Academic literature on the topic 'Bone substitute'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bone substitute.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bone substitute"
Jhun, Jick Soo, Hui Suk Yun, Eui Kyun Park, and Hong In Shin. "Bone Repair Efficiency by Various Round Granular Bone Substitutes." Key Engineering Materials 493-494 (October 2011): 143–46. http://dx.doi.org/10.4028/www.scientific.net/kem.493-494.143.
Full textYamada, M., T. Ueno, H. Minamikawa, N. Sato, F. Iwasa, N. Hori, and T. Ogawa. "N-acetyl Cysteine Alleviates Cytotoxicity of Bone Substitute." Journal of Dental Research 89, no. 4 (March 3, 2010): 411–16. http://dx.doi.org/10.1177/0022034510363243.
Full textJung, Ki-Jin, Swapan Kumar Sarkar, Woo-Jong Kim, Bo-Ram Kim, Jong-Seok Park, and Byong-Taek Lee. "Bone Regeneration by Multichannel Cylindrical Granular Bone Substitute for Regeneration of Bone in Cases of Tumor, Fracture, and Arthroplasty." International Journal of Environmental Research and Public Health 19, no. 14 (July 6, 2022): 8228. http://dx.doi.org/10.3390/ijerph19148228.
Full textBedini, Rossella, Deborah Meleo, and Raffaella Pecci. "3D Microtomography Characterization of Dental Implantology Bone Substitutes Used In Vivo." Key Engineering Materials 541 (February 2013): 97–113. http://dx.doi.org/10.4028/www.scientific.net/kem.541.97.
Full textMartin-Piedra, Miguel-Angel, Belén Gironés-Camarasa, Antonio España-López, Ricardo Fernández-Valadés Gámez, Cristina Blanco-Elices, Ingrid Garzón, Miguel Alaminos, and Ricardo Fernández-Valadés. "Usefulness of a Nanostructured Fibrin-Agarose Bone Substitute in a Model of Severely Critical Mandible Bone Defect." Polymers 13, no. 22 (November 15, 2021): 3939. http://dx.doi.org/10.3390/polym13223939.
Full textBornert, Fabien, François Clauss, Guoqiang Hua, Ysia Idoux-Gillet, Laetitia Keller, Gabriel Fernandez De Grado, Damien Offner, et al. "Mechanistic Illustration: How Newly-Formed Blood Vessels Stopped by the Mineral Blocks of Bone Substitutes Can Be Avoided by Using Innovative Combined Therapeutics." Biomedicines 9, no. 8 (August 3, 2021): 952. http://dx.doi.org/10.3390/biomedicines9080952.
Full textFreischmidt, Holger, Jonas Armbruster, Emma Bonner, Thorsten Guehring, Dennis Nurjadi, Maren Bechberger, Robert Sonntag, Gerhard Schmidmaier, Paul Alfred Grützner, and Lars Helbig. "Systemic Administration of PTH Supports Vascularization in Segmental Bone Defects Filled with Ceramic-Based Bone Graft Substitute." Cells 10, no. 8 (August 11, 2021): 2058. http://dx.doi.org/10.3390/cells10082058.
Full textTitsinides, Savvas, Theodore Karatzas, Despoina Perrea, Efstathios Eleftheriadis, Leonidas Podaropoulos, Demos Kalyvas, Christos Katopodis, and George Agrogiannis. "Osseous Healing in Surgically Prepared Bone Defects Using Different Grafting Materials: An Experimental Study in Pigs." Dentistry Journal 8, no. 1 (January 9, 2020): 7. http://dx.doi.org/10.3390/dj8010007.
Full textChan, Kam-Kong, Chia-Hsien Chen, Lien-Chen Wu, Yi-Jie Kuo, Chun-Jen Liao, and Chang-Jung Chiang. "IN VIVO EVALUATION OF A NEW β-TRICALCIUM PHOSPHATE BONE SUBSTITUTE IN A RABBIT FEMUR DEFECT MODEL." Biomedical Engineering: Applications, Basis and Communications 27, no. 03 (May 28, 2015): 1550028. http://dx.doi.org/10.4015/s1016237215500283.
