Books on the topic 'Boltzmann's equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Boltzmann's equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Rezakhanlou, Fraydoun, and Cédric Villani. Entropy Methods for the Boltzmann Equation. Edited by François Golse and Stefano Olla. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73705-6.
Full textCercignani, Carlo. The Boltzmann Equation and Its Applications. Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-1039-9.
Full textSaint-Raymond, Laure. Hydrodynamic Limits of the Boltzmann Equation. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92847-8.
Full textCercignani, Carlo. The Boltzmann equation and its applications. Springer-Verlag, 1988.
Find full textWolfgang, Wagner, ed. Stochastic numerics for the Boltzmann equation. Springer, 2005.
Find full textDiscrete nonlinear models of the Boltzmann equation. General Editorial Board for Foreign Language Publications, Nauka Publishers, 1987.
Find full textHong, Sung-Min. Deterministic solvers for the Boltzmann transport equation. Springer, 2011.
Find full textCercignani, Carlo, and Gilberto Medeiros Kremer. The Relativistic Boltzmann Equation: Theory and Applications. Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8165-4.
Full textHong, Sung-Min, Anh-Tuan Pham, and Christoph Jungemann. Deterministic Solvers for the Boltzmann Transport Equation. Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0778-2.
Full textCercignani, Carlo. The Relativistic Boltzmann Equation: Theory and Applications. Birkhäuser Basel, 2002.
Find full textVedenyapin, Victor. Kinetic Boltzmann, Vlasov and related equations. Elsevier Science, 2011.
Find full textLuigi, Preziosi, ed. Fluid dynamic applications of the discrete Boltzmann equation. World Scientific, 1991.
Find full textname, No. Lecture notes on the discretization of the Boltzmann equation. World Scientific, 2003.
Find full textHarris, Stewart. An introduction to the theory of the Boltzmann equation. Dover Publications, 2004.
Find full textLi, Jun. Multiscale and Multiphysics Flow Simulations of Using the Boltzmann Equation. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26466-6.
Full textKun, Xu. Connection between the lattice Boltzmann equation and the beam scheme. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1999.
Find full textAn introduction to the Boltzmann equation and transport processes in gases. Springer, 2010.
Find full textKremer, Gilberto Medeiros. An Introduction to the Boltzmann Equation and Transport Processes in Gases. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11696-4.
Full textWeiss, Jan-Philipp. Numerical analysis of lattice Boltzmann methods for the heat equation on a bounded interval. Univ.-Verl. Karlsruhe, 2006.
Find full textDirect methods for solving the Boltzmann equation and study of nonequilibrium flows. Kluwer Academic Publishers, c, 2001.
Find full textAristov, V. V. Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows. Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0866-2.
Full textV, Aristov V. Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows. Springer Netherlands, 2001.
Find full textauthor, Saint-Raymond Laure, Texier Benjamin author, and European Mathematical Society, eds. From Newton to Boltzmann: Hard spheres and short-range potentials. European Mathematical Society, 2013.
Find full textKirk, Steven Robert. 3-D finite element solution of the even-party Boltzmann neutron transport equation. University ofSalford, 1992.
Find full textHwang, Danny P. Numerical solution of a three-dimensional cubic cavity flow by using the Boltzmann equation. National Aeronautics and Space Administration, 1992.
Find full textComputation of semiconductor properties using moments of the Inverse Scattering Operator of the Boltzmann Equation. Hartung-Gorre, 2006.
Find full text1973-, Villani Cédric, and Centre Émile Borel, eds. Entropy methods for the Boltzmann equation: Lectures from a special semester at the Centre Émile Borel, Institut H. Poincaré, Paris, 2001. Springer, 2008.
Find full textLuo, Li-Shi. Applications of the Lattice Boltzmann method to complex and turbulent flows. ICASE, NASA Langley Research Center, 2002.
Find full textLallemand, Pierre. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. National Aeronautics and Space Administration, Langley Research Center, 2000.
Find full textEric, Johnson. Anxiety and the Equation: Understanding Boltzmann's Entropy. MIT Press, 2018.
Find full textEric, Johnson. Anxiety and the Equation: Understanding Boltzmann's Entropy. MIT Press, 2018.
Find full textEric, Johnson. Anxiety and the Equation: Understanding Boltzmann's Entropy. MIT Press, 2018.
Find full textDarrigol, Olivier. The Boltzmann Equation and the H Theorem (1872–1875). Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198816171.003.0004.
Full textSucci, Sauro. Model Boltzmann Equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0008.
Full textSucci, Sauro. Boltzmann’s Kinetic Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0002.
Full textTheory of the lattice Boltzmann method: Lattice Boltzmann models for non-ideal gases. ICASE, NASA Langley Research Center, 2001.
Find full textSucci, Sauro. Stochastic Particle Dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0009.
Full textSucci, Sauro. The Lattice Boltzmann Equation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.001.0001.
Full textSucci, Sauro. Lattice Boltzmann Models for Microflows. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0029.
Full textSucci, Sauro. Approach to Equilibrium, the H-Theorem and Irreversibility. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0003.
Full textDeruelle, Nathalie, and Jean-Philippe Uzan. Kinetic theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0010.
Full textBobylev, Alexander V. Kinetic Equations : Volume 1: Boltzmann Equation, Maxwell Models, and Hydrodynamics Beyond Navier-Stokes. de Gruyter GmbH, Walter, 2020.
Find full textBobylev, Alexander V. Kinetic Equations : Volume 1: Boltzmann Equation, Maxwell Models, and Hydrodynamics Beyond Navier-Stokes. de Gruyter GmbH, Walter, 2020.
Find full textBobylev, Alexander V. Kinetic Equations : Volume 1: Boltzmann Equation, Maxwell Models, and Hydrodynamics Beyond Navier-Stokes. de Gruyter GmbH, Walter, 2020.
Find full textSergej, Rjasanow Wolfgang Wagner. Stochastic Numerics for the Boltzmann Equation. Springer, 2008.
Find full textWagner, Wolfgang, and Sergej Rjasanow. Stochastic Numerics for the Boltzmann Equation. Springer, 2010.
Find full textStochastic Numerics for the Boltzmann Equation. Springer-Verlag, 2005. http://dx.doi.org/10.1007/3-540-27689-0.
Full text