Academic literature on the topic 'Bloch's theorem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bloch's theorem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bloch's theorem"
Poletskii, E. A. "On Bloch's theorem." Russian Mathematical Surveys 41, no. 2 (April 30, 1986): 215–16. http://dx.doi.org/10.1070/rm1986v041n02abeh003287.
Full textMATTIS, D. C., and T. SJOSTROM. "BLOCH'S THEOREM IN NANOARCHITECTURES." Modern Physics Letters B 20, no. 09 (April 10, 2006): 501–13. http://dx.doi.org/10.1142/s0217984906011074.
Full textGuillot, Dominique, and Thomas Ransford. "Bloch's Theorem for Algebroid Multifunctions II." Mathematical Proceedings of the Royal Irish Academy 105, no. 2 (January 1, 2005): 103–9. http://dx.doi.org/10.3318/pria.2005.105.2.103.
Full textKaijia, Cheng. "Comment on Bloch's theorem on theories of superconductivity." Chinese Physics Letters 5, no. 6 (June 1988): 285–88. http://dx.doi.org/10.1088/0256-307x/5/6/013.
Full textKOBAYASHI, RYOICHI. "HOLOMORPHIC CURVES INTO ALGEBRAIC SUBVARIETIES OF AN ABELIAN VARIETY." International Journal of Mathematics 02, no. 06 (December 1991): 711–24. http://dx.doi.org/10.1142/s0129167x91000399.
Full textFan, Y., and B. Goodman. "Thermal averages for the harmonic oscillator: an extension of Bloch's 'second' theorem." Journal of Physics A: Mathematical and General 20, no. 1 (January 11, 1987): 143–51. http://dx.doi.org/10.1088/0305-4470/20/1/023.
Full textMCCOLLUM, GIN, and PATRICK D. ROBERTS. "DYNAMICS OF EVERYDAY LIFE: RIGOROUS MODULAR MODELING IN NEUROBIOLOGY BASED ON BLOCH'S DYNAMICAL THEOREM." Journal of Integrative Neuroscience 03, no. 04 (December 2004): 397–413. http://dx.doi.org/10.1142/s0219635204000622.
Full textde Jeu, Rob, and James D. Lewis. "Beilinson's Hodge Conjecture for Smooth Varieties." Journal of K-Theory 11, no. 2 (March 6, 2013): 243–82. http://dx.doi.org/10.1017/is013001030jkt212.
Full textChen, Shaolin, Saminathan Ponnusamy, and Xiantao Wang. "WEIGHTED LIPSCHITZ CONTINUITY, SCHWARZ–PICK'S LEMMA AND LANDAU–BLOCH'S THEOREM FOR HYPERBOLIC-HARMONIC MAPPINGS IN ℂN." Mathematical Modelling and Analysis 18, no. 1 (February 1, 2013): 66–79. http://dx.doi.org/10.3846/13926292.2013.756834.
Full textHoddeson, Lillian. "John Bardeen and the BCS Theory of Superconductivity." MRS Bulletin 24, no. 1 (January 1999): 50–55. http://dx.doi.org/10.1557/s0883769400051745.
Full textDissertations / Theses on the topic "Bloch's theorem"
De, Stefano Cosimo Antonio. "Wave propagation in bi-dimensional periodic tensegrity materials and structures." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textSaleur, Benoît. "Trois problèmes géométriques d'hyperbolicité complexe et presque complexe." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112256/document.
Full textThis thesis is dedicated to the study of three problems of complex and almost complex hyperbolicity. Its first part is dedicated to the research of a quantitative consequence to Kobayashi hyperbolicity, which is a qualitative property. The result we obtain has the form of an isoperimetric inequality that suggests Ahlfors' inequality, the central result of the theory of covering surfaces. Its proof uses only riemannian tools.The second part of the thesis is dedicated to the proof of an almost complex version of Borel's theorem, which says that an entire curve in the compex preojective plane missing four lines in general position is degenerate. In an almost compex context, we can obtain a similar result for entire J-curves just by replacing projective lines by J-lines. The proof of this result uses central projections and Ahlfors' theory of covering surfaces.The last part is dedicated to the proof of an almost complex version of Bloch's theorem, which says that given a sequence of holomorphic discs in the projective plane, either it is normal, either it converges in some sens to a reunion of three lines. Our result will show in particular that the complementary set of four J-lines in general position is hyperbolic modulo three J-lines
Bogdanic, Dusko. "Graded blocks of group algebras." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:faeaaeab-1fe6-46a9-8cbb-f3f633131a73.
Full textGramain, Jean-Baptiste. "Generalized Block Theory." Phd thesis, Université Claude Bernard - Lyon I, 2005. http://tel.archives-ouvertes.fr/tel-00010451.
Full textMontúfar, López Hernán Roberto. "Teoria de Conley para campos Gutierrez-Sotomayor." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307543.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-16T08:12:09Z (GMT). No. of bitstreams: 1 MontufarLopez_HernanRoberto_D.pdf: 8015438 bytes, checksum: 1175f8d0f78fe476b09178b6e50f10ec (MD5) Previous issue date: 2010
Resumo: Em [6] são apresentadas condições necessárias e suficientes para a estabilidade estrutural e o teorema de densidade para campos de vetores em 2-variedades com singularidades simples dos seguintes tipos: cone, guarda-chuva de Whitney, ponto duplo e ponto triplo. Nesta tese, estudamos os fluxos induzidos por estes campos de vetores, que denominamos fluxos Gutierrez-Sotomayor, do ponto de vista topológico utilizando a teoria de Conley. Apresentamos uma fórmula dinâmico-topológica que relaciona o índice de Conley de uma variedade com singularidades simples M que possui uma estratificação que a decompõe numa união disjunta da sua parte regular e da sua parte singular. Usando essa estratificação mostramos que se a singularidade está na parte singular S de M o seu índice pode ser calculado tanto com respeito a M como com respeito a S. Definimos uma função de Lyapunov, neste contexto, e mostramos sua existência para fluxos sem órbitas periódicas e sem ciclos singulares. Em seguida, por uma análise da seqüência de homologia longa exata de um par índice determinamos propriedades que um grafo de Lyapunov deve satisfazer para estar associado a um fluxo. Também abordamos a questão da realização de grafos de Lyapunov abstratos. Para isto, primeiramente apresentamos a igualdade de Poincaré-Hopf, para o caso bidimensional, que caracteriza a relação entre o primeiro número de Betti das 1-variedades ramificadas que são fronteiras de um bloco isolante com seu número de componentes de fronteira e o índice numérico de Conley. Em seguida, mostramos que dados números inteiros positivos que satisfaçam a condição de Poincaré-Hopf sempre é possível construir um bloco isolante que satisfaz estes dados dinâmicos e homológicos
Abstract: In [6] a characterization and genericity theorem for C1-structurally stable vector fields tangent to a 2-dimensional compact subset M of Rk are established. Also in [6], new types of structurally stable singularities and periodic orbits are presented. In this thesis we study the continuous flows associated to these vector fields, which we refer to as the Gutierrez-Sotomayor flows on manifolds M with simple singularities using Conley Index Theory. We consider a stratification of M which decomposes it into a union of its regular and singular strata. We prove certain Euler type formulas which relate topology of M and dynamics on the singular strata. We show the existence of a Lyapunov function for Gutierrez-Sotomayor flows without periodic orbits and singular cycles in this context. Using long exact sequence analysis of index pairs we determine necessary and sufficient conditions for a Gutierrez-Sotomayor flow to be defined on an isolating block. We organize this combinatorially with the aid of Lyapunov graphs and using a Poincar'e-Hopf equality we give necessary conditions for a Lyapunov graph to be associated to a Gutierrez-Sotomayor flow and we also prove these conditions are sufficient
Doutorado
Geometria e Topologia
Doutor em Matemática
Salminen, Adam D. "On the sources of simple modules in nilpotent blocks." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1124221435.
Full textTitle from first page of PDF file. Document formatted into pages; contains viii, 87 p. Includes bibliographical references (p. 85-87). Available online via OhioLINK's ETD Center
Nova, Araujo Miguel Antonio da. "2D Bloch electrons in magnetic fields." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387617.
Full textKendall, Toby. "Theoretical models of trade blocs and integrated markets." Thesis, University of Warwick, 2000. http://wrap.warwick.ac.uk/4014/.
Full textAhsani, Sepide. "Wawe propagation in periodic tensegrity structural systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016.
Find full textTatsumi, Kazuyoshi, Shunsuke Muto, and Ján Rusz. "New algorithm for efficient Bloch-waves calculations of orientation-sensitive ELNES." Elsevier, 2013. http://hdl.handle.net/2237/20831.
Full textBooks on the topic "Bloch's theorem"
Wunsch und Wirklichkeit: Blochs Philosophie des Noch-Nicht-Bewussten und Freuds Theorie des Unbewussten. Frankfurt am Main: Suhrkamp, 1986.
Find full textIkeda, Takeshi. Coset constructions of conformal blocks. Sendai, Japan: Tohoku University, 1996.
Find full textIkeda, Takeshi. Coset constructions of conformal blocks. Sendai, Japan: Tohoku University, 1996.
Find full textBiel, Timothy L., and Timothy L. Biel. Atoms: Building blocks of matter. San Diego, CA: Lucent Books, 1990.
Find full textZimmer, Jörg. Die Kritik der Erinnerung: [Metaphysik, Ontologie und geschichtliche Erkenntnis in der Philosophie Ernst Blochs]. Köln: Dinter, 1993.
Find full textBlocks of finite groups: The hyperfocal subalgebra of a block = [You xian qun de kuai : kuai de chao ju jiao zi dai shu]. Berlin: Springer, 2002.
Find full textPuig, Luis. Blocks of finite groups: The hyperfocal subalgebra of a block. New York: Springer, 2002.
Find full textNavarro, G. Characters and blocks of finite groups. Cambridge, UK: Cambridge University Press, 1998.
Find full textBook chapters on the topic "Bloch's theorem"
Fujita, Shigeji, and Kei Ito. "Bloch Theorem." In Quantum Theory of Conducting Matter, 85–95. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-74103-1_7.
Full textBrown, Ken A., and Ken R. Goodearl. "Müller’s Theorem and Blocks." In Lectures on Algebraic Quantum Groups, 313–21. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8205-7_35.
Full textMcKnight, Heather. "Bloch’s Theories Concerning Religion." In Encyclopedia of Psychology and Religion, 240–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-24348-7_200130.
Full textMcManus, Susan. "Bloch’s Utopian Imagination: Fictive Theories." In Fictive Theories, 147–65. New York: Palgrave Macmillan US, 2005. http://dx.doi.org/10.1057/9781403976802_7.
Full textMcKnight, Heather. "Ernst Bloch’s Theories Concerning Religion." In Encyclopedia of Psychology and Religion, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-642-27771-9_200130-1.
Full textSambale, Benjamin. "Essential Subgroups and Alperin’s Fusion Theorem." In Blocks of Finite Groups and Their Invariants, 63–70. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12006-5_6.
Full textAlase, Abhijeet. "Generalization of Bloch’s Theorem to Systems with Boundary." In Springer Theses, 13–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31960-1_2.
Full textSchneider, Peter. "Blocks." In Modular Representation Theory of Finite Groups, 147–73. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4832-6_5.
Full textAlase, Abhijeet. "Mathematical Foundations to the Generalized Bloch Theorem." In Springer Theses, 159–90. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31960-1_5.
Full textHehner, Eric C. R. "Specified Blocks." In Verified Software: Theories, Tools, Experiments, 384–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-69149-5_41.
Full textConference papers on the topic "Bloch's theorem"
Collet, Manuel, Morvan Ouisse, Mohammed Ichchou, and Roger Ohayon. "Semi-Active Optimization of 2D Wave’s Dispersion Into Shunted Piezocomposite Systems for Controlling Acoustic Interaction." In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5018.
Full textLULEK, B., and T. LULEK. "BETHE ANSATZ, BLOCH THEOREM, AND RIGGED CONFIGURATIONS." In Proceedings of the Sixth's International School of Theoretical Physics. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811479_0033.
Full textHussein, Mahmoud I., and Michael J. Frazier. "Metadamping in Dissipative Metamaterials." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66210.
Full textTerushkin, Maria, and Offer Shai. "Applying Rigidity Theory Methods for Topological Decomposition and Synthesis of Gear Train Systems." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70904.
Full textKovács, N. "The building blocks of risk theory and methodology." In CMEM 2015, edited by K. Koppány and D. R. Szabó. Southampton, UK: WIT Press, 2015. http://dx.doi.org/10.2495/cmem150171.
Full textTan, Xing, and Jimmy Xiangji Huang. "Levenshtein in Blocks World." In ICTIR '18: The 2018 ACM SIGIR International Conference on the Theory of Information Retrieval. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3234944.3234976.
Full textBeig, Leila, and Atefeh Ghavamifar. "Organizational Memory Building Blocks of Virtual Organizations." In Communication Technologies: from Theory to Applications (ICTTA). IEEE, 2008. http://dx.doi.org/10.1109/ictta.2008.4530308.
Full textWeber, Axel. "Bloch–Wilson Hamiltonian and a Generalization of the Gell-Mann–Low Theorem." In PARTICLES AND FIELDS: Seventh Mexican Workshop. American Institute of Physics, 2000. http://dx.doi.org/10.1063/1.1315054.
Full textRatzer, E. A. "Sparse data blocks and multi-user channels." In IEEE International Symposium on Information Theory, 2003. Proceedings. IEEE, 2003. http://dx.doi.org/10.1109/isit.2003.1228329.
Full text"CUSTOMIZABLE VISUALIZATIONS WITH FORMULA-LINKED BUILDING BLOCKS." In International Conference on Information Visualization Theory and Applications. SciTePress - Science and and Technology Publications, 2012. http://dx.doi.org/10.5220/0003863207680771.
Full text