Full textCho, Tae Joon, and Ki Seok Lee. "Bone Graft Substitute." Journal of the Korean Fracture Society 19, no. 1 (2006): 109. http://dx.doi.org/10.12671/jkfs.2006.19.1.109.
Full textDissertations / Theses on the topic "Bone substitute"
Guimarães, Maria Rosa Felix de Sousa Gomide [UNESP]. "Reparo ósseo de defeitos cirúrgicos críticos preenchidos ou não com ß – fosfato tricálcio (RTR® – Septodont): estudo histológico e histométrico em tíbias de ratos." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/144731.
Full textApproved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-11-29T13:58:37Z (GMT) No. of bitstreams: 1 guimaraes_mrfsg_dr_araca.pdf: 1423380 bytes, checksum: 7002561449c42c6a10d037b7ac5e7381 (MD5)
Made available in DSpace on 2016-11-29T13:58:37Z (GMT). No. of bitstreams: 1 guimaraes_mrfsg_dr_araca.pdf: 1423380 bytes, checksum: 7002561449c42c6a10d037b7ac5e7381 (MD5) Previous issue date: 2016-11-22
Objetivos: Analisar histologicamente e histometricamente o efeito do RTR® em defeitos ósseos cirúrgicos críticos em tíbias de ratos no processo de reparo ósseo. Materiais e Métodos: Defeitos ósseos críticos foram criados nas tíbias de 32 ratos Wistar divididos em dois grupos: Grupo Coágulo e Grupo RTR®. Após o período experimental de 30 e 90 dias, os animais foram sacrificados e as peças incluídas em parafina, cortadas e coradas com hematoxilina e eosina. Dois parâmetros foram analisados: a área óssea total neoformada (AON) e a área óssea da cortical neoformada (ACN). A análise estatística foi realizada nos dois períodos de observação pela análise de variância (ANOVA) e pelo Teste de Tukey. Resultados: Todos os grupos demonstraram reparo ósseo superior quando comparados ao Grupo Coágulo 30 dias nos dois parâmetros analisados. O Grupo RTR®, em 30 e 90 dias, apresentou reparo da cortical óssea e formações de tecido ósseo na região central do defeito maior do que no Grupo Coágulo de 90 dias, que apresentou reparo parcial da cortical óssea e poucas formações de tecido ósseo na região do defeito (p<0,05). Conclusões: O RTR® favoreceu a neoformação óssea no modelo experimental adotado podendo ser indicado em casos de cavidades ósseas de tamanho crítico.
Objectives: To analyze histologically and histometrically the effect of RTR® on critical surgical bone defects in rat tibiae in the bone repair process. Materials and Methods: Critical bone defects were created in the tibia of 32 Wistar rats divided into two groups: Clot Group and RTR® Group. After the experimental period of 30 and 90 days, the animals were sacrificed and the paraffin embedded pieces were cut and stained with hematoxylin and eosin. Two parameters were analyzed: total neoformed bone area (AON) and bone area of neoformed cortical (ACN). Statistical analysis was performed in the two observation periods by analysis of variance (ANOVA) and Tukey's test. Results: All groups demonstrated superior bone repair when compared to the Clot Group 30 days in the two analyzed parameters. The RTR® Group, in 30 and 90 days, presented repair of the cortical bone and bone tissue formations in the central region of the defect greater than in the 90-day Clot Group, which presented partial repair of the cortical bone and few bone tissue formations in the region of the defect (p <0.05). Conclusions: The RTR® favored the bone neoformation in the adopted experimental model and can be indicated in cases of bone of critical size.
Samizadeh, S. "Bone formation on calcium phosphate bone substitute materials." Thesis, University College London (University of London), 2010. http://discovery.ucl.ac.uk/19891/.
Full textÖberg, Sven. "Bone healing after implantation of bone substitute materials : experimental studies in estrogen deficiency /." Umeå : Univ, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-138.
Full textBonardi, João Paulo. "Estudo comparativo entre o ChronOs® e o Bio-Oss® em procedimentos de elevação da membrana sinusal em seios maxilares de humanos : análise histométrica e imunoistoquímica /." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/148947.
Full textApproved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-03-09T20:16:15Z (GMT) No. of bitstreams: 1 bonardi_jp_me_araca.pdf: 3605304 bytes, checksum: d85c867eef7490b5298db3147e3a1be1 (MD5)
Made available in DSpace on 2017-03-09T20:16:15Z (GMT). No. of bitstreams: 1 bonardi_jp_me_araca.pdf: 3605304 bytes, checksum: d85c867eef7490b5298db3147e3a1be1 (MD5) Previous issue date: 2017-02-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Objetivos: Comparar através de análise hitométrica e imunoistoquimica o comportamento do ChronOs® (β-TCP) e do Bio-Oss® (Osso bovino inorgânico ) puros e misturados ao osso autógeno na proporção 1:1 em seios maxilares de humanos. Metodologia: 30 pacientes foram convidados para participar deste trabalho, resultando em 30 seios enxertados com osso autógeno puro (grupo A (controle)), ChronOs® puro (grupo C), ChronOs® em adição de osso autógeno na proporção 1:1(grupo CA), Bio-Oss® puro (grupo B) e Bio-Oss® em adição de osso autógeno na proporção de 1:1 (grupo BA), onde foram realizadas biopsias 6 meses após a realização desses enxertos e analisadas através de histometria (analisadas através do software ImageJ) e imunoistoquimica (RUNX2, VEGF e Osteocalcina). Os resultados foram tabulados, o teste de Shapiro-Wilk foi aplicado para avaliação da normalidade, em seguida foram aplicado os testes Kruskal-Wallis e Anova 1 fator para os dados paramétricos e não paramétricos sucetivamente e o teste de Tukey como pós teste. Resultados: Para neoformação óssea o grupo A foi maior que os grupos B e BA e o grupo CA foi maior que o grupo BA (p<0,05). Para os remanescentes de biomateriais o grupo BA apresentou um número maior que os grupos Chronos C, CA e A (p<0,05). Para tecido mole o grupo C foi maior que o grupo B (p<0,05). O resultado das imunomarcações mostrou marcação fraca para RUNX 2 nos grupos A, C, B e BA e marcação moderada para o grupo CA. Marcação intensa para VEGF nos grupos B e CA, moderada nos grupos A e C e fraca no grupo BA. Para a Osteocalcina houve uma marcação intensa em todos os grupos. Conclusão: Conclui-se que o Chronos puro ou misturado apresentam comportamento mais próximo ao osso autógeno em termos de quantidade de tecido ósseo neoformado e remanescentes de biomateriais que o Bio Oss puro ou associado ao osso autógeno.
Objectives: To compare the performance of ChronOs® (β-TCP) and Bio-Oss® (Inorganic bovine bone) pure and mixed with autogenous bone in a 1: 1 ratio in maxillary sinuses of humans through histometric and immunohistochemical analysis. Metodology: 30 patients were invited to participate of this study, resulting in 30 grafted sinuses with pure autogenous bone (group A (control)), pure ChronOs® (group C), ChronOs® in addition 1: 1 autogenous bone (group CA), pure Bio-Oss®(group B) and Bio-Oss® in addition1: 1 (group BA), which biopsies were performed 6 months after the grafting and analyzed by histology (analyzed using ImageJ software) and immunohistochemistry (RUNX2, VEGF and Osteocalcin). The results were tabulated, the Shapiro-Wilk test was applied to evaluate the normality, then the Kruskal-Wallis and Anova 1 tests were applied for the parametric and non-parametric data and Tukey test as post test was applied. Results: The group A was higher than B and BA groups, and the group CA was higher than the BA group (P <0.05). For the remainder of biomaterials, BA group presented a higher number than Chronos C, CA and A groups (P <0.05). For soft tissue, group C was greater than group B (P <0.05). The immunolabeling results showed poor labeling for RUNX 2 in groups A, C, B and BA and moderate labeling for CA group. Intense labeling for VEGF in B and CA groups, moderate in groups A and C and weak in BA group. For Osteocalcin, there was an intense marking in all groups. Conclusion: It was concluded that pure or mixed Chronos present behavior closer to the autogenous bone in terms of amount of neoformed bone tissue and biomaterial remnants than the pure or mixed Bio Oss.
