Academic literature on the topic 'Bose-Einstein condensation. Superfluidity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bose-Einstein condensation. Superfluidity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bose-Einstein condensation. Superfluidity"

1

Bunkov, Yuriy M. "Spin superfluidity and magnons Bose–Einstein condensation." Physics-Uspekhi 53, no. 8 (November 15, 2010): 848–53. http://dx.doi.org/10.3367/ufne.0180.201008m.0884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bunkov, Yu M. "Spin superfluidity and magnons Bose - Einstein condensation." Uspekhi Fizicheskih Nauk 180, no. 8 (2010): 884. http://dx.doi.org/10.3367/ufnr.0180.201008m.0884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bunkov, Yuriy M., and Grigory E. Volovik. "Magnon Bose–Einstein condensation and spin superfluidity." Journal of Physics: Condensed Matter 22, no. 16 (March 30, 2010): 164210. http://dx.doi.org/10.1088/0953-8984/22/16/164210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kobayashi, Michikazu, and Makoto Tsubota. "Bose–Einstein condensation and superfluidity of dirty Bose gas." Physica B: Condensed Matter 329-333 (May 2003): 212–13. http://dx.doi.org/10.1016/s0921-4526(02)01962-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stringari, Sandro. "Bose–Einstein condensation and superfluidity in trapped atomic gases." Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2, no. 3 (April 2001): 381–97. http://dx.doi.org/10.1016/s1296-2147(01)01178-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fortin, E., and A. Mysyrowicz. "Bose–Einstein condensation and superfluidity of excitons in Cu2O." Journal of Luminescence 87-89 (May 2000): 12–14. http://dx.doi.org/10.1016/s0022-2313(99)00206-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chela-Flores, J., and H. B. Ghassib. "Solitons, Bose-Einstein condensation, and superfluidity in helium II." International Journal of Theoretical Physics 26, no. 11 (November 1987): 1039–49. http://dx.doi.org/10.1007/bf00669359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nozières, P. "Superfluidity and Bose Einstein Condensation Yesterday, Today and Tomorrow." Journal of Low Temperature Physics 162, no. 3-4 (December 22, 2010): 89–95. http://dx.doi.org/10.1007/s10909-010-0335-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Boudjemâa, Abdelâali. "Superfluidity and Bose–Einstein Condensation in a Dipolar Bose Gas with Weak Disorder." Journal of Low Temperature Physics 180, no. 5-6 (June 10, 2015): 377–93. http://dx.doi.org/10.1007/s10909-015-1312-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

SILVERMAN, M. P. "FERMION CONDENSATION IN A RELATIVISTIC DEGENERATE STAR: ARRESTED COLLAPSE AND MACROSCOPIC EQUILIBRIUM." International Journal of Modern Physics D 15, no. 12 (December 2006): 2257–65. http://dx.doi.org/10.1142/s0218271806009522.

Full text
Abstract:
Fermionic Cooper pairing leading to the BCS-type hadronic superfluidity is believed to account for periodic variations ("glitches") and subsequent slow relaxation in spin rates of neutron stars. Under appropriate conditions, however, fermions can also form a Bose–Einstein condensate of composite bosons. Both types of behavior have recently been observed in tabletop experiments with ultra-cold fermionic atomic gases. Since the behavior is universal (i.e., independent of atomic potential) when the modulus of the scattering length greatly exceeds the separation between particles, one can expect analogous processes to occur within the supradense matter of neutron stars. In this paper, I show how neutron condensation to a Bose–Einstein condensate, in conjunction with relativistically exact expressions for fermion energy and degeneracy pressure and the relations for thermodynamic equilibrium in a spherically symmetric space–time with Schwarzschild metric, leads to stable macroscopic equilibrium states of stars of finite density, irrespective of mass.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Bose-Einstein condensation. Superfluidity"

1

Fletcher, Richard Jonathan. "Bose-Einstein condensation and superfluidity in two dimensions." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Naik, Devang S. "Bose-Einstein Condensation: Building the Testbeds to Study Superfluidity." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-09072006-141453/.

Full text
Abstract:
Thesis (Ph. D.)--Physics, Georgia Institute of Technology, 2007.
Davidovic, Dragomir, Committee Member ; Kennedy, T.A. Brian, Committee Member ; Chapman, Mike, Committee Member ; Raman, Chandra, Committee Chair ; Bunz, Uwe, Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
3

Jackson, Brian. "Vortices in trapped Bose-Einstein condensates." Thesis, Durham University, 2000. http://etheses.dur.ac.uk/4241/.

Full text
Abstract:
In this thesis we solve the Gross-Pitaevskii equation numerically in order to model the response of trapped Bose-Einstein condensed gases to perturbations by electromagnetic fields. First, we simulate output coupling of pulses from the condensate and compare our results to experiments. The excitation and separation of eigen-modes on flow through a constriction is also studied. We then move on to the main theme of this thesis: the important subject of quantised vortices in Bose condensates, and the relation between Bose-Einstein condensation and superfluidity. We propose methods of producing vortex pairs and rings by controlled motion of objects. Full three-dimensional simulations under realistic experimental conditions are performed in order to test the validity of these ideas. We link vortex formation to drag forces on the object, which in turn is connected with energy transfer to the condensate. We therefore argue that vortex formation by moving objects is intimately related to the onset of dissipation in superfluids. We discuss this idea in the context of a recent experiment, using simulations to provide evidence of vortex formation in the experimental scenario. Superfluidity is also manifest in the property of persistent currents, which is linked to vortex stability and dynamics. We simulate vortex line and ring motion, and find in both cases precessional motion and thermodynamic instability to dissipation. Strictly speaking, the Gross-Pitaevskii equation is valid only for temperatures far below the BEG transition. We end the thesis by describing a simple finite- temperature model to describe mean-field coupling between condensed and non- condensed components of the gas. We show that our hybrid Monte-Carlo/FFT technique can describe damping of the lowest energy excitations of the system. Extensions to this model and future research directions are discussed in the conclusion.
APA, Harvard, Vancouver, ISO, and other styles
4

Boţan, Vitalie. "Bose-Einstein Condensation of Magnetic Excitons in Semiconductor Quantum Wells." Doctoral thesis, Uppsala University, Department of Physics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7112.

Full text
Abstract:

In this thesis regimes of quantum degeneracy of electrons and holes in semiconductor quantum wells in a strong magnetic field are studied theoretically. The coherent pairing of electrons and holes results in the formation of Bose-Einstein condensate of magnetic excitons in a single-particle state with wave vector K. We show that correlation effects due to coherent excitations drastically change the properties of excitonic gas, making possible the formation of a novel metastable state of dielectric liquid phase with positive compressibility consisting of condensed magnetoexcitons with finite momentum. On the other hand, virtual transitions to excited Landau levels cause a repulsive interaction between excitons with zero momentum, and the ground state of the system in this case is a Bose condensed gas of weakly repulsive excitons. We introduce explicitly the damping rate of the exciton level and show that three different phases can be realized in a single quantum well depending on the exciton density: excitonic dielectric liquid surrounded by weakly interacting gas of condensed excitons versus metallic electron-hole liquid. In the double quantum well system the phase transition from the excitonic dielectric liquid phase to the crystalline state of electrons and holes is predicted with the increase of the interwell separation and damping rate.

We used a framework of Green's function to investigate the collective elementary excitations of the system in the presence of Bose-Einstein condensate, introducing "anomalous" two-particle Green's functions and symmetry breaking terms into the Hamiltonian. The analytical solution of secular equation was obtained in the Hartree-Fock approximation and energy spectra were calculated. The Coulomb interactions in the system results in a multiple-branch structure of the collective excitations energy spectrum. Systematic classification of the branches is proposed, and the condition of the stability of the condensed excitonic phase is discussed.

APA, Harvard, Vancouver, ISO, and other styles
5

Harutinian, Jorge Amin Seman. "Study of excitations in a Bose-Einstein condensate." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-24102011-140439/.

Full text
Abstract:
In this work we study a Bose-Einstein condensate of 87Rb under the effects of an oscillatory excitation. The condensate is produced through forced evaporative cooling by radio-frequency in a harmonic magnetic trap. The excitation is generated by an oscillatory quadrupole field superimposed on the trapping potential. For a fixed value of the frequency of the excitation we observe the production of different regimes in the condensate as a function of two parameters of the excitation: the time and the amplitude. For the lowest values of these parameters we observe a bending of the main axis of the condensate. This demonstrates that the excitation is able to transfer angular momentum into the sample. By increasing the time or the amplitude of the excitation we observe the nucleation of an increasing number of quantized vortices. If the value of the parameters of the excitation is increased even further the vortices evolve into a different regime which we have identified as quantum turbulence. In this regime, the vortices are tangled among each other, generating a highly irregular array. For the highest values of the excitation the condensate breaks into pieces surrounded by a thermal cloud. This constitutes a different regime which we have identified as granulation. We present numerical simulations together with other theoretical considerations which allow us to interpret our observations. In this thesis we also describe the construction of a second experimental setup whose objective is to study magnetic properties of a Bose-Einstein condensate of 87Rb. In this new system the condensate is produced in a hybrid trap which combines a magnetic trap with an optical dipole trap. Bose-Einstein condensation has been already achieved in the new apparatus; experiments will be performed in the near future.
Neste trabalho, estudamos um condensado de Bose-Einstein de átomos de 87Rb sob os efeitos de uma excitação oscilatória. O condensado é produzido por meio de resfriamento evaporativo por radiofreqüência em uma armadilha magnética harmônica. A excitação é gerada por um campo quadrupolar oscilatório sobreposto ao potencial de aprisionamento. Para um valor fixo da freqüência de excitação, observamos a produção de diferentes regimes no condensado como função de dois parâmetros da excitação, a saber, o tempo e a amplitude. Para os valores mais baixos destes parâmetros observamos a inclinação do eixo principal do condensado, isto demonstra que a excitação transfere momento angular à amostra. Ao aumentar o tempo ou a amplitude da excitação observamos a nucleação de um número crescente de vórtices quantizados. Se incrementarmos ainda mais o valor dos parâmetros da excitação, os vórtices evoluem para um novo regime que identificamos como turbulência quântica. Neste regime, os vórtices se encontram emaranhados entre si, dando origem a um arranjo altamente irregular. Para os valores mais altos da excitação o condensado se quebra em pedaços rodeados por uma nuvem térmica. Isto constitui um novo regime que identificamos como a granulação do condensado. Apresentamos simulações numéricas junto com outras considerações teóricas que nos permitem interpretar as nossas observações. Nesta tese, apresentamos ainda a descrição da montagem de um segundo sistema experimental cujo objetivo é o de estudar propriedades magnéticas de um condensado de Bose-Einstein de 87Rb. Neste novo sistema o condensado é produzido em uma armadilha híbrida composta por uma armadilha magnética junto com uma armadilha óptica de dipolo. A condensação de Bose-Einstein foi já observada neste novo sistema, os experimentos serão realizados no futuro próximo.
APA, Harvard, Vancouver, ISO, and other styles
6

Morgan, Samuel Alexander. "A gapless theory of Bose-Einstein condensation in dilute gases at finite temperature." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rota, Riccardo. "Path Integral Monte Carlo and Bose-Einstein condensation in quantum fluids and solids." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/70010.

