Academic literature on the topic 'Bonds (Chemistry)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bonds (Chemistry).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bonds (Chemistry)"
Zeng, Xiaoming, and Xuefeng Cong. "Chromium-Catalyzed Cross-Coupling Reactions by Selective Activation of Chemically Inert Aromatic C–O, C–N, and C–H Bonds." Synlett 32, no. 13 (May 11, 2021): 1343–53. http://dx.doi.org/10.1055/a-1507-4153.
Full textWu, Jishan, and J. Fraser Stoddart. "Mechanical bonds and dynamic covalent bonds." Materials Chemistry Frontiers 4, no. 6 (2020): 1553. http://dx.doi.org/10.1039/d0qm90014a.
Full textChen, Tieqiao, Li-Biao Han, Qihang Tan, Xue Liu, Long Liu, and Tianzeng Huang. "Phosphorylation of Carboxylic Acids and Their Derivatives with P(O)–H Compounds Forming P(O)–C Bonds." Synthesis 53, no. 01 (September 30, 2020): 95–106. http://dx.doi.org/10.1055/s-0040-1707286.
Full textWang, Congyang, and Ting Liu. "Manganese-Catalyzed C(sp2)–H Addition to Polar Unsaturated Bonds." Synlett 32, no. 13 (March 27, 2021): 1323–29. http://dx.doi.org/10.1055/a-1468-6136.
Full textGribben, Jordan, Timothy R. Wilson, and Mark E. Eberhart. "Unicorns, Rhinoceroses and Chemical Bonds." Molecules 28, no. 4 (February 12, 2023): 1746. http://dx.doi.org/10.3390/molecules28041746.
Full textBrammer, Lee, Anssi Peuronen, and Thomas M. Roseveare. "Halogen bonds, chalcogen bonds, pnictogen bonds, tetrel bonds and other σ-hole interactions: a snapshot of current progress." Acta Crystallographica Section C Structural Chemistry 79, no. 6 (May 22, 2023): 204–16. http://dx.doi.org/10.1107/s2053229623004072.
Full textLi, Xiaoxian, Tongxing Liu, Beibei Zhang, Dongke Zhang, Haofeng Shi, Zhenyang Yu, Shanqing Tao, and Yunfei Du. "Formation of Carbon-Carbon Bonds Mediated by Hypervalent Iodine Reagents Under Metal-free Conditions." Current Organic Chemistry 24, no. 1 (April 15, 2020): 74–103. http://dx.doi.org/10.2174/1385272824666200211093103.
Full textTrommsdorff, Hans-Peter. "Creating new bonds with chemistry." Physics World 15, no. 3 (March 2002): 49–50. http://dx.doi.org/10.1088/2058-7058/15/3/43.
Full textMüller, Mario. "Stimulating Chemistry and Strong Bonds." Angewandte Chemie International Edition 44, no. 20 (May 13, 2005): 3000–3001. http://dx.doi.org/10.1002/anie.200501340.
Full textWang, Nai-Xing, Yalan Xing, Lei-Yang Zhang, and Yue-Hua Wu. "C(sp3)–H Bond Functionalization of Alcohols, Ketones, Nitriles, Ethers and Amides using tert-Butyl Hydroperoxide as a Radical Initiator." Synlett 32, no. 01 (July 31, 2020): 23–29. http://dx.doi.org/10.1055/s-0040-1706406.
Full textDissertations / Theses on the topic "Bonds (Chemistry)"
Fout, Alison R. "Unraveling strong bonds small molecule activation via metal-ligand multiple bonds /." [Bloomington, Ind.] : Indiana University, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3344762.
Full textTitle from PDF t.p. (viewed on Oct. 8, 2009). Source: Dissertation Abstracts International, Volume: 70-02, Section: B, page: 1015. Adviser: Daniel J. Mindiola.
Rene, Olivier. "Advances in Palladium-Catalyzed Carbon-Carbon Bond Formation Via Functionalization of Carbon-Hydrogen Bonds." Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28864.
Full textCorreia, Camille. "Oxidative C-C bond formation via metal-catalyzed coupling of two C-H bonds." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114441.