Simpson, Rebecca Louise. "Design of a bone substitute material." Thesis, Imperial College London, 2006. http://hdl.handle.net/10044/1/11534.
Full textAl-Bader, Yousef A. "Development of a piezoelectric bone substitute material." Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249905.
Full textHilal, M. K. "Development of a high strength bioactive bone substitute." Thesis, University of Sheffield, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267175.
Full textÖberg, Sven. "Bone Healing after implantation of bone substitute materials. Experimental studies in estrogen deficiency." Doctoral thesis, Umeå University, Odontology, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-138.
Full textBone formation and bone healing were studied in the mandible, tibia and skull bones in adult, healthy and estrogen deficient rabbits implanted with different bone substitutes.
In the first study an evaluation of the differences in bone regeneration in and around solid (Alveograf *) and porous hydroxyapatite (Interpore 200*) was undertaken. The implant material was placed into experimentally made bone defects and in half of the defects hydroxyapatite was mixed with a fibrin sealant (Tisseel *). The material alone or mixed with Tisseel was also placed subperiostally in the mandible. The observation time was six month. No difference in bone regeneration was found between solid or porous hydroxyapatite granulas and the addition of Tisseel* did not seem to disturb the bone healing process. The implant material placed subperiostally did not induce bone formation nor did it provoke any bone resorption. The addition of Tisseel made the implant material much easier to handle and retain in the tissue during surgery.
Bone healing around hydroxyapatite implants was also evaluated in the second study. Experimental cavities in the mandible and tibia were filled with hydroxyapatite in granules or blocks (Interpore 200*) but now with or without autolyzed, antigen-extracted, allogeneic bone (AAA). Also in this study Tisseel* was used to facilitate the handling of the material. All cavities implanted with AAA-bone, regardless of the combination with hydroxyapatite or Tisseel, demonstrated excessive bone formation resembling exostosis formation. Thus, hydroxyapatite, both as granules and blocks, can be successfully combined with AAA bone utilizing the bone inductive capacity of AAA bone.
The same model was used to study the healing in ovariectomized animals in the third study. Bone cavities were implanted with or without AAA bone and left to heal. The results indicate that the osteoinductive capacity of AAA bone is in operation also in animals deprived of a normal estrogen production.
The effect of using AAA bone prior to implant insertion was studied in paper four. The bone-implant contact was significant higher when AAA bone had been used. The implant stability did not seem to be affected.
In paper five defects were made in skull and tibial bone in estrogen deficient animals. The deficiency of estrogen was confirmed through blood analysis, the decrease in the weight of uterus and bone mineral density. The whole body scanning with DEXA showed that the ovariectomized animals developed osteopenia. Various degree of bone formation was seen in the defects due to the influence of the bone inductive substance AAA bone.
The studies indicate that a conductive material like hydroxyapatite in granules or blocks could be useful in oral reconstructive surgery. The combination with AAA bone enhanced the bone formation in calvarial and tibial bone in healthy and estrogen deficient animals. Tisseel* could be used to facilitate handling and retention of the material in the intended position during the healing process without negative effects.
Alfayez, Eman Saud. "Synergizing angiogenesis and osteogenesis in a smart bone substitute." Thesis, King's College London (University of London), 2016. https://kclpure.kcl.ac.uk/portal/en/theses/synergizing-angiogenesis-and-osteogenesis-in-a-smart-bone-substitute(ad38b2b9-e1e3-42ce-88a0-91a764bc14e6).html.
Full textAbbah, Sunny Akogwu. "Towards an injectable bone graft substitute: evaluation of sodium alginate microcapsules for bone tissueengineering." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B39329951.
Full textBooks on the topic "Bone substitute"
Bone substitute biomaterials. Cambridge, UK: Woodhead Publishing is an imprint of Elsevier, 2014.
Find full textIsaksson, Sten. Aspects of bone healing and bone substitute incorporation: An experimental study in rabbit skull bone defects. Malmö, Sweden: Department of Oral Surgery and Oral Medicine, Lund University, Centre for Oral Health Sciences, 1992.
