.1063/1.3679022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ranjbar, M., S. N. Piramanayagam, S. K. Wong, R. Sbiaa, and T. C. Chong. "Anomalous Hall effect measurements on capped bit-patterned media." Applied Physics Letters 99, no. 14 (October 3, 2011): 142503. http://dx.doi.org/10.1063/1.3645634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lin, Maria Yu, Moulay Rachid Elidrissi, Kheong Sann Chan, Kwaku Eason, Melissa Chua, Mohamed Asbahi, Joel K. W. Yang, Naganivetha Thiyagarajah, and Vivian Ng. "Channel Characterization and Performance Evaluation of Bit-Patterned Media." IEEE Transactions on Magnetics 49, no. 2 (February 2013): 723–29. http://dx.doi.org/10.1109/tmag.2012.2226708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Albrecht, Thomas R., Kanaiyalal Patel, Ricardo Ruiz, Manfred E. Schabes, Lei Wan, Dieter Weller, Tsai-Wei Wu, et al. "Bit Patterned Media at 1 Tdot/in2 and Beyond." IEEE Transactions on Magnetics 49, no. 2 (February 2013): 773–78. http://dx.doi.org/10.1109/tmag.2012.2227303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Li, Liping, and David B. Bogy. "Air bearing dynamic stability on bit patterned media disks." Microsystem Technologies 19, no. 9-10 (June 2, 2013): 1401–6. http://dx.doi.org/10.1007/s00542-013-1826-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jeong, Seongkwon, and Jaejin Lee. "Log-Likelihood Ratio Controller for Bit-Patterned Media Recording." Journal of Korean Institute of Communications and Information Sciences 44, no. 12 (December 31, 2019): 2191–98. http://dx.doi.org/10.7840/kics.2019.44.12.2191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Nabavi, S., B. V. K. Vijaya Kumar, and J. A. Bain. "Two-Dimensional Pulse Response and Media Noise Modeling for Bit-Patterned Media." IEEE Transactions on Magnetics 44, no. 11 (November 2008): 3789–92. http://dx.doi.org/10.1109/tmag.2008.2002387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

ARRAYANGKOOL, Autthasith, Chanon WARISARN, and Piya KOVINTAVEWAT. "A Recorded-Bit Patterning Scheme with Accumulated Weight Decision for Bit-Patterned Media Recording." IEICE Transactions on Electronics E96.C, no. 12 (2013): 1490–96. http://dx.doi.org/10.1587/transele.e96.c.1490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chen, Y. J., T. L. Huang, J. Z. Shi, J. Deng, J. Ding, W. M. Li, S. H. Leong, et al. "Individual bit island reversal and switching field distribution in perpendicular magnetic bit patterned media." Journal of Magnetism and Magnetic Materials 324, no. 3 (February 2012): 264–68. http://dx.doi.org/10.1016/j.jmmm.2010.11.094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Thiyagarajah, Naganivetha, Huigao Duan, Debra L. Y. Song, Mohamed Asbahi, Siang Huei Leong, Joel K. W. Yang, and Vivian Ng. "Effect of inter-bit material on the performance of directly deposited bit patterned media." Applied Physics Letters 101, no. 15 (October 8, 2012): 152403. http://dx.doi.org/10.1063/1.4758478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Li, W. M., Y. J. Chen, T. L. Huang, J. M. Xue, and J. Ding. "Calculation of individual bit island switching field distribution in perpendicular magnetic bit patterned media." Journal of Applied Physics 109, no. 7 (April 2011): 07B758. http://dx.doi.org/10.1063/1.3563069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

HONDA, Naoki, and Kazuhiro OUCHI. "Design of Patterned Magnetic Recording Media for Tera-Bit Recording." Journal of Society of Materials Engineering for Resources of Japan 19, no. 1/2 (2006): 18–24. http://dx.doi.org/10.5188/jsmerj.19.18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sbiaa, Rachid, and Seidikkurippu Piramanayagam. "Patterned Media Towards Nano-bit Magnetic Recording: Fabrication and Challenges." Recent Patents on Nanotechnology 1, no. 1 (February 1, 2007): 29–40. http://dx.doi.org/10.2174/187221007779814754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Arbeláez-Echeverri, O. D., J. D. Agudelo-Giraldo, and E. Restrepo-Parra. "Atomistic simulation of static magnetic properties of bit patterned media." Physica E: Low-dimensional Systems and Nanostructures 83 (September 2016): 486–90. http://dx.doi.org/10.1016/j.physe.2015.12.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography