Journal articles on the topic 'Blast furnace iron slag'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Blast furnace iron slag.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Togobitskaya, D. N., A. I. Belkova, D. A. Stepanenko, N. A. Tsyupa, and Yu M. Likhachev. "Development of the model complex of the expert system of control and management of the slag mode in modern mixed blast furnace conditions." Fundamental and applied problems of ferrous metallurgy, no. 34 (2020): 30–46. http://dx.doi.org/10.52150/2522-9117-2020-34-30-46.
Full textIsaenko, G. E., V. N. Titov, E. A. Andreeva, V. A. Kobelev, A. G. Nechkin, and D. A. Chernavin. "Estimation of hot metal desulfurization by intermediate and final blast-furnace slag when using pellets of different basicity in blast-furnace charge." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 79, no. 7 (2023): 559–65. http://dx.doi.org/10.32339/0135-5910-2023-7-559-565.
Full textLiu, Dongliang, Wei Zhang, Zhengliang Xue, Chunhui Song, and Lingkun Chen. "Simulation and Validation of Thickness of Slag Crust on the Copper Stave in the High-Temperature Area of Blast Furnace." Metals 14, no. 1 (2023): 19. http://dx.doi.org/10.3390/met14010019.
Full textLi, Zhuang-nian, Man-sheng Chu, Zheng-gen Liu, Gen-ji Ruan, and Bao-feng Li. "Furnace heat prediction and control model and its application to large blast furnace." High Temperature Materials and Processes 38, no. 2019 (2019): 884–91. http://dx.doi.org/10.1515/htmp-2019-0049.
Full textStepanenko, D., and D. Togobitska. "Regarding the interaction and capture of metal droplets by blast furnace slag." Metaloznavstvo ta obrobka metalìv 30, no. 2 (2024): 3–15. http://dx.doi.org/10.15407/mom2024.02.003.
Full textSpirin, N. A., A. A. Polinov`, A. V. Pavlov, O. P. Onorin, and G. N. Logachev. "Environmental and Technological Aspects of Converter Slag Utilization in Sintering and Blast-Furnace Production." KnE Materials Science 2, no. 2 (2017): 19. http://dx.doi.org/10.18502/kms.v2i2.941.
Full textLiao, Jinfa, Gele Qing, and Baojun Zhao. "Phase Equilibrium Studies of the CaO-MgO-Al2O3-SiO2 System for Iron Blast Furnace Slag: A Review." Metals 13, no. 4 (2023): 801. http://dx.doi.org/10.3390/met13040801.
Full textStepanenko, D. A., N. A. Tsyupa, A. I. Belkova, and A. S. Skachko. "Analytical and experimental study of the thermophysical properties of blast furnace slag melts in the conditions of blast furnaces of Ukraine." Fundamental and applied problems of ferrous metallurgy, no. 32 (2018): 137–50. http://dx.doi.org/10.52150/2522-9117-2018-32-137-150.
Full textHo, Hsing-Jung, Atsushi Iizuka, and Hironari Kubo. "Identification of suitable conventional cooling methods for direct aqueous carbonation of blast furnace slags and their mechanism." International Journal of Minerals, Metallurgy and Materials 32, no. 7 (2025): 1566–79. https://doi.org/10.1007/s12613-024-3054-x.
Full textXianzhen, Wu, and Xue Jin. "Comprehensive Utilization and Control Measures of Iron and Steel Slag." Frontiers of Metallurgical Industry 2, no. 2 (2024): 52–58. http://dx.doi.org/10.62022/fomi.issn3005-5466.2024.02.011.
Full textPavlov, A. V., N. A. Spirin, V. A. Beginyuk, V. V. Lavrov, and I. A. Gurin. "Analysis of slag mode of blast furnace melting using model decision support systems." Izvestiya. Ferrous Metallurgy 65, no. 6 (2022): 413–20. http://dx.doi.org/10.17073/0368-0797-2022-6-413-420.
Full textDvoskin, B. V., I. O. Manachin, V. H. Kislyakov, S. A. Shevchenko, V. P. Petrusha, and D. S. Zotov. "Peculiarities of changes in sulphur content in blast furnace cast iron supplied for BOF processing." Fundamental and applied problems of ferrous metallurgy 37 (2023): 175–83. http://dx.doi.org/10.52150/2522-9117-2023-37-175-183.