Full textCette thèse décrit la formation de nouvelles liaisons C-C par activation oxydative directe de deux liaisons C-H grâce à l'utilisation de métaux de transition comme catalyseurs. La première partie présentera trois différentes réactions de Cross-Dehydrogenative-Coupling (CDC) oxydantes. Dans un premier temps, sera présentée dans le chapitre 2, la réaction d'alkylation de liens C-H benzylique par 1,3-dicarbonyles et cétones. Ce system a démontré son efficacité sur une large variété de substrats contenant des liaisons C-H enolysable. De plus il a été rendu possible, grâce à l'utilisation d'un co-catalyseur organique, le N-Hydroxyphthalimide (NHPI), d'utiliser l'oxygène moléculaire comme oxydant terminal. Dans un second temps, nous étudierons l'utilisation du 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) comme médiateur pour l'alkynylation de liaisons sp3 C-H. Une nouvelle CDC réaction catalysée par le triflate de cuivre (I) sera présentée dans le chapitre 3, entre un alcyne et une liaison C-H benzylique. Le chapitre 4 présentera le développement de cette réaction à l'alcynation d'éthers benzyliques en présence d'une quantité catalytique de triflate d'argent (I). Ces deux procédures sont seulement applicables pour les alcynes vrais aromatiques. Finalement, le chapitre 6 portera sur la réaction de Minisci catalysée par le palladium. Le peroxyde radical α-hydroxyalkyl généré lors de la réaction est capable de réagir avec les azines. La quantité stœchiométrique d'acide nécessaire lors de la traditionnelle réaction de Minisci, a été remplacée par une quantité catalytique de dichloro palladium.
Walton, Scarlett Maria. "Catalytic functionalisation of sp3 bonds." Thesis, University of Huddersfield, 2017. http://eprints.hud.ac.uk/id/eprint/34344/.
Full textEnglish, Jason B. "Electronic structure investigations of multiple bonding between atoms: From metal-nitrogen triple bonds to metal-metal triple and quadruple bonds." Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/280021.
Full textHare, P. M. "Studies concerning carbon-hydrogen-metal bonds." Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370264.
Full textKelly, Eugene John. "Catalytic activation of carbon-hydrogen bonds." Thesis, Queen's University Belfast, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333819.
Full textWelideniya, Dhanushi Thathsara. "Supramolecular chemistry of small molecular fundamentals to drug–receptor applications." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/19106.
Full textDepartment of Chemistry
Christer B. Aakeroy
A family of bis-pyridine based pharmaceutical active ingredients were synthesized and co-crystallized with four iodoperfluoroalkanes. Thirteen new crystal structures that are driven by I‧‧‧N(py) halogen bonds, are presented and compared with that of their hydrogen-bonded analogues. Halogen bonded co-crystals exhibit two different structural arrangements, as opposed to layered architectures observed in hydrogen bonded co-crystals. In order to explore the effect of aromatic stacking interactions on hydrogen and halogen bond driven co-crystallization process, we utilized a series of aromatic hydrogen and halogen bond donors in combination with bis-pyridine based pharmaceutical active ingredients. Aromatic stacking between the donor and the acceptor were limited, due to the lack of complementarity between the donor and the acceptor in terms of size, shape and geometry. In that case, homomeric interactions between the single components were translated into the structure of the binary co-crystals. According to our charge calculations, similarly activated hydrogen and iodine atoms possess similar electrostatics. Therefore, we wanted to investigate the interchangeability of hydrogen bonds and halogen bonds by utilizing 2-aminopyrimidine as the backbone for C(sp)-H and C(sp)-I functionalities which makes self-complementary ribbons via NH‧‧‧N synthons. Our results show that the ethynyl proton is capable of acting as a synthon mimic of ethynyl iodine by interchangeable C(sp)-H‧‧‧N hydrogen bonds and C(sp)-I‧‧‧N halogen bonds. We exploited the halogen bonding donor capability of iodo, bromo and chloro ethynyl functionalities towards a series of halide ions. Based on the grinding experiments these donors showed 90%, 70% and 50% success rates towards halides. Among the halides, chlorides exhibited the highest red shift compared to bromides and iodides. We synthesized a series of cavitands functionalized with hydrogen bond donor and acceptor groups and studied their binding preferences towards a series of active ingredients. We have shown that suitably functionalized cavitands can act as carriers of active ingredients and especially, selective binding of aspirin is demonstrated using a two-point binding mode.
Bencivenga, Nicholas Ernest. "Enantioselective nickel catalysis : exploiting activated C-H bonds." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/73437.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 26-27).
