Academic literature on the topic 'Bogdanov'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bogdanov.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bogdanov"
Morozova, Alla Yurievna. "«Physiological collectivism» of Alexander Bogdanov: idea and practice." Samara Journal of Science 9, no. 1 (February 28, 2020): 174–78. http://dx.doi.org/10.17816/snv202091208.
Full textFreebury-Jones, Darren. "Michael Bogdanov’s Iconoclastic Approach to Political Shakespeare." New Theatre Quarterly 35, no. 02 (April 15, 2019): 99–111. http://dx.doi.org/10.1017/s0266464x19000022.
Full textAdams, Mark B. ""Red Star" Another Look at Aleksandr Bogdanov." Slavic Review 48, no. 1 (1989): 1–15. http://dx.doi.org/10.2307/2498682.
Full textDontsova, O. A., T. S. Oretskaya, V. A. Sklyankina, and O. V. Shpanchenko. "Aleksei Alekseevich Bogdanov." Molecular Biology 39, no. 5 (September 2005): 625–30. http://dx.doi.org/10.1007/s11008-005-0078-9.
Full textGuckenheimer, John, and Yuri Kuznetsov. "Bogdanov-Takens bifurcation." Scholarpedia 2, no. 1 (2007): 1854. http://dx.doi.org/10.4249/scholarpedia.1854.
Full textEmelyanov, E. P. "PERIODIZATION OF WORLD HISTORY IN THE “SHORT COURSE OF ECONOMICS SCIENCE” BY ALEXANDER BOGDANOV." Вестник Пермского университета. История, no. 3(50) (2020): 56–66. http://dx.doi.org/10.17072/2219-3111-2020-3-56-66.
Full textTracy, E. R., X. Z. Tang, and C. Kulp. "Takens-Bogdanov random walks." Physical Review E 57, no. 4 (April 1, 1998): 3749–56. http://dx.doi.org/10.1103/physreve.57.3749.
Full textBorukhov, V. T., and O. M. Kvetko. "Founded Lyapunov–Bogdanov Functionals." Differential Equations 56, no. 1 (January 2020): 29–38. http://dx.doi.org/10.1134/s0012266120010048.
Full textMa, Li, Xianggang Liu, Xiaotong Liu, Ying Zhang, Yu Qiu, and Kaiyan Li. "On the Correlation Dimension of Discrete Fractional Chaotic Systems." International Journal of Bifurcation and Chaos 30, no. 12 (September 30, 2020): 2050174. http://dx.doi.org/10.1142/s0218127420501746.
Full textMerkuljev, A. V. "Propebela bogdanovi sp. nov. (Gastropoda, Conoidea, Mangeliidae) - a new species from Chukchi Sea and East Kamchatka." Ruthenica, Russian Malacological Journal 31, no. 1 (January 2, 2021): 1–6. http://dx.doi.org/10.35885/ruthenica.2021.31(1).1.
Full textDissertations / Theses on the topic "Bogdanov"
Thomas, Alun K. "The Takens-Bogdanov bifurcation with Dâ†4 symmetry." Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287235.
Full textBiggart, John. "Alexander Bogdanov, left-Bolshevism and the Proletkult 1904-1932." Thesis, University of East Anglia, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328854.
Full textBogdanov, Dmitrij Aleksandrovic. "Elektronische Eigenschaften neuer dotierter Halbleiter Supraleitung im Diamant und Transporteigenschaften von RuIn3 /." [S.l.] : [s.n.], 2006. http://webdoc.sub.gwdg.de/diss/2006/bogdanov.
Full textBoutat, Moha. "Famille de champs de vecteurs quadratiques du plan de type Takens-Bogdanov." Dijon, 1991. http://www.theses.fr/1991DIJOS026.
Full textCartwright, Julyan H. E. "Chaos in dissipative systems : bifurcations and basins." Thesis, Queen Mary, University of London, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313920.
Full textSilva, Andre Ricardo Belotto da. "Análise das bifurcações de um sistema de dinâmica de populações." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-18082010-122313/.