Full textBelkova, A. I., I. G. Muravyeva, and A. S. Skachko. "Methods for choosing a rational composition of the blast furnace charge." Fundamental and applied problems of ferrous metallurgy, no. 32 (2018): 47–63. http://dx.doi.org/10.52150/2522-9117-2018-32-47-63.
Full textPavlov, A. V., N. A. Spirin, I. A. Gurin, V. V. Lavrov, V. A. Beginyuk, and A. S. Istomin. "Information-modeling system for prediction of the composition and properties of final slag in a blast furnace in real time." Izvestiya. Ferrous Metallurgy 66, no. 2 (2023): 244–52. http://dx.doi.org/10.17073/0368-0797-2023-2-244-252.
Full textGeldenhuys, I. J., Q. G. Reynolds, and G. Akdogan. "Evaluation of Titania-Rich Slag Produced from Titaniferous Magnetite Under Fluxless Smelting Conditions." JOM 72, no. 10 (2020): 3462–71. http://dx.doi.org/10.1007/s11837-020-04304-3.
Full textSpirin, N. A., I. A. Gurin, V. V. Lavrov, and L. A. Zainullin. "Information modeling system for movement of charge layers and melt accumulation in a blast furnace well." Izvestiya. Ferrous Metallurgy 67, no. 2 (2024): 245–53. http://dx.doi.org/10.17073/0368-0797-2024-2-245-253.
Full textShen, Fengman, Xinguang Hu, Haiyan Zheng, et al. "Proper MgO/Al2O3 Ratio in Blast-Furnace Slag: Analysis of Proper MgO/Al2O3 Ratio Based on Observed Data." Metals 10, no. 6 (2020): 784. http://dx.doi.org/10.3390/met10060784.
Full textMahato, Madan Mohan, Mahesh Kumar Agrawal, and Sharda Nand Sinha. "Production of SG Grade Pig Iron in Mini Blast Furnace." Advanced Materials Research 634-638 (January 2013): 3174–80. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.3174.
Full textSpirin, N. A., O. P. Onorin, A. S. Istomin, and I. A. Gurin. "Study of transient processes in a blast furnace based on the heat exchange scheme analysis." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 76, no. 2 (2020): 132–38. http://dx.doi.org/10.32339/0135-5910-2020-2-132-138.
Full textWang, Zhen, Haiyan Zheng, Yan Zhang, and Liang Ge. "Optimization of High-Alumina Blast Furnace Slag Based on Exergy Analysis." Metals 14, no. 4 (2024): 465. http://dx.doi.org/10.3390/met14040465.
Full textBölükbaşı, Ö. S., and B. Tufan. "Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality." Science of Sintering 46, no. 3 (2014): 331–44. http://dx.doi.org/10.2298/sos1403331b.
Full textТарасов, Вячеслав Кирилович, Владислав Ростиславович Румянцев, Оксана Володимирівна Новокщонова та Інна Олександрівна Ткаліч. "РОЗРОБКА ЗАХОДІВ ПОКРАЩЕННЯ УМОВ ПРАЦІ ПРИ ВИРОБНИЦТВІ ЧАВУНУ". Bulletin of the Kyiv National University of Technologies and Design. Series: Economic sciences 121, № 2 (2018): 82–90. http://dx.doi.org/10.30857/2413-0117.2018.2.8.
Full textJie, Li, Liu Weixing, Zhang Yuzhu, et al. "Study on the Law of Concurrent Heating of Blast Furnace Slag by Taking Iron Tailings as Conditioning Agents." Journal of Computational and Theoretical Nanoscience 13, no. 10 (2016): 6468–74. http://dx.doi.org/10.1166/jctn.2016.5588.
Full textKuznetsov, M., and G. Kryachko. "INFLUENCE OF BLOWING PARAMETERS AND SLAG REGIME ON SILICON AND SULFUR CONTENT IN BLAST-FURNACE CAST IRON." Collection of scholarly papers of Dniprovsk State Technical University (Technical Sciences) 1, no. 38 (2021): 7–14. http://dx.doi.org/10.31319/2519-2884.38.2021.1.
Full textGuo, Yongchun, Fengman Shen, Haiyan Zheng, Shuo Wang, Xin Jiang, and Qiangjian Gao. "Desulfurization Ability of Blast Furnace Slag Containing High Al2O3 at 1773 K." Crystals 11, no. 8 (2021): 910. http://dx.doi.org/10.3390/cryst11080910.
Full textPanteleev, V. V., K. B. Pykhteeva, M. V. Polovets, K. V. Mironov, and S. A. Zagainov. "Analysis of hot metal desulfurization methods efficiency during titanomagnetite processing." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 76, no. 6 (2020): 543–49. http://dx.doi.org/10.32339/0135-5910-2020-6-543-549.
Full textMigas, P. "Analysis of the Rheological Behaviour of Selected Semi-Solid Slag Systems in Blast Furnace Flow Conditions." Archives of Metallurgy and Materials 60, no. 1 (2015): 85–93. http://dx.doi.org/10.1515/amm-2015-0014.
Full textDemarco, Marcel, Fernando Vernilli, and Sara Carvalho Zago. "Clinker-Free Cement Manufactured with Metallurgical Slags." Buildings 14, no. 6 (2024): 1739. http://dx.doi.org/10.3390/buildings14061739.
Full textB., Ramesh, and Hima Bindu P. "An Experimental Study on Stabilization of Clayey Soil by Using Granulated Blast Furnace Slag." International Journal of Trend in Scientific Research and Development 3, no. 5 (2019): 655–58. https://doi.org/10.5281/zenodo.3590925.
Full textB P, Aparna. "Experimental Study on Utilization of Blast Furnace Slag in Concrete." International Journal for Research in Applied Science and Engineering Technology 12, no. 12 (2024): 2254–61. https://doi.org/10.22214/ijraset.2024.66181.
Full textEhrenberg, Andreas. "Today's and future slags ‐ Potentials and Challenges." ce/papers 6, no. 6 (2023): 241–56. http://dx.doi.org/10.1002/cepa.2843.
Full textMatějka, Vlastimil, Priyadarshini Jayashree, Mara Leonardi, Jozef Vlček, Tomáš Sabovčík, and Giovanni Straffelini. "Utilization of Metallurgical Slags in Cu-free Friction Material Formulations." Lubricants 10, no. 9 (2022): 219. http://dx.doi.org/10.3390/lubricants10090219.
Full textChang, Ca Min, Yon Sen Lin, Chien Nan Pan, and Wen Tung Cheng. "Numerical Analysis on the Refractory Wear of the Blast Furnace Main Trough." Advances in Science and Technology 92 (October 2014): 294–300. http://dx.doi.org/10.4028/www.scientific.net/ast.92.294.
Full textMancini, A., B. Lothenbach, G. Geng, et al. "Iron speciation in blast furnace slag cements." Cement and Concrete Research 140 (February 2021): 106287. http://dx.doi.org/10.1016/j.cemconres.2020.106287.
Full textLiu, Weiqiang, Lei Shao, and Henrik Saxén. "Experimental Model Study of Liquid–Liquid and Liquid–Gas Interfaces during Blast Furnace Hearth Drainage." Metals 10, no. 4 (2020): 496. http://dx.doi.org/10.3390/met10040496.
Full textKeskin, İnan, İbrahim Şentürk, Halil İbrahim Yumrutaş, Ermedin Totiç, and Ali Ateş. "An environmentally friendly approach to soil improvement with by-product of the manufacture of iron." BioResources 18, no. 1 (2023): 2045–63. http://dx.doi.org/10.15376/biores.18.1.2045-2063.
Full textQu, Wei, Huiping Ren, Zili Jin, and Fang Dong. "Transfer Mechanism of Lanthanum from Rare Earth Containing Iron Ore to Pig Iron during the Blast Furnace Process." Advances in Materials Science and Engineering 2019 (May 26, 2019): 1–9. http://dx.doi.org/10.1155/2019/5841797.
Full textGao, Qiang Jian, Guo Wei, Lin Mu, Gang Du, and Feng Man Shen. "Experimental Study of Softening and Melting Properties on Indonesia Vanadium-Titanium Sinters." Advanced Materials Research 284-286 (July 2011): 1039–43. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.1039.
Full textKarakuts, I. M. "Improving the reliability of the electric gun drive for closing the taphole of a blast furnace." Reporter of the Priazovskyi State Technical University. Section: Technical sciences, no. 41 (December 24, 2020): 109–13. https://doi.org/10.31498/2225-6733.41.2020.226189.
Full textVusikhis, A. S., M. A. Mikheenkov, L. I. Leont’ev, and S. N. Agafonov. "Effect of boron oxide additives on viscosity and melting point of the CaO – SiO2 – Al2O3 – MgO system." Izvestiya. Ferrous Metallurgy 68, no. 3 (2025): 287–96. https://doi.org/10.17073/0368-0797-2025-3-287-296.
Full textUmair, Muhammad, and Muhammad Jahangir Khan. "Fabrication of the Hybrid Bricks Utilizing Multiple Waste Pozzolanic Stabilizers as Fractional Substitution of Fine Aggregate." International Journal of Membrane Science and Technology 10, no. 3 (2023): 3268–81. http://dx.doi.org/10.15379/ijmst.v10i3.3278.
Full textMaksym, Kuznetsov, Kryachko Gennady, Polyetaev Vladimir, and Valuyeva Natalia. "INFLUENCE OF THE PROPERTIES OF BLAST FURNACE SLAG ON CAST IRON HEATING AT PULVERIZED COAL INJECTION." Eastern-European Journal of Enterprise Technologies 1, no. 1 (91) (2018): 63–70. https://doi.org/10.15587/1729-4061.2018.122970.
Full textYao, Kuo, Yong Deng, Ran Liu, Lu Liu, Yanjia Gao, and Yanting Liu. "Factors affecting the hearth activity of blast furnace and corresponding measures." Metallurgical Research & Technology 122, no. 2 (2025): 205. https://doi.org/10.1051/metal/2025005.
Full textKasina, Monika, and Marek Michalik. "Iron Metallurgy Slags as a Potential Source of Critical Elements - Nb, Ta and REE." Mineralogia 47, no. 1-4 (2016): 15–28. http://dx.doi.org/10.1515/mipo-2017-0004.
Full textBehim, Mourd, Miloud Beddar, and Pierre Clastres. "Reactivity of Granulated Blast Furnace Slag." Slovak Journal of Civil Engineering 21, no. 2 (2013): 7–14. http://dx.doi.org/10.2478/sjce-2013-0007.
Full textEndawati, Jul, Rochaeti, and R. Utami. "Optimization of Concrete Porous Mix Using Slag as Substitute Material for Cement and Aggregates." Applied Mechanics and Materials 865 (June 2017): 282–88. http://dx.doi.org/10.4028/www.scientific.net/amm.865.282.
Full textKobelev, V. A., O. P. Onorin, and N. A. Spirin. "Issues of technology and conditions of smelting of low-silicon cast iron in blast furnaces." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 79, no. 1 (2023): 10–21. http://dx.doi.org/10.32339/0135-5910-2023-1-10-21.
Full textDu, Peipei, Yuzhu Zhang, Yue Long, and Lei Xing. "Effect of the Acidity Coefficient on the Properties of Molten Modified Blast Furnace Slag and Those of the Produced Slag Fibers." Materials 15, no. 9 (2022): 3113. http://dx.doi.org/10.3390/ma15093113.
Full textDu, Peipei, Yuzhu Zhang, Yue Long, and Lei Xing. "Effect of the Acidity Coefficient on the Properties of Molten Modified Blast Furnace Slag and Those of the Produced Slag Fibers." Materials 15, no. 9 (2022): 3113. http://dx.doi.org/10.3390/ma15093113.
Full textWang, Jei-Pil, and Urtnasan Erdenebold. "A Study on Reduction of Copper Smelting Slag by Carbon for Recycling into Metal Values and Cement Raw Material." Sustainability 12, no. 4 (2020): 1421. http://dx.doi.org/10.3390/su12041421.
Full text