Academic literature on the topic 'Bluetooth low energy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bluetooth low energy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bluetooth low energy"
Yordanov, Yordan, and Aydan Haka. "Bluetooth Low Energy Technology Simulators." Journal of CIEES 2, no. 1 (July 22, 2022): 7–11. http://dx.doi.org/10.48149/jciees.2022.2.1.1.
Full textHansen, Christopher J. "Internetworking with Bluetooth Low Energy." GetMobile: Mobile Computing and Communications 19, no. 2 (August 25, 2015): 34–38. http://dx.doi.org/10.1145/2817761.2817774.
Full textTyler, Neil. "Bluetooth Low Energy v5.2 IP." New Electronics 53, no. 4 (February 25, 2020): 6. http://dx.doi.org/10.12968/s0047-9624(22)61126-x.
Full textOliveira, P., and P. J. Matos. "BLEGen — A Code Generator for Bluetooth Low Energy Services." Lecture Notes on Software Engineering 4, no. 1 (2016): 7–11. http://dx.doi.org/10.7763/lnse.2016.v4.215.
Full textAntonioli, Daniele, Nils Ole Tippenhauer, and Kasper Rasmussen. "Key Negotiation Downgrade Attacks on Bluetooth and Bluetooth Low Energy." ACM Transactions on Privacy and Security 23, no. 3 (July 8, 2020): 1–28. http://dx.doi.org/10.1145/3394497.
Full textLiu, Chendong, Yilin Zhang, and Huanyu Zhou. "A Comprehensive Study of Bluetooth Low Energy." Journal of Physics: Conference Series 2093, no. 1 (November 1, 2021): 012021. http://dx.doi.org/10.1088/1742-6596/2093/1/012021.
Full textFafoutis, Xenofon, Evgeny Tsimbalo, and Robert Piechocki. "Timing Channels in Bluetooth Low Energy." IEEE Communications Letters 20, no. 8 (August 2016): 1587–90. http://dx.doi.org/10.1109/lcomm.2016.2574311.
Full textSun, Dazhi, and Yangguang Tian. "Address Privacy of Bluetooth Low Energy." Mathematics 10, no. 22 (November 19, 2022): 4346. http://dx.doi.org/10.3390/math10224346.
Full textKindt, Philipp H., Daniel Yunge, Robert Diemer, and Samarjit Chakraborty. "Energy Modeling for the Bluetooth Low Energy Protocol." ACM Transactions on Embedded Computing Systems 19, no. 2 (March 17, 2020): 1–32. http://dx.doi.org/10.1145/3379339.
Full textRaj, Uttpal. "Bluetooth Low Energy: A Comprehensive Wireless Technology." International Journal of Advance Research and Innovation 9, no. 3 (2021): 64–69. http://dx.doi.org/10.51976/ijari.932110.
Full textDissertations / Theses on the topic "Bluetooth low energy"
Lindberg, Johan. "Korsplattformskommunikation med Bluetooth Low Energy." Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-43317.
Full textProjektet undersökte dagens marknad gällande trådlösa nät samt kommunikation mellan verktyg som används för diagnostik/underhåll och ett inbyggt system. Utifrån underlaget som erhölls genom intervjuer har ett demosystem skapats som bygger på Bluetooth Low Energy (BLE) kommunikation mellan ett inbyggt system och en Android-enhet. Denna rapport avser redogöra för de verktyg och metoder som använts för att konstruera ett demosystem samt resultatet av en analys av BLE-kommunikationen. Bluetooth Low Energy är ett spännande protokoll med stora tillämpningsmöjligheter inom industrin. Detta projekt har undersökt möjligheterna att kommunicera mellan en Smartphone och en Raspberry Pi och utifrån resultaten som uppkommit kan slutsatsen dras att BLE är ett protokoll som kan ha många och fördelaktiga tillämpningar inom Industriell IT.
Darroudi, Seyed Mahdi. "Contributions to bluetooth low energy mesh networks." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669722.