A method for the nickel-catalyzed cross-coupling between benzoxazole and secondary halides was explored. This method was to make use of the activated C-H bond found in benzoxazole at the 2-position to generate the nucleophilic species in situ. After an extensive survey of parameters no such method could be found. However, it was found that copper(I) salts promoted the coupling of benzoxazole and benzylic bromides in high yield, albeit in a racemic fashion. Additionally a method to cross-couple terminal alkynes with secondary halides employing nickel-catalysis was explored. After surveying a number of alkynylmetal species, generated in situ, alkynyl borates were found to cross-couple with allylic chlorides to furnish product with the best enantioselectivity (enantiomeric excess ca. 70%), however in low yield.
by Nicholas Ernest Bencivenga.
S.M.
Hugas, Germà David. "Dihydrogen bonds: a study." Doctoral thesis, Universitat de Girona, 2010. http://hdl.handle.net/10803/7945.
Full textA dihydrogen bond (or DHB) is a kind of unconventional hydrogen bond, established between a metal hydride bond and a proton donor like OH or NH. They are the key to important structure features and properties in compounds which have them. They can be responsible for the specific geometry not only of small molecules like the NH3 BH3 dimer, but also of higher structures like metallic complexes or solids. It is in this fashion that dihydrogen bonds can be profitable, up to a plausible extent, when they can be used in certain molecules or certain syntheses to obtain a new material with particular or even tailored properties or geometries. The work developed in this thesis is aimed to have a deeper understanding of dihydorgen bonds, deepening on certain aspects using theoretical methods.
Books on the topic "Bonds (Chemistry)"
March, Norman H. Chemical Bonds Outside Metal Surfaces. Boston, MA: Springer US, 1986.
Find full textGiese, Bernd. Radicals in organic synthesis: Formation of carbon-carbon bonds. Oxford: Pergamon, 1986.
Find full textGiese, Bernd. Radicals in organic synthesis: Formation of carbon-carbon bonds. Elkins Park, PA: Franklin, 1995.
Find full textGiese, Bernd. Radicals in organic synthesis: Formation of carbon-carbon bonds. Elkins Park, PA: Franklin, 1996.
Find full textR, Brec, ed. Complexes, clusters, and crystal chemistry. Berlin: Springer-Verlag, 1992.
Find full textManfred, Regitz, Scherer Otto J, and Appel R, eds. Multiple bonds and low coordination in phosphorus chemistry. Stuttgart: G. Thieme Verlag, 1990.
Find full textOCR(A) AS chemistry: Atoms, bonds and groups. Deddington, Oxfordshire: Philip Allan, 2012.
Find full textMingos, D. M. P., 1944-, ed. Supramolecular assembly via hydrogen bonds. Berlin: Springer, 2004.
Find full textBook chapters on the topic "Bonds (Chemistry)"
Schmiermund, Torsten. "Bonds." In The Chemistry Knowledge for Firefighters, 137–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64423-2_8.
Full textFreemantle, Michael. "Chemical Bonds." In Chemistry in Action, 55–84. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-18541-2_2.
Full textHarcourt, Richard D. "Wave-Functions and Valence-Bond Structures for 1-Electron Bonds, Electron-Pair Bonds, Pauling “3-Electron Bonds” and “no Bonds”." In Lecture Notes in Chemistry, 35–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16676-6_3.
Full textHo, P. Shing. "Biomolecular Halogen Bonds." In Topics in Current Chemistry, 241–76. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/128_2014_551.
Full textGrabowski, Sławomir J., and Jerzy Leszczynski. "Dihydrogen Bonds: Novel Feature of Hydrogen Bond Interactions." In Practical Aspects of Computational Chemistry, 255–75. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2687-3_12.
Full textNakazawa, Hiroshi. "Chapter 3. Bonds in Organometallic Complexes." In Organometallic Chemistry, 27–42. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164200-00027.
Full textLiebau, Friedrich. "Chemical Bonds in Silicates." In Structural Chemistry of Silicates, 14–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-50076-3_3.
Full textLittlemore, Linda, Paul Schober, and Fred Widmer. "Proteases, ice and peptide bonds." In Peptide Chemistry 1992, 185–87. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1474-5_55.
Full textKakiuchi, Fumitoshi. "Catalytic Addition of C – H Bonds to C – C Multiple Bonds." In Topics in Organometallic Chemistry, 1–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/3418_2007_064.