Full text
Abstract:
Several microscopic theories point out that Bose-Einstein condensation (BEC), i.e., a macroscopic occupation of the lowest energy single particle state in many-boson systems, may appear also in quantum fluids and solids and that it is at the origin of the phenomenon of superfluidity. Nevertheless, the connection between BEC and superfluidity is still matter of debate, since the experimental evidences indicating a non zero condensate fraction in superfluid helium are only indirect. In the theoretical study of BEC in quantum fluids and solids, perturbative approaches are useless because of the strong correlations between the atoms, arising both from the interatomic potential and from the quantum nature of the system. Microscopic Quantum Monte Carlo simulations provide a reliable description of these systems. In particular, the Path Integral Monte Carlo (PIMC) method is very suitable for this purpose. This method is able to provide exact results for the properties of the quantum system, both at zero and finite temperature, only with the definition of the Hamiltonian and of the symmetry properties of the system, giving an easy picture for superfluidity and BEC in many-boson systems. In this thesis, we apply PIMC methods to the study of several quantum fluids and solids. We describe in detail all the features of PIMC, from the sampling methods to the estimators of the physical properties. We present also the most recent techniques, such as the high-order approximations for the thermal density matrix and the worm algorithm, used in PIMC to provide reliable simulations. We study the liquid phase of condensed 4He, providing unbiased estimations of the one-body density matrix g1(r). We analyze the model for g1(r) used to fit the experimental data, highlighting its merits and its faults. In particular we see that, even if it presents some difficulties in the description of the overall behavior of g1(r), it can provide an accurate estimation of the kinetic energy K and of the condensate fraction n0 of the system. Furthermore, we show that our results for n0 as a function of the pressure are in a good agreement with the most recent experimental results. The study of the solid phase of 4He is the most significant part of this thesis. The recent observation of non classical rotational inertia (NCRI) effects in solid helium has generated big interest in the study of an eventual supersolid phase, characterized at the same time by crystalline order and superfluidity. Nevertheless, until now it has been impossible to give a theoretical model able to describe all the experimental evidences. In this work, we perform PIMC simulations of 4He at high densities, according to different microscopic configurations of the atoms. In commensurate crystals we see that BEC does not appear, our model being able to reproduce the momentum distribution obtained form neutron scattering experiments. In a crystal with vacancies, we have been able to see a transition to a superfluid phase at temperatures in agreement with experimental results if the vacancy concentration is low enough. In amorphous solids, superfluid effects are enhanced but appear at temperatures higher than the experimental estimation for the transition temperature. Finally, we study also metastable disordered configurations in molecular para-hydrogen at low temperature. The aim of this study is to investigate if a Bose liquid other than helium can display superfluidity. Choosing accurately a ¿quantum liquid¿ initial configuration and the dimensions of the simulation box, we have been able to frustrate the formation of the crystal and to calculate the temperature dependence of the superfluid density, showing a transition to a superfluid phase at temperatures close to 1 K.
APA, Harvard, Vancouver, ISO, and other styles
8

Dang, Suzanne. "Exploration de la transition Berezinskii-Kosterlitz-Thouless avec des excitons dipolaires." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS385/document.

Full text
Abstract:
Ces travaux sont consacrés à l'étude d'un gaz d'excitons bidimensionnel créé dans un double puits quantique de semi-conducteurs. Grâce à un champ électrique appliqué perpendiculairement au plan des puits, les deux composants de l'exciton, l'électron et le trou, sont chacun confinés dans deux puits séparés. Ceci donne lieu à des excitons avec un fort moment dipolaire qui sont piégés et refroidis à très basse température. Dans ce manuscrit, nous étudions les propriétés du gaz d'excitons à travers la photoluminescence émise lors de la recombinaison des paires électron-trou, que nous analysons grâce à des mesures spectroscopiques et interférométriques. Ainsi, nous avons étudié la thermodynamique du gaz d'excitons dans un piège harmonique et établi son équation d'état. Nous avons dévoilé l'universalité de l'équation d'état ce qui a rendu possible la première démonstration de l'équilibre thermodynamique du gaz et a aussi permis d'évaluer la force des interactions entre excitons. En associant des mesures de cohérence spatiale et l'étude de la distribution de défauts de densité dans la photoluminescence des excitons, nous avons montré que dans une zone centrale du piège de rayon R < 3 µm, il s'opère conjointement une augmentation du niveau de cohérence et une diminution de la densité de défauts. Des travaux précédents ayant montré que ces défauts pouvaient constituer des défauts topologiques appelés vortex, nos observations constituent ainsi un ensemble de preuves de l'établissement d'un état superfluide dans la partie centrale du piège, en accord avec la théorie prédite par Berezinskii-Kosterlitz et Thouless
This work is devoted to the study of a two dimensional exciton gas created in a semiconductordouble quantum wells. Thanks to an electric field applied perpendicular to these layers,the exciton constituents, namely, the electron and the hole, are confined each in one quantumwell so that excitons inherit a strong electric dipole. In this manuscript, we study the propertiesof such exciton gas trapped at very low temperature, through the photoluminescence emittedby electron-hole recombinations. We particularly study the emitted light using spectroscopic andinterferometric techniques. Thus, we explore the thermodynamics of a trapped gas and quantifyits equation of state. We unveil an important feature: the universality of the equation of state,which allows the first demonstration of thermodynamic equilibrium for excitons, and we realizea direct measurement of the excitons dipolar interaction strength. By probing both the spatialcoherence and the density of defects of the excitons photoluminescence, we show that it exists acentral region (R < 3 μm) in an exciton trap where a high degree of spatial coherence is conditionedby a decrease of the defects density. Our experiments thus provide a set of evidences pointingtowards a Berezinskii-Kosterlitz-Thouless transition for trapped 2D exciton gas
APA, Harvard, Vancouver, ISO, and other styles
9