Full textIn this work are studied the bifurcations of a bi-dimensional predator-prey model, which extends and improves the Volterra-Lotka system. This model has five parameters and a non-monotonic response function of Holling IV type: $$ \\left\\{\\begin \\dot=x(1-\\lambda x-\\frac{\\alpha x^2+\\beta x +1})\\\\ \\dot=y(-\\delta-\\mu y+\\frac{\\alpha x^2+\\beta x +1}) \\end ight. $$ They studied the sadle-node, Hopf, transcritic, Bogdanov-Takens and degenerate Bogdanov-Takens bifurcations. The method of organising centers is used to study the qualitative behavior of the bifurcation diagram.
Chehonadskih, Maria. "Soviet epistemologies and the materialist ontology of poor life : Andrei Platonov, Alexander Bogdanov and Lev Vygotsky." Thesis, Kingston University, 2017. http://eprints.kingston.ac.uk/38850/.
Full textArakawa, Vinicius Augusto Takahashi [UNESP]. "Um estudo de bifurcações de codimensão dois de campos de vetores." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/94243.
Full textFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Nesse trabalho são apresentados alguns resultados importantes sobre bifurcações de codimensão dois de campos de vetores. O resultado principal dessa dissertação e o teorema que d a o diagrama de bifurcação e os retratos de fase da Bifurcação de Bogdanov-Takens. Para a demonstracão são usadas algumas técnicas basicas de Sistemas Dinâmicos e Teoria das Singularidades, tais como Integrais Abelianas, desdobramentos de Sistemas Hamiltonianos, desdobramentos versais, Teorema de Preparação de Malgrange, entre outros. Outra importante bifurcação clássica apresentada e a Bifurca cão do tipo Hopf-Zero, quando a matriz Jacobiana possui um autovalor simples nulo e um par de autovalores imagin arios puros. Foram usadas algumas hipóteses que garantem propriedades de simetria do sistema, dentre elas, assumiuse que o sistema era revers vel. Assim como na Bifurcação de Bogdanov-Takens, foram apresentados o diagrama de bifurcao e os retratos de fase da Bifurcação Hopf-zero bifurcação reversível. As técnicas usadas para esse estudo foram a forma normal de Belitskii e o método do Blow-up polar.
In this work is presented some important results about codimension two bifurcations of vector elds. The main result of this work is the theorem that gives the local bifurcation diagram and the phase portraits of the Bogdanov-Takens bifurcation. In order to give the proof, some classic tools in Dynamical System and Singularities Theory are used, such as Abelian Integral, versal deformation, Hamiltonian Systems, Malgrange Preparation Theorem, etc. Another classic bifurcation phenomena, known as the Hopf-Zero bifurcation, when the Jacobian matrix has a simple zero and a pair of purely imaginary eigenvalues, is presented. In here, is added the hypothesis that the system is reversible, which gives some symmetry in the problem. Like in Bogdanov-Takens bifurcation, the bifurcation diagram and the local phase portraits of the reversible Hopf-zero bifurcation were presented. The main techniques used are the Belitskii theory to nd a normal forms and the polar Blow-up method.
Rodrigues, Rodrigo da Silva. "Formas normais para equações diferenciais funcionais." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-03122014-161736/.
Full textIn this work, we compute the normal forms associated with the flow on a finite dimensional invariant, manifold tangent to an invariant space for the infinitesimal generator of the linearized equation at the singularity. As an application, the Bogdanov-Takens singularity is considered.
Silva, Lucyjane de Almeida. "Campos vetoriais suaves por partes: modelos predador-presa." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/4559.
Full textApproved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2015-05-20T18:32:39Z (GMT) No. of bitstreams: 2 Dissertação - Lucyjane de Almeida Silva - 2015.pdf: 1357945 bytes, checksum: c6e7c0e30627101c90a6eb4ae00a5c4d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-05-20T18:32:39Z (GMT). No. of bitstreams: 2 Dissertação - Lucyjane de Almeida Silva - 2015.pdf: 1357945 bytes, checksum: c6e7c0e30627101c90a6eb4ae00a5c4d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-03-06
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work we study the global qualitative behavior of three predator-prey models. We analyze the existence of limit cycle and canard cycle and we investigate the kinds of bifurcation that can occur. In the first model, Gause predator-prey with a refuge, we analyze the effects of a prey refuge on the ecosystem qualitative behavior. Employing the carrying capacity of the prey population in the Gause Model with a refuge we obtain the second model, for which we analyze the effects of the carrying capacity and we compare the results. In the third model we consider the continuous threshold harvesting strategies ocurring when the predator density is above a certain threshold. We note that the model has a complex dynamics with multiple internal equilibria and different types of bifurcation.