Full textBluetooth Low Energy (BLE) ha esdevingut una tecnologia popular per a Internet of Things (loT). Ara bé, va ser originalment dissenyada per suportar només la topologia en estrella. Aquesta tesi doctoral investiga i avalua diferents alternatives de xarxa mesh BLE, incloent alternatives existents (com l'estandard Bluetooth Mesh), i la nostra propia solució basada en IPv6, 6BLEMesh. Aquesta tesi comprén 6 contribucions·principals: 1.- Una revisió exhaustiva de l'estat de l'art i una taxonomia de les xarxes mesh BLE. 2.- Un model de consum d'energia per Bluetooth Mesh. El model permet predir parametres de rendiment útils, tals com consum de corrent, temps de vida del dispositiu i eficiéncia energética, considerant !'impacte deis principals parametres de Bluetooth Mesh (PollTimeout i ReceiveWindow) i a nivell d'aplicació. 3.- Un nou estandard (en progrés) anomenat 6BLEMesh. Després de definir les característiques de 6BLEMesh, aquesta solució ha estat avaluada en termes de connectivitat, laténcia, RTT i consum d'energia. 4.- Per a l'avaluació de connectivitat de 6BLEMesh, hem desenvolupat un model analític que proporciona dos resultats principals: i) probabilitat de no arllament d'un node i ii) k-connectivitat de la xarxa considerada. Hem validat el model mitjani;:ant simulació. .- Una imP.lementació, i una avaluació experimental, de 6BLEMesh. S'ha construrt un testbed de tres nodes, que comprén 5tots els tipus de node principals (6LN, 6LR i 6LBR). S'han usat tres plataformes hardware diferents. S'han avaluat diversos parametres de rendiment en el testbed, relacionats amb laténcia i consum d'energia. A continuació, s'ha caracteritzat els patrons de consum de corren! d'un ciclde de vida complet per als diferents tipus de nodes en el testbed. També s'han avaluat les prestacions d'energia d'un 6LN en tres plataformes diferents. S'ha presenta! un model de consum de corren! d'un 6LN per a diferents valors de connlnterval. Per aquest fi, s'ha caracteritzat emplricament cada estat de consum de corrent en termes de la seva durada i consum de corrent. 6.- Una comparativa entre Bluetooth Mesh i 6BLEMesh, en termes de pila de protocols, overhead d'encapsulament de protocol, laténcia extrem a extrem, consum d'energia, nombre de missatges transmesos, fiabilitat extrem a extrem, robustesa davant de topologies variables, i connexió a Internet. Bluetooth Mesh i 6BLEMesh són solucions de BLE mesh networking fonamentalment diferents. Les seves prestacions depenen de la seva configuració de parametres. Ara bé, es poden extreure les següents conclusions. Bluetooth Mesh mostra un overhead d'encapsulament de protocol lleugerament superior al de 6BLEmesh. Tots dos, Bluetooth Mesh i 6BLEMesh, ofereixen flexibilitat per configurar la laténcia per cada salt. Per un target de laténcia doni¡it, 6BLEMesh ofereix un consum d'energia inferior. En termes de nombre de missatges transmesos, les dues solucions ofereixen prestacions relativament similars per a xarxes petites. Ara bé, 6BLEMesh escala millor amb la mida i la densitat de la xarxa. 6BLEMesh s'aproxima a una probabilitat d'entrega de paquets ideal en preséncia d'errors de bit (amb un increment en la laténcia), mentre que Bluetooth Mesh requereix diversitat de caml per assolir unes prestacions similars. Bluetooth Mesh no pateix els gaps de connectivitat que experimenta 6BLLEMesh a causa de canvis en la topología. Finalment, 6BLEMesh suporta de forma natural la connectivitat amb Internet basada en IP, mentre que Bluetooth Mesh requereix un gateway de traducció de protocols.
Johansson, Mathias, and Mikael Karlsson. "Utvärdering av inomhuslokalisering med Bluetooth Low Energy." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Data- och elektroteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-26788.