Chomaz, Lauriane. "Cohérence et Superfluidité de gaz de Bose en dimension réduite : des pièges harmoniques aux fluides uniformes." Thesis, Paris, Ecole normale supérieure, 2014. http://www.theses.fr/2014ENSU0013/document.

Full text
Abstract:
La dimensionnalité d’un système affecte fortement ses propriétés physiques ; les transitions de phasequi s’y déroulent ainsi que le type d’ordre qui y apparaît dépendent de la dimension. Dans les systèmesde basse dimension, la cohérence s’avère plus difficile à établir car les fluctuations thermiques etquantiques y jouent un rôle plus important. Le fluide de Bose à deux dimensions est particulièrementintéressant car, même si un ordre total est exclu, un ordre résiduel à « quasi-longue » portée s’établit àbasse température. Deux ingrédients ont un effet significatif sur l’état du système : (i) la taille finie d’unsystème réel permet de retrouver une occupation macroscopique d’un état à une particule ; (ii) les interactionsentre particules conduisent à l’apparition d’un type non-conventionnel de transition de phasevers un état superfluide.Dans cette thèse, nous présentons une étude expérimentale du gaz de Bose bidimensionnel (2D) utilisantdeux types de paysages énergétiques pour piéger nos atomes. Dans la première partie, nous utilisonsla dépendance spatiale de certaines propriétés locales d’un gaz inhomogène pour caractériser l’étatdu système homogène équivalent. Nous extrayons son équation d’état des profils de densité et noustestons son comportement superfluide en mesurant le chauffage induit par le mouvement d’une perturbationlocale. Dans la deuxième partie, nous observons et caractérisons l’émergence d’une cohérencede phase étendue dans un gaz 2D homogène, en particulier via le passage de trois dimensions à deux(croisement dimensionnel). Nous étudions l’établissement dynamique de la cohérence par un passagerapide du croisement dimensionnel et nous observons des défauts topologiques dans l’état superfluidefinal. Nous comparons nos résultats avec les prédictions du mécanisme de Kibble–Zurek
The dimensionality of a system strongly affects its physical properties; the phase transitions that takeplace and the type of order that arises depend on the dimension. In low dimensional systems phasecoherence proves more difficult to achieve as both thermal and quantum fluctuations play a strongerrole. The two-dimensional Bose fluid is of particular interest as even if full order is precluded, a residual"quasi-long" range order arises at low temperatures. Then two ingredients have a significant effecton the state of the system: (i) the finite size of a real system enables one to recover of a macroscopicoccupation of a single-particle state; (ii) the interactions between particles lead to the emergence of anon-conventional type of phase transition toward a superfluid state.In this thesis, we present an experimental study of the two-dimensional (2D) Bose gas using two differentenergy landscapes to trap our atoms. In the first part, we use the spatial dependence of somelocal properties of an inhomogeneous gas to characterize the state of the equivalent homogeneous system.We extract its equation of state with a high accuracy from the gas density profiles and test itssuperfluid behavior by measuring the heating induced by a moving local perturbation. In the secondpart, we observe and characterize the emergence of an extended phase coherence in a 2D homogeneousgas in particular via a 3D-to-2D dimensional crossover. We investigate the dynamical establishment ofthe coherence via a rapid crossing of the dimensional crossover and observe topological defects in thefinal superfluid state. We compare our findings with the predictions for the Kibble–Zurek mechanism
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Wei. "Triplet Superfluidity in Quasi-one-dimensional Conductors and Ultra-cold Fermi Gases." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14139.