Full textSmith, Adrian L. "Addition to CC Multiple Bonds (Except for CC Bond Formation)." In Handbook of Combinatorial Chemistry, 305–21. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2004. http://dx.doi.org/10.1002/3527603034.ch11.
Full textConference papers on the topic "Bonds (Chemistry)"
Noordam, L. D., B. Broers, P. Balling, D. J. Maas, and H. B. van Linden van den Heuvell. "Climbing a Ladder System by Frequency Chirped Laser Pulses." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.thc.3.
Full textMikkola, Satu, Ulla Kaukinen, Izabella Zagorowska, and Harri Lönnberg. "The cleavage of RNA phosphodiester bonds by metal ions." In XIIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2002. http://dx.doi.org/10.1135/css200205121.
Full textGoldsmith, David, and Alexei Novikov. "Functionalization of Double Bonds via Cationic Sulfenyl-X Additions." In The 4th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2000. http://dx.doi.org/10.3390/ecsoc-4-01839.
Full textChernuha, Valeria, Sergey Zelentsov, and Dmitriy Fomichev. "Hydrogen bonds in the phenol-formaldehyde-orthonaphthoquinondiazide-water system." In The 21st International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/ecsoc-21-04753.
Full textKim, Bioh, Thorsten Matthias, Markus Wimplinger, Paul Kettner, and Paul Lindner. "Comparison of Enabling Wafer Bonding Techniques for TSV Integration." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40002.
Full textPerona, Almudena, Dionisia Sanza, Rosa Claramunta, and José Elguero. "Syntheses and Structural Studies of New Molecules Involving Hydrogen Bonds." In The 9th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2005. http://dx.doi.org/10.3390/ecsoc-9-01472.
Full textParsch, Jörg, and Joachim W. Engels. "C–F···H–C hydrogen bonds in crystals of fluorobenzene ribonucleosides." In XIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 1999. http://dx.doi.org/10.1135/css199902011.
Full textKoll, Liliana, Darío Gerbino, M. Faraoni, Verónica Dodero, and Julio Podestá. "Bulky Organotin Hydrides in Palladium Catalized Hydrostannation of Terminal Triple Bonds." In The 8th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2004. http://dx.doi.org/10.3390/ecsoc-8-01961.
Full textBungay, Corey L., Thomas E. Tiwald, and John A. Woollam. "Characterizing UV induced polymer degradation with spectroscopic ellipsometry." In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oic.1998.tuf.5.
Full textLi, Ziwei. "NBO Analysis Based on CPLD Between Water Molecules Hydrogen Bonds." In 2016 5th International Conference on Environment, Materials, Chemistry and Power Electronics. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/emcpe-16.2016.63.
Full textReports on the topic "Bonds (Chemistry)"
Hartwig, John. Chemistry of Complexes with Transition Metal Heteroatom Bonds Novel Insertion Chemistry and XH Bond Activation. Office of Scientific and Technical Information (OSTI), February 2012. http://dx.doi.org/10.2172/1035516.
Full textLiu, Cheng-Hsin, Ha L. Nguyen, and Omar M. Yaghi. Reticular Chemistry and Harvesting Water from Desert Air. AsiaChem Magazine, November 2020. http://dx.doi.org/10.51167/acm00007.
Full textVenedicto, Melissa, and Cheng-Yu Lai. Facilitated Release of Doxorubicin from Biodegradable Mesoporous Silica Nanoparticles. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009774.
Full textButler, L. J. [Bond selective chemistry beyond the adiabatic approximation]. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/7070065.
Full textC. F. Melius and M. D. Allendorf. Bond additivity corrections for quantum chemistry methods. Office of Scientific and Technical Information (OSTI), April 1999. http://dx.doi.org/10.2172/751014.
Full textBoyer, J. H. Nitrolysis of the CN Single Bond and Related Chemistry of Nitro and Nitroso Groups. Fort Belvoir, VA: Defense Technical Information Center, February 1985. http://dx.doi.org/10.21236/ada151753.
Full textButler, L. J. [Bond selective chemistry beyond the adiabatic approximation]. Technical progress report, September 15, 1992--June 14, 1993. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/10133442.
Full textChemistry of oxygenates on transition metal surfaces: Activation of C- H, C-C, and C-O bonds. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/7202787.
Full textChemistry of oxygenates on transition metal surfaces: Activation of C- H, C-C, and C-O bonds. Progress report, December 15, 1991. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10182066.
Full text