Full textTrådlös kommunikation blir allt mer vanlig i vår vardag, en relativt ny teknik inom detta område är Bluetooth Low Energy som utvecklats med avseende på energieffektivitet och kompabilitet. Parallellt med den trådlösa teknikens spridning letar forskare, såväl som företag, efter nya användningsområden. En av dessa är lokalisering, vilket innebär att med fasta enheter avgöra rörliga enheters position, ett exempel på detta är GPS. Detta arbete handlar om att utvärdera inomhuslokalisering med Bluetooth Low Energy och gjordes på uppdrag av Combitech AB i Jönköping. Syftet var att undersöka med vilken noggrannhet och precision en rörlig enhets position kunde avgöras. Rapporten kommer att besvara följande frågeställningar: Med vilken noggrannhet och precision kan man med Bluetooth Low Energy avgöra en enhets position inom ett testområde med varierande storlek? Påverkas noggrannhet och precision av omgivningen?Författarna valde en induktiv metod och ämnade därför besvara frågeställningarna med hjälp av experimentella studier. Ett testsystem bestående av hård- samt mjukvara utvecklades varpå tester utfördes i flera omgångar, där storlek på område och omgivning varierades. Genom utvärdering av testdata i förhållande till teoretiska studier och tidigare forskning kunde trovärdiga resultat nås. Noggrannheten tycks minska då avståndet mellan enheter ökas, djupare analys pekar på en mindre förlust under 500 cm. Det observeras dock inget samband mellan noggrannhet och omgivning. Då tre fasta enheter placeras med ett inbördes avstånd på 400 cm kan positionen avgöras med 65 cm noggrannhet. Precisionen påverkas under testerna inte av avstånd, signalstyrkevärdena varierar helt oberoende av detta. Vid skifte av omgivning tydliggörs dock en markant skillnad i resultat. I en idrottshall beräknades standardavvikelsen till 0,38 RSSI medan den i en kontorsmiljö var 0,99 RSSI.Författarna drar utifrån det uppnådda resultat slutsatsen att Bluetooth Low Energy har viss potential att användas för inomhuslokalisering. Exempel på ett möjligt scenario där tekniken anses väl lämpad är då de fasta enheterna måste drivas av knappcellsbatterier under en lång tidsperiod, att systemet skall stödja en mängd olika enheter samt att en grov uppskattning av position är tillräcklig.
Wang, Ping. "Bluetooth Low Energy - privacy enhancement for advertisement." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for telematikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26714.
Full textEnglund, Albin, and Magnus Suther. "Bluetooth Low Energy som trådlös standard för hemautomation." Thesis, Linköpings universitet, Programvara och system, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-94581.
Full textThe public has a great demand of products in the field of home automation. The latest Bluetooth standard, Bluetooth Low Energy creates new opportunities for interesting products that simplifies everyday life. Solutions such as infraredand Wi-Fi do not qualify for an energy efficient and practical way to o↵er such products, which Bluetooth Low Energy does. In this report, the standard is discussed in order to account for how it can be used to automate a home. For this thesis a power switch prototype and an iOSapplication where implemented, which where used to investigate and to demonstrate a concept for how the technology can be applied for home automation. Results shows that the range is the main limitation of the technology. It is also shown how the signal strength may be used as a trigger to control a power switch. This report also describes how the system achieves interoperability by implementing a custom profile.
Zegeye, Wondimu K. "Exploiting Bluetooth Low Energy Pairing Vulnerability in Telemedicine." International Foundation for Telemetering, 2015. http://hdl.handle.net/10150/596383.
Full textTelemetry has potentially large contributions to future medical applications. In the past decade wireless devices have invaded the medical area with a wide range of capability as components of a wireless personal area network (WPAN) and Wireless Body Area Network (WBAN). These applications in medical telemetry are not only improving the quality of life of patients and doctor-patient efficiency, but also enabling medical personnel to monitor patients remotely and give them timely health information, reminders, and support-potentially extending the reach of health care by making it available anywhere, anytime. This paper exploits the pairing vulnerability in Bluetooth Low energy (Bluetooth Smart) for HealthCare devices used in medical telemetry applications and demonstrates the key role security plays in telemetry.
LINHARES, André Guedes. "Performance measurements and analysis of bluetooth low energy." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/19520.
Full textMade available in DSpace on 2017-07-12T13:37:34Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Master_Dissertation___Performance_Measurements_and_Analysis_of_Bluetooth_Low_Energy (8).pdf: 8669109 bytes, checksum: cb0af886f0cdc7babced229049a33535 (MD5) Previous issue date: 2016-05-17
The Internet of Things (IoT) paradigm has been rapidly gaining ground in the academic and industry communities as one of the most important emerging technologies. Some wireless communication technologies such as Bluetooth Low Energy (BLE) have been pointed as key technologies that will drive IoT applications. In order to leverage the BLE technology in IoT applications and identify the niche of applications this technology is more suitable, it is essential we have a deep understanding regarding some features such as link capacity, data transfer delay, connection establishment latency, and power consumption. This work evaluates the networking capabilities from BLE in scenarios of data transfer and connection establishment. The metrics maximum throughput, one-way delay, round-trip time, and connection establishment latency are evaluated through experimental measurements and we investigate how some factors (e.g. connection interval, pairing, packet size) impact on these metrics. Finally, this work proposes analytical models for the metrics investigated.
O paradigma da Internet das Coisas (Internet of Things - IoT) tem recebido grande destaque tanto das comunidades científicas como da indústria nos últimos anos. Algumas tecnologias de comunicação sem fio como Bluetooth Low Energy (BLE) tem sido apontadas como tecnologias que terão um papel fundamental na concepção de aplicativos de IoT. Um entendimento profundo de algumas características da tecnologia, como vazão e atraso na transmissão de dados, latência no estabelecimento de conexão e consumo de energia, é essencial para explorar ao máximo a tecnologia em cenários de IoT e identificar o nicho de aplicação onde esta tecnologia é mais aplicável. Este trabalho apresenta uma avaliação de desempenho da tecnologia BLE em cenários de transmissão de dados e estabelecimento de conexão. As métricas vazão máxima, atraso fim-a-fim, atraso ida-e-volta (Round-Trip Time - RTT) e latência de estabelecimento de conexão são avaliadas através de experimentos. Este trabalho também investiga como alguns fatores, como intervalo de conexão, encriptação de link e tamanho de pacote, impactam nas métricas avaliadas. Por fim, este trabalho apresenta modelos analíticos para as métricas investigadas.
Gustafsson, Viktor, and Calle Waller. "Usage of Bluetooth Low Energy for Weather Measurements." Thesis, Linköpings universitet, Datorteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151579.
Full textBjarnason, Jonathan. "Evaluation of Bluetooth Low Energy in Agriculture Environments." Thesis, Malmö högskola, Fakulteten för teknik och samhälle (TS), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20250.
Full textAn, Zhigang. "A Bluetooth Low Energy Indoor Object Positioning System." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1491596337908227.
Full textBooks on the topic "Bluetooth low energy"
Aftab, Muhammad Usama bin. Building Bluetooth Low Energy Systems. Packt Publishing, 2017.
Find full textHeydon, Robin. Bluetooth Low Energy: The Developer's Handbook. Pearson Education Canada, 2012.
Find full textBhargava, Madhur. IoT Projects with Bluetooth Low Energy. Packt Publishing, Limited, 2017.
Find full textLee, Jade. RN4020 - Bluetooth® Low Energy Module. Microchip Technology Incorporated, 2004.
Find full textFerrigan, Kelly. Bluetooth® Low Energy (BLE) SoC. Microchip Technology Incorporated, 2020.
Find full textHeydon, Robin. Bluetooth Low Energy: The Developer's Handbook. Pearson Education Canada, 2012.
Find full textLozano, Grace. RN4020 Bluetooth Low Energy Module Data Sheet. Microchip Technology Incorporated, 2014.
Find full textBook chapters on the topic "Bluetooth low energy"
Kurniawan, Agus. "Bluetooth Low Energy." In IoT Projects with Arduino Nano 33 BLE Sense, 111–36. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6458-4_4.
Full textHoddie, Peter, and Lizzie Prader. "Bluetooth Low Energy (BLE)." In IoT Development for ESP32 and ESP8266 with JavaScript, 185–220. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5070-9_4.
Full textKurniawan, Agus. "Bluetooth Low Energy (BLE)." In Beginning Arduino Nano 33 IoT, 157–81. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6446-1_6.
Full textNaik, Akhilesh G., Sonia Kuwelkar, and Vijay Magdum. "Energy and Current Consumption Analysis for Classic Bluetooth and Bluetooth Low Energy (BLE)." In Emerging Research in Computing, Information, Communication and Applications, 87–95. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2550-8_9.
Full textGomes, Ana, André Pinto, Christophe Soares, José M. Torres, Pedro Sobral, and Rui S. Moreira. "Indoor Location Using Bluetooth Low Energy Beacons." In Advances in Intelligent Systems and Computing, 565–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77712-2_53.
Full textZhang, Yue, Jian Weng, Rajib Dey, and Xinwen Fu. "Bluetooth Low Energy (BLE) Security and Privacy." In Encyclopedia of Wireless Networks, 123–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_298.
Full textConti, Massimo. "Real Time Localization Using Bluetooth Low Energy." In Bioinformatics and Biomedical Engineering, 584–95. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56154-7_52.
Full textZhang, Yue, Jian Weng, Rajib Dey, and Xinwen Fu. "Bluetooth Low Energy (BLE) Security and Privacy." In Encyclopedia of Wireless Networks, 1–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-32903-1_298-1.
Full textVenkata Bhaskara Sastry, T., and P. P. Amritha. "Bluetooth Low Energy Devices: Attacks and Mitigations." In Lecture Notes in Electrical Engineering, 381–89. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9019-1_34.
Full textBansal, Malti, and Jyoti. "Utilizing CMOS Low-Noise Amplifier for Bluetooth Low Energy Applications." In Advances in Intelligent Systems and Computing, 239–51. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1822-1_22.
Full textConference papers on the topic "Bluetooth low energy"
Majima, Hideaki. "Low-power SoC design techniques for Bluetooth/Bluetooth Low Energy." In 2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT). IEEE, 2015. http://dx.doi.org/10.1109/rfit.2015.7377870.
Full textNilsson, Daniel, and Wenqing Yan. "Identifying Bluetooth Low Energy Devices." In SenSys '21: The 19th ACM Conference on Embedded Networked Sensor Systems. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3485730.3492880.
Full textMagdy, Ahmed, Sameh Ibrahim, A. H. Khalil, and Hassan Mostafa. "Low Power, Dual Mode Bluetooth 5.1/Bluetooth Low Energy Receiver Design." In 2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2021. http://dx.doi.org/10.1109/iscas51556.2021.9401748.
Full textHangil Moon, Namsuk Lee, Hyunwook Kim, and Sanghoon Lee. "Low latency audio coder design for bluetooth and bluetooth low energy." In 2015 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2015. http://dx.doi.org/10.1109/icce.2015.7066354.
Full textPipino, Alessandra, Antonio Liscidini, Karen Wan, and Andrea Baschirotto. "Bluetooth low energy receiver system design." In 2015 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2015. http://dx.doi.org/10.1109/iscas.2015.7168671.
Full textMouris, Boules A., Wael Elshennawy, Panagiotis Petridis, Yuan Ding, and Spyridon N. Daskalakis. "Rectenna for Bluetooth Low Energy Applications." In 2019 IEEE Wireless Power Transfer Conference (WPTC). IEEE, 2019. http://dx.doi.org/10.1109/wptc45513.2019.9055609.
Full textWillingham, Thomas, Cody Henderson, Blair Kiel, Md Shariful Haque, and Travis Atkison. "Testing vulnerabilities in bluetooth low energy." In ACM SE '18: Southeast Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3190645.3190693.
Full textMuddinagiri, Ruchika, Shubham Ambavane, Vivek Jadhav, and Santosh Tamboli. "Proximity Marketing Using Bluetooth Low Energy." In 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2020. http://dx.doi.org/10.1109/icaccs48705.2020.9074160.
Full textFurst, Jonathan, Kaifei Chen, Hyung-Sin Kim, and Philippe Bonnet. "Evaluating Bluetooth Low Energy for IoT." In 2018 IEEE Workshop on Benchmarking Cyber-Physical Networks and Systems (CPSBench). IEEE, 2018. http://dx.doi.org/10.1109/cpsbench.2018.00007.
Full textJara, Antonio J., Yann Bocchi, and Dominique Genoud. "Mobility management in bluetooth low energy." In 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC). IEEE, 2014. http://dx.doi.org/10.1109/ccnc.2014.6940529.
Full textReports on the topic "Bluetooth low energy"
Nieminen, J., T. Savolainen, M. Isomaki, B. Patil, Z. Shelby, and C. Gomez. IPv6 over BLUETOOTH(R) Low Energy. RFC Editor, October 2015. http://dx.doi.org/10.17487/rfc7668.
Full textMoayeri, Nader. On the Feasibility of COVID-19 Proximity Detection Using Bluetooth Low Energy Signals. Gaithersburg, MD: National Institute of Standards and Technology, 2022. http://dx.doi.org/10.6028/nist.ir.8437.
Full textGomez, C., S. M. Darroudi, T. Savolainen, and M. Spoerk. IPv6 Mesh over BLUETOOTH(R) Low Energy Using the Internet Protocol Support Profile (IPSP). RFC Editor, December 2021. http://dx.doi.org/10.17487/rfc9159.
Full text