Full text
Abstract:
This thesis presents theoretical investigations of triplet superfluidity (triplet superconductivity) in quasi-one-dimensional organic conductors and ultra-cold Fermi gases. Triplet superfluidity is different from its s-wave singlet counterpart since the order parameter is a complex vector and the interaction between fermions is in general anisotropic. Because of these distinctions, triplet superfluids have different physical properties in comparison to the s-wave case. The author discusses in this thesis the interplay between triplet superconductivity and spin density waves in quasi-one-dimensional organic conductors, and proposes a coexistence region of the two orders. Within the coexistence region, the interaction between the two order parameters acquires a vector structure, and induces an anomalous magnetic field effect. Furthermore, the author analyzes the matter-wave interference between two p-wave Fermi condensates, and proposes a polarization effect. For a single harmonically trapped p-wave Fermi condensate, the author also shows that the expansion upon release from the trap can be anisotropic, which reflects the anisotropy of the p-wave interaction.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Bose-Einstein condensation. Superfluidity"

1

Sasaki, Shōsuke. Bose-Einstein condensation and superfluidity. Nomi, Ishikawa, Japan: JAIST Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stringari, S. L'aventure des gaz ultra-froids: Condensation de Bose-Einstein et superfluidité : chaire européenne 2004-2005. Paris: Collège de France, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Griffin, Allan. Excitations in a Bose-condensed liquid. Cambridge [England]: Cambridge University Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tetsuro, Nikuni, and Zaremba Eugene 1946-, eds. Bose-condensed gases at finite temperatures. Cambridge: Cambridge University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pitaevskii, Lev, and Sandro Stringari. Bose-Einstein Condensation and Superfluidity. Oxford University Press, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bose-Einstein Condensation and Superfluidity. Oxford University Press, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Superconductivity, Superfluids, and Condensates (Oxford Master Series in Condensed Matter Physics). Oxford University Press, USA, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Superconductivity, Superfluids, and Condensates (Oxford Master Series in Condensed Matter Physics). Oxford University Press, USA, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Griffin, Allan. Excitations in a Bose-condensed Liquid (Cambridge Studies in Low Temperature Physics). Cambridge University Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Superfluid States of Matter. Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bose-Einstein condensation. Superfluidity"

1

Kagan, M. Yu. "Bose–Einstein Condensation and Feshbach Resonance in Ultracold Quantum Gases and Mixtures." In Modern trends in Superconductivity and Superfluidity, 153–80. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6961-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nozières, Philippe. "Bose-Einstein Condensation and Quantum Coherence: From Superfluidity to Localization,from Fermi Liquids to Superconductors." In Poincaré Seminar 2003, 85–98. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7932-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fortin, E., E. Benson, and A. Mysyrowicz. "Excitonic Superfluidity in Cu2O." In Bose-Einstein Condensation, 519–23. Cambridge University Press, 1995. http://dx.doi.org/10.1017/cbo9780511524240.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Kerson. "Bose–Einstein Condensation and Superfluidity." In Bose-Einstein Condensation, 31–50. Cambridge University Press, 1995. http://dx.doi.org/10.1017/cbo9780511524240.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pitaevskii, Lev, and Sandro Stringari. "Superfluidity." In Bose-Einstein Condensation and Superfluidity, 65–88. Oxford University Press, 2016. http://dx.doi.org/10.1093/acprof:oso/9780198758884.003.0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hellmich, A., G. Röpke, A. Schnell, and H. