Academic literature on the topic 'Bose-Einstein condensate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bose-Einstein condensate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bose-Einstein condensate"
SHI, YU. "ENTANGLEMENT BETWEEN BOSE–EINSTEIN CONDENSATES." International Journal of Modern Physics B 15, no. 22 (September 10, 2001): 3007–30. http://dx.doi.org/10.1142/s0217979201007154.
Full textÖztürk, Fahri Emre, Tim Lappe, Göran Hellmann, Julian Schmitt, Jan Klaers, Frank Vewinger, Johann Kroha, and Martin Weitz. "Observation of a non-Hermitian phase transition in an optical quantum gas." Science 372, no. 6537 (April 1, 2021): 88–91. http://dx.doi.org/10.1126/science.abe9869.
Full textYang, Yajie, and Ying Dong. "Dynamics of matter-wave solitons in three-component Bose-Einstein condensates with time-modulated interactions and gain or loss effect." Physica Scripta 97, no. 2 (January 13, 2022): 025201. http://dx.doi.org/10.1088/1402-4896/ac47b9.
Full textCastellanos, Elías. "Homogeneous one-dimensional Bose–Einstein condensate in the Bogoliubov’s regime." Modern Physics Letters B 30, no. 22 (August 20, 2016): 1650307. http://dx.doi.org/10.1142/s0217984916503073.
Full textWilson, Andrew C., and Callum R. McKenzie. "Experimental Aspects of Bose-Einstein Condensation." Modern Physics Letters B 14, supp01 (September 2000): 281–303. http://dx.doi.org/10.1142/s0217984900001579.
Full textSCHELLE, ALEXEJ. "QUANTUM FLUCTUATION DYNAMICS DURING THE TRANSITION OF A MESOSCOPIC BOSONIC GAS INTO A BOSE–EINSTEIN CONDENSATE." Fluctuation and Noise Letters 11, no. 04 (December 2012): 1250027. http://dx.doi.org/10.1142/s0219477512500277.
Full textCIAMPINI, DONATELLA, OLIVER MORSCH, and ENNIO ARIMONDO. "SIGNATURES OF DYNAMICAL INSTABILITY OF BOSE–EINSTEIN CONDENSATES IN 1D OPTICAL LATTICES." Fluctuation and Noise Letters 12, no. 02 (June 2013): 1340006. http://dx.doi.org/10.1142/s0219477513400063.
Full textTSURUMI, TAKEYA, HIROFUMI MORISE, and MIKI WADATI. "STABILITY OF BOSE–EINSTEIN CONDENSATES CONFINED IN TRAPS." International Journal of Modern Physics B 14, no. 07 (March 20, 2000): 655–719. http://dx.doi.org/10.1142/s0217979200000595.
Full textPÉREZ ROJAS, H., A. PÉREZ MARTÍNEZ, and HERMAN J. MOSQUERA CUESTA. "COLLAPSING NEUTRON STARS DRIVEN BY CRITICAL MAGNETIC FIELDS AND EXPLODING BOSE–EINSTEIN CONDENSATES." International Journal of Modern Physics D 14, no. 11 (November 2005): 1855–60. http://dx.doi.org/10.1142/s0218271805007516.
Full textZeng, Heping, Weiping Zhang, and Fucheng Lin. "Nonclassical Bose-Einstein condensate." Physical Review A 52, no. 3 (September 1, 1995): 2155–60. http://dx.doi.org/10.1103/physreva.52.2155.
Full textDissertations / Theses on the topic "Bose-Einstein condensate"
Palacios, Álvarez Silvana. "Single domain spinor Bose-Einstein condensate." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/458123.
Full textEste trabajo compila los detalles experimentales de un aparato de "nueva generación" capaz de crear condensados Espinoriales de 87Rb en un único dominio magnético, y de obtener información del estado de espín en una forma no destructiva explotando el efecto Faraday. Este aparato conjunta algunas de las tecnologías de punta aplicadas a física de gases ultrafrios en un diseño minimalista. Estas tecnologías se han podido desarrollar debido a los prolíficos avances en el campo, respecto a los experimentos pioneros en los grupos de Cornell, Ketterle y Chapman. Una rica cantidad de fenómenos pueden ser estudiados en este sistema, desde el estudio de novedosas fases y topologías cuánticas hasta la aplicación de entrelazamiento y estados comprimidos relevantes en información cuántica e interferometría. Su potencial lo hace un buen candidato para responder preguntas acerca de la naturaleza de las transiciones ferromagnética y de condensación. En particular, este trabajo describe teorética y experimentalmente la coherencia del estado de espín, el cual, es relevante en aplicaciones como la medición coherente de campos magnéticos. En este sentido, nuestros resultados demuestran que las características de nuestro condensado espinorial lo hacen el sensor con la mejor resolución en energía por unidad de ancho de banda (~10^-2 h ), de entre todas las tecnologías aplicadas a magnetometría. Esta tesis se estructura de la siguiente manera: Part I está dedicada a la descripción matemática de las interacciones relevantes. Primero la interacción entre la luz y el espín atómico es revisada, con especial énfasis en el desplazamiento ac-Stark, que es explotado para generar un potencial conservador, así como en las medidas no destructivas del espín via efecto Faraday. En segundo lugar, estudiamos la dinámica de espín bajo la interacción Zeeman entre los átomos y un campo magnético que varía en el tiempo. Finalmente es brevemente tratada la teoría de campo medio (mean-field theory) que describe los condensados espinoriales en la forma de una ecuación de Gross-Pitaevskii multicomponente. Part II contiene tres capítulos que detallan la tecnologías y técnicas usadas en el experimento para crear y caracterizar el condensado. El primer capítulo describe el ultra-alto vacío, los campos magnéticos, láseres, espectroscopía e imaging usados para crear una trampa magneto-óptica (MOT), y para transferir esos átomos en una trampa dipolar óptica (ODT). Nosotros implementamos una técnica poco estandard para cargar la ODT, la cual se basa en compensar medianamente el excesivo lightshift diferencial inducido por nuestra ODT. Esta técnica nos ayuda a crear una dark-MOT efectiva con la que podemos conseguir altas densidades de átoms en la ODT. En el segundo capítulo detallamos la evaporación que es "all-optical", con la que podemos conseguir un condensado en menos de 5 s de evaporación. En el capítulo final describimos las técnicas para crear arbitrarios estados de espín y cómo detectarlos. Para esto último explotamos el efecto Faraday y capturamos imágenes Stern-Gerlach. Finalmente en Part III, estudiamos las propiedades de coherencia, tiempo de vida y extensión espacial del condensado. Detallamos el sistema especialmente en el contexto de sensores magnéticos. Además, presentamos un modelo del campo magnético ambiental y sus repercusiones en el ruido del magnetómetro. En el último capítulo hablamos de algunas de las alternativas aplicaciones de nuestro sistema.
Zawadzki, Mateusz. "Bose-Einstein condensate manipulation and interferometry." Thesis, University of Strathclyde, 2010. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=12801.
Full textFloegel, Filip. "Optical loading of a Bose-Einstein condensate." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=970681119.
Full textLeblanc, Pierre J. "Optical probing of a Bose-Einstein condensate." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26508.
Full textPalzer, Stefan. "Single impurities in a Bose-Einstein condensate." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609015.
Full textCavicchioli, Luca. "Image enhancement for a Bose-Einstein condensate interferometer." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21719/.
Full textIlo-Okeke, Ebubechukwu Odidika. "Guided-wave atom interferometers with Bose-Einstein condensate." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-dissertations/155.
Full textWest, Tristan. "Quantum dot dynamics in a Bose-Einstein condensate." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/23993.
Full textHarutinian, Jorge Amin Seman. "Study of excitations in a Bose-Einstein condensate." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-24102011-140439/.
Full textNeste trabalho, estudamos um condensado de Bose-Einstein de átomos de 87Rb sob os efeitos de uma excitação oscilatória. O condensado é produzido por meio de resfriamento evaporativo por radiofreqüência em uma armadilha magnética harmônica. A excitação é gerada por um campo quadrupolar oscilatório sobreposto ao potencial de aprisionamento. Para um valor fixo da freqüência de excitação, observamos a produção de diferentes regimes no condensado como função de dois parâmetros da excitação, a saber, o tempo e a amplitude. Para os valores mais baixos destes parâmetros observamos a inclinação do eixo principal do condensado, isto demonstra que a excitação transfere momento angular à amostra. Ao aumentar o tempo ou a amplitude da excitação observamos a nucleação de um número crescente de vórtices quantizados. Se incrementarmos ainda mais o valor dos parâmetros da excitação, os vórtices evoluem para um novo regime que identificamos como turbulência quântica. Neste regime, os vórtices se encontram emaranhados entre si, dando origem a um arranjo altamente irregular. Para os valores mais altos da excitação o condensado se quebra em pedaços rodeados por uma nuvem térmica. Isto constitui um novo regime que identificamos como a granulação do condensado. Apresentamos simulações numéricas junto com outras considerações teóricas que nos permitem interpretar as nossas observações. Nesta tese, apresentamos ainda a descrição da montagem de um segundo sistema experimental cujo objetivo é o de estudar propriedades magnéticas de um condensado de Bose-Einstein de 87Rb. Neste novo sistema o condensado é produzido em uma armadilha híbrida composta por uma armadilha magnética junto com uma armadilha óptica de dipolo. A condensação de Bose-Einstein foi já observada neste novo sistema, os experimentos serão realizados no futuro próximo.
Landini, Manuele. "A tunable Bose-Einstein condensate for quantum interferometry." Doctoral thesis, Università degli studi di Trento, 2012. https://hdl.handle.net/11572/368380.
Full textBooks on the topic "Bose-Einstein condensate"
Aftalion, Amandine. Vortices in Bose—Einstein Condensates. Boston, MA: Birkhäuser Boston, 2006. http://dx.doi.org/10.1007/0-8176-4492-x.
Full textPeter, Ketcham, and National Institute of Standards and Technology (U.S.), eds. Visualization of Bose-Einstein condensates. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.
Find full textPeter, Ketcham, and National Institute of Standards and Technology (U.S.), eds. Visualization of Bose-Einstein condensates. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.
Find full textPeter, Ketcham, and National Institute of Standards and Technology (U.S.), eds. Visualization of Bose-Einstein condensates. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.
Find full textPeter, Ketcham, and National Institute of Standards and Technology (U.S.), eds. Visualization of Bose-Einstein condensates. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.
Find full textMartellucci, Sergio, Arthur N. Chester, Alain Aspect, and Massimo Inguscio, eds. Bose-Einstein Condensates and Atom Lasers. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/b119239.
Full textPeter, Ketcham, and National Institute of Standards and Technology (U.S.), eds. Volume visualization of Bose-Einstein condensates. [Gaithersburg, Md.]: U.S. Dept. of Commerce, [Technology Administration], National Institute of Standards and Technology, 2001.
Find full textAl, S. Martellucci et. Bose-Einstein Condensates and Atom Lasers. Dordrecht: Springer, 2000.
Find full textMatthews, Paige E. Bose-Einstein condensates: Theory, characteristics, and current research. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textKevrekidis, Panayotis G., Dimitri J. Frantzeskakis, and Ricardo Carretero-González, eds. Emergent Nonlinear Phenomena in Bose-Einstein Condensates. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73591-5.
Full textBook chapters on the topic "Bose-Einstein condensate"
Bhattacherjee, Aranya B. "Bose-Einstein Condensate." In New Frontiers in Nanochemistry, 45–48. Includes bibliographical references and indexes. | Contents: Volume 1. Structural nanochemistry – Volume 2. Topological nanochemistry – Volume 3. Sustainable nanochemistry.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780429022937-5.
Full textEasttom, Chuck. "Bose-Einstein Condensate." In Hardware for Quantum Computing, 49–61. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-66477-9_4.
Full textBasdevant, Jean-Louis, and Jean Dalibard. "Properties of a Bose–Einstein Condensate." In The Quantum Mechanics Solver, 223–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13724-3_22.
Full textBasdevant, Jean-Louis, and Jean Dalibard. "Properties of a Bose—Einstein Condensate." In Advanced Texts in Physics, 195–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04277-9_24.
Full textLinnemann, Daniel. "Hamiltonian of a Spin-1 Bose-Einstein Condensate." In Springer Theses, 31–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96008-1_3.
Full textSizhuk, Andrii S., Anatoly A. Svidzinsky, and Marlan O. Scully. "Fluctuations in Two Component Interacting Bose–Einstein Condensate." In Classical, Semi-classical and Quantum Noise, 235–48. New York, NY: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-6624-7_16.
Full textSantos, F. Pereira Dos, J. Léonard, Junmin Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji. "A Bose Einstein condensate of metastable helium atoms." In Coherence and Quantum Optics VIII, 193–200. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8907-9_23.
Full textChapman, M. "All optical formation of a Bose Einstein condensate." In Coherence and Quantum Optics VIII, 107. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8907-9_8.
Full textMailoud Sekkouri, Samy, and Sandro Wimberger. "Mean-Field Transport of a Bose-Einstein Condensate." In Emergent Complexity from Nonlinearity, in Physics, Engineering and the Life Sciences, 49–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47810-4_5.
Full textKenkre, V. M. "Bose-Einstein Condensate Tunneling: The Gross-Pitaevskii Equation." In Interplay of Quantum Mechanics and Nonlinearity, 231–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94811-5_10.
Full textConference papers on the topic "Bose-Einstein condensate"
Robb, G. R. M., J. G. M. Walker, G. L. Oppo, and T. Ackemann. "Acceleration of Optomechanical Droplets." In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, JTu1A.34. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/bgpp.2024.jtu1a.34.
Full textChuu, Chih-Sung, Jay Hanssen, Todd Meyrath, Gabriel Price, Florian Schreck, and Mark Raizen. "Bose-Einstein Condensate in a Box." In Laser Science. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/ls.2005.ltub4.
Full textMeierovich, Boris E. "Bose-Einstein Condensate in Synchronous Coordinates." In Electronic Conference on Universe. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/ecu2023-14121.
Full textHenderson, Kevin C., Hrishikesh Kelkar, Braulio Gutierrez, Tongcang Li, and Mark G. Raizen. "Quantum Transport of a Bose Einstein Condensate." In Laser Science. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/ls.2005.ltub5.
Full textROUBTSOV, D., and Y. LÉPINE. "EXCITON-PHONON PACKETS WITH BOSE-EINSTEIN CONDENSATE." In Proceedings of the 11th International Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777843_0038.
Full textBRETIN, V., F. CHEVY, K. W. MADISON, P. ROSENBUCH, and J. DALIBARD. "QUANTIZED VORTICES IN A BOSE-EINSTEIN CONDENSATE." In Proceedings of the 7th International Symposium. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776716_0025.
Full textINOUYE, S., J. R. ABO-SHAEER, A. P. CHIKKATUR, A. GÖRLITZ, S. GUPTA, T. L. GUSTAVSON, A. E. LEANHARDT, et al. "VORTEX EXCITATIONS IN A BOSE-EINSTEIN CONDENSATE." In Proceedings of the 7th International Symposium. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776716_0026.
Full textChin, J. K., J. M. Vogels, T. Mukaiyama, K. Xu, J. R. Abo-Shaeer, D. E. Miller, and W. Ketterle. "Collapse of a homogeneous Bose-Einstein condensate." In Quantum Electronics and Laser Science (QELS). Postconference Digest. IEEE, 2003. http://dx.doi.org/10.1109/qels.2003.238226.
Full textvan Ooijen, E. D., A. Ratnapala, C. J. Vale, M. J. Davis, N. R. Heckenberg, and H. Rubinsztein-Dunlop. "Shockwave Formation in a Bose-Einstein Condensate." In Quantum-Atom Optics Downunder. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/qao.2007.qwe25.
Full textGrimm, Rudolf. "A tunable Bose-Einstein condensate of cesium atoms." In Frontiers in Optics. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/fio.2003.mff2.
Full textReports on the topic "Bose-Einstein condensate"
Mestre Fons, Bartolomé, and Fabian Maucher. Finite temperature effects on Dipolar Superfluids. Fundación Avanza, May 2023. http://dx.doi.org/10.60096/fundacionavanza/1672022.
Full textCollins, Lee A., and Christopher Ticknor. Chaotic Behavior: Bose-Einstein Condensate in a Disordered Potential. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1129053.
Full textConradson, Steven D., and Tomasz Durakiewicz. Emergent Properties of the Bose-Einstein-Hubbard Condensate in UO2(+x). Office of Scientific and Technical Information (OSTI), April 2013. http://dx.doi.org/10.2172/1073727.
Full textKetcham, Peter, David Feder, William Reinhardt, Charles Clark, and William George. Visualization of Bose-Einstein condensates. Gaithersburg, MD: National Institute of Standards and Technology, 1999. http://dx.doi.org/10.6028/nist.ir.6355.
Full textKetcham, Peter M., David L. Feder, Charles W. Clark, Steven G. Satterfield, Terence J. Griffin, William L. Georg, Barry L. Schneider, and William P. Reinhardt. Volume visualization of Bose-Einstein condensates. Gaithersburg, MD: National Institute of Standards and Technology, 2001. http://dx.doi.org/10.6028/nist.ir.6739.
Full textEugene B. Kolomeisky. Physics of Low-Dimensional Bose-Einstein Condensates. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/943978.
Full textCollins, Lee A., and Christopher Ticknor. Phase Transitions in Miscible Two-Component Bose-Einstein Condensates. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1188149.
Full textWatson, Deborah K. A Study of Bose-Einstein Condensates Using Perturbation Theory. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada427774.
Full text