Neste trabalho estudamos o comportamento qualitativo global de três modelos predadorpresa. Analisamos a existência de ciclos limite e ciclos de canard e investigamos os tipos de bifurcações que podem ocorrer. No primeiro modelo, modelo predador-presa de Gause com refúgio, analisamos os efeitos do refúgio para as presas no comportamento dinâmico do ecossistema. Empregando a capacidade de suporte para a população de presas no modelo de Gause com refúgio obtemos o segundo modelo, para o qual analisamos os efeitos da capacidade de suporte e comparamos os resultados obtidos. No terceiro modelo consideramos as estratégias de colheita com limiar contínuo que é aplicada quando a densidade de predadores está acima de um certo limite e investigamos o comportamento dinâmico global. Observamos que o modelo possui uma dinâmica complexa com múltiplos pontos de equilíbrio e diferentes tipos de bifurcações.
Books on the topic "Bogdanov"
Lesevič, Vladimir V. Russkij pozitivizm: Lesevič, Juškevič, Bogdanov. Sankt-Peterburg: Nauka, 1995.
Find full textI︠U︡rovskai︠a︡, V. Z. Anatoliĭ Petrovich Bogdanov, 1834-1896. Moskva: In-t antropologii MGU, 2004.
Find full textLi︠u︡butin, Konstantin Nikolaevich. Aleksandr Bogdanov: Ot filosofii k tektologii. Ekaterinburg: Bank kulʹturnoĭ informat︠s︡ii, 2005.
Find full textSharapov, I͡Uriĭ Pavlovich. Lenin i Bogdanov: Ot sotrudnichestva k protivostoi͡anii͡u. Moskva: Rossiĭskai͡a akademii͡a nauk, In-t rossiĭskoĭ istorii, 1998.
Find full textRevolution and culture: The Bogdanov-Lenin controversy. Ithaca: Cornell University Press, 1988.
Find full textLut︠s︡enko, A. V. Aleksandr Aleksandrovich Bogdanov--teoretik i praktik RSDRP. Seversk: Severskiĭ gos. tekhnologicheskiĭ in-t, 2003.
Find full textBook chapters on the topic "Bogdanov"
Liebscher, Stefan. "Bogdanov-Takens Bifurcation." In Bifurcation without Parameters, 81–102. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10777-6_10.
Full textHolding, Peter. "Michael Bogdanov, RSC, 1986/7." In Romeo and Juliet, 63–68. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-11363-7_10.
Full textGelfreich, Vassili. "Chaotic Zone in the Bogdanov-Takens Bifurcation for Diffeomorphisms." In Analysis and Applications — ISAAC 2001, 187–97. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3741-7_14.
Full textCarrillo, Armando, Joaquín Delgado, Patricia Saavedra, Rosa Maria Velasco, and Fernando Verduzco. "A Bogdanov–Takens Bifurcation in Generic Continuous Second Order Traffic Flow Models." In Traffic and Granular Flow '11, 15–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39669-4_2.
Full textWerner, Bodo, and Vladimir Janovsky. "Computation of Hopf Branches Bifurcating from Takens-Bogdanov Points for Problems with Symmetries." In Bifurcation and Chaos: Analysis, Algorithms, Applications, 377–88. Basel: Birkhäuser Basel, 1991. http://dx.doi.org/10.1007/978-3-0348-7004-7_49.
Full textLiebscher, Stefan. "Application: Fluid Flow in a Planar Channel, Spatial Dynamics with Reversible Bogdanov-Takens Bifurcation." In Bifurcation without Parameters, 119–28. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10777-6_14.
Full textElsie, Robert. "Bogdani, Pjetër." In Kindlers Literatur Lexikon (KLL), 1. Stuttgart: J.B. Metzler, 2020. http://dx.doi.org/10.1007/978-3-476-05728-0_11822-1.
Full textZawadzki, Bogdan. "Zawadzki, Bogdan." In Encyclopedia of Personality and Individual Differences, 5839–41. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-24612-3_2282.
Full textZawadzki, Bogdan. "Zawadzki, Bogdan." In Encyclopedia of Personality and Individual Differences, 1–3. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-28099-8_2282-1.
Full textBodiu, Andrei. "Haşdeu, Bogdan Petriceicu." In Kindlers Literatur Lexikon (KLL), 1. Stuttgart: J.B. Metzler, 2020. http://dx.doi.org/10.1007/978-3-476-05728-0_9081-1.
Full textConference papers on the topic "Bogdanov"
Verduzco, Fernando, Francisco A. Carrillo, Ilias Kotsireas, Roderick Melnik, and Brian West. "Takens-Bogdanov Bifurcation Analysis in Indirect Field-oriented Control." In ADVANCES IN MATHEMATICAL AND COMPUTATIONAL METHODS: ADDRESSING MODERN CHALLENGES OF SCIENCE, TECHNOLOGY, AND SOCIETY. AIP, 2011. http://dx.doi.org/10.1063/1.3663470.
Full textCarrillo Navarro, Francisco Armando, and Fernando Verduzco Gonzalez. "Control of the Hopf bifurcation in the Takens-Bogdanov bifurcation." In 2008 47th IEEE Conference on Decision and Control. IEEE, 2008. http://dx.doi.org/10.1109/cdc.2008.4739082.
Full textSalas, F., R. Reginatto, F. Gordillo, and J. Aracil. "Bogdanov-Takens bifurcation in indirect field oriented control of induction motor drives." In 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601). IEEE, 2004. http://dx.doi.org/10.1109/cdc.2004.1429436.
Full textChen, Shuping, Wei Zhang, Youhua Qian, Jane W. Z. Lu, Andrew Y. T. Leung, Vai Pan Iu, and Kai Meng Mok. "Computation of Normal Forms of Bogdanov-Takens Singularities for High Dimensional Nonlinear Systems." In PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL MECHANICS AND THE 12TH INTERNATIONAL CONFERENCE ON THE ENHANCEMENT AND PROMOTION OF COMPUTATIONAL METHODS IN ENGINEERING AND SCIENCE. AIP, 2010. http://dx.doi.org/10.1063/1.3452260.
Full textWang, Jinling, and Jinling Liang. "Bogdanov-takens bifurcation for a predator-prey system with holling type IV function." In 2016 12th World Congress on Intelligent Control and Automation (WCICA). IEEE, 2016. http://dx.doi.org/10.1109/wcica.2016.7578667.
Full textYuan, Yuan Y. "Multiple Bifurcations of Synchronized Oscillators With Delays." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84584.
Full textColonius, Fritz, Gerhard Häckl, and Wolfgang Kliemann. "Dynamic Reliability of Nonlinear Systems Under Random Excitation." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0347.
Full textMureithi, N. W., K. Huynh, and A. Pham. "Low Order Model Dynamics of the Forced Cylinder Wake." In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-78093.
Full textVlasov, Victor. "TRADITIONS OF RUSSIAN RELIGIOUS PHILOSOPHY, �UNIVERSAL ORGANIZING SCIENCE� BY A. A. BOGDANOV AND THE THEORY OF THE FORMBUILDING IN THE ARCHITECTONIC-FIGURATIVE ARTS." In 4th SGEM International Multidisciplinary Scientific Conferences on SOCIAL SCIENCES and ARTS Proceedings. STEF92 Technology, 2017. http://dx.doi.org/10.5593/sgemsocial2017/62/s26.044.
Full textĐurašković, Stevo. "Mediteranizam Bogdana Radice kao suprotnost totalitarnim distopijama." In Split i Vladan Desnica 1918. – 1945.: umjetničko stvaralaštvo između kulture i politike: zbornik radova sa znanstvenog skupa Desničini susreti 2015. Filozofski fakultet u Zagrebu, FF-Press, 2016. http://dx.doi.org/10.17234/desnicini_susreti2015.15.
Full textReports on the topic "Bogdanov"
X. Z. Tang. Finite Amplitude Instability in Takens-Bogdanov-type Dynamical Systems. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/2384.
Full text