Find full textMauro, Frank Armand. Assessment of biodegradable calcium polyphosphate for bone substitute application in the healing of the rat calvarium. [Toronto: University of Toronto, Faculty of Dentistry], 1999.
Find full textB, Habal Mutaz, and Reddi A. H. 1942-, eds. Bone grafts & bone substitutes. Philadelphia: Saunders, 1992.
Find full textKatthagen, Bernd-Dietrich. Bone Regeneration with Bone Substitutes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71827-4.
Full textLaurencin, CT, ed. Bone Graft Substitutes. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2003. http://dx.doi.org/10.1520/mono6-eb.
Full textInternational, ASTM, ed. Bone graft substitutes and bone regenerative engineering. 2nd ed. West Conshohocken, PA: ASTM International, 2014.
Find full textAziz, Nather, ed. Bone grafts and bone substitutes: Basic science and clinical applications. Hackensack, N.J: World Scientific, 2005.
Find full textR, Urist Marshall, O'Connor Brian T, and Burwell R. Geoffrey, eds. Bone grafts, derivatives, and substitutes. Oxford: Butterworth-Heinemann, 1994.
Find full textLaurencin, Cato T., and Tao Jiang, eds. Bone Graft Substitutes and Bone Regenerative Engineering, 2nd Edition. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2014. http://dx.doi.org/10.1520/mono6-2nd-eb.
Full textBook chapters on the topic "Bone substitute"
Singh, Harshpal, and Allan D. Levi. "Bone Graft and Bone Substitute Biology." In Spine Surgery Basics, 147–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34126-7_10.
Full textBaroth, Serge, Xavier Bourges, Borhane H. Fellah, and Guy Daculsi. "Radiopaque Strategy for Bone Injectable Substitute." In Bioceramics 20, 39–42. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-457-x.39.
Full textLong, Marc, Charles Martin, and Mike Cooper. "Confined Compression of Bone Substitute Granules." In Bioceramics 17, 361–64. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-961-x.361.
Full textKorbelář, P. "The Promising Application of Special Plastics as a Substitute for Bone Tissue." In Bone Transplantation, 349–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83571-1_80.
Full textSuzuki, Osamu, and Takahisa Anada. "Highly Biodegradable Bone Substitute Materials with OCP." In Interface Oral Health Science 2011, 321–26. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54070-0_96.
Full textAlonso, Nivaldo, and Julia Amundson. "Bone Substitute: Alveolar Bone Grafting (ABG) with rhBMP-2 (Recombinant Bone Morphogenic Protein-2)." In Cleft Lip and Palate Treatment, 263–68. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63290-2_17.
Full textGrgurevic, Lovorka, Igor Erjavec, Ivo Dumic-Cule, Tatjana Bordukalo-Niksic, Martina Pauk, Vladimir Trkulja, Drazen Maticic, et al. "Osteogrow: A Novel Bone Graft Substitute for Orthopedic Reconstruction." In Bone Morphogenetic Proteins: Systems Biology Regulators, 215–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47507-3_9.
Full textKhoshakhlagh, P., F. Moztarzadeh, S. M. Rabiee, R. Moradi, P. Heidari, R. Ravarian, and S. Amanpour. "Bioglass/Chitosan Composite as a New Bone Substitute." In Advances in Bioceramics and Porous Ceramics III, 39–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470944028.ch4.
Full textKlinkenberg, E. D., Hans Georg Neumann, Ulrike Bulnheim, and Joachim Rychly. "The New Art of Bone Graft Substitute Design." In Key Engineering Materials, 959–62. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.959.
Full textLange, Thomas A. "Ceramic Tricalcium Phosphate As a Bone-Graft Substitute for Benign Bone Tumors." In New Developments for Limb Salvage in Musculoskeletal Tumors, 675–80. Tokyo: Springer Japan, 1989. http://dx.doi.org/10.1007/978-4-431-68072-7_97.
Full textConference papers on the topic "Bone substitute"
James, Thomas P., and Brendan A. Andrade. "Is Synthetic Composite Bone a Substitute for Natural Bone in Screw Bending Tests?" In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65498.
Full textRabiee, Sayed Mahmood. "Porous tricalcium phosphate scaffold for bone substitute." In 2011 1st Middle East Conference on Biomedical Engineering (MECBME). IEEE, 2011. http://dx.doi.org/10.1109/mecbme.2011.5752066.
Full textQiao, XiangChen, Stephen Russel, Xuebin Yang, and David Wood. "Compositional selection of electrospun composites for bone substitute." In 2009 IEEE 35th Annual Northeast Bioengineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/nebc.2009.4967783.
Full textShah, Rushita, Nabanita Saha, Takeshi Kitano, and Petr Saha. "Mineralized polymer composites as biogenic bone substitute material." In PROCEEDINGS OF PPS-30: The 30th International Conference of the Polymer Processing Society – Conference Papers. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4918447.
Full textYuan Hua, Chen Ning, Lu Xiaoying, Zheng Buzhong, Cui Wei, and Song Xiaoling. "Natural hydroxyapatite/chitosan composite for bone substitute materials." In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1615568.
Full textHaddock, Sean M., Jack C. Debes, and Tony M. Keaveny. "Structure-Function Relationships for a Coralline Hydroxyapatite Bone Substitute." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0163.
Full textHollensteiner, Marianne, Markus Samrykit, Michael Hess, David Fuerst, Benjamin Esterer, and Andreas Schrempf. "Inexpensive bone cement substitute for vertebral cement augmentation training." In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016. http://dx.doi.org/10.1109/embc.2016.7591166.
Full textSari, Novita, Alfian Pramudita Putra, Siswanto, Muhammad Fajar Faliasthiunus Pradipta, and Dyah Hikmawati. "Hydroxyapatite-gelatin-HPMC composite as injectable bone substitute with alendronate variation for osteoporotic bone." In THE 2ND INTERNATIONAL CONFERENCE ON PHYSICAL INSTRUMENTATION AND ADVANCED MATERIALS 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0034044.
Full textKüpper, K., B. Bräuer, A. Magener, and D. Böger. "Early-adult-onset osteomyelitis of the frontal bone and Bioverit® bone substitute-based reconstruction." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711364.
Full textWu, Hera, and Shuting Lei. "A Review of Bone Graft Substitutes Made From HA-Polymer Composite Scaffolds and Fabrication Potential With Laser-Based Additive Manufacturing Processes." In ASME 2015 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/msec2015-9366.
Full textReports on the topic "Bone substitute"
Meza-Mauricio, Jonathan, Camila Pinheiro Furquim, Marlon Marx Hilariano Maximiano, Leonardo Delfino dos Reis, Gerardo Mendoza-Azpur, Francisco Wilker Mustafa Gomes Muniz, Giulio Rasperini, and Marcelo Faveri. How Efficacious is the Combination of Substitute Bone Graft with Autogenous Bone Graft in Comparison with Substitute Bone Graft Alone in the horizontal bone gain? A Systematic Review and Meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2021. http://dx.doi.org/10.37766/inplasy2021.8.0109.
Full textMeza-Mauricio, Jonathan, Camila Pinheiro Furquim, Leornado Delfino Dos Reis, Gerardo Mendoza-Azpur, Wilker Mustafa Gomes Muniz, Giulio Rasperini, and Marcelo Faveri. How Efficacious is the Association of Substitute Bone Graft with Autogenous Bone Graft in Comparison with Bone Graft Alone? A Systematic Review and Meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, July 2021. http://dx.doi.org/10.37766/inplasy2021.7.0081.
Full textBush, Joshua. Degradable Bone Graft Substitute for Effective Delivery of Multiple Growth Factors in the Treatment of Nonunion Fractures. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada567964.
Full textBush, Joshua. Degradable Bone Graft Substitute for Effective Delivery of Multiple Growth Factors in the Treatment of Nonunion Fractures. Fort Belvoir, VA: Defense Technical Information Center, October 2011. http://dx.doi.org/10.21236/ada559323.
Full textPatrikov, Kircho, Svetoslav A. Slavchev, Georgi P. Georgiev, and Boyan Hristov. Synthetic Bone Substitutes in the Treatment of Giant Cell Tumour of Bone. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, June 2020. http://dx.doi.org/10.7546/crabs.2020.06.16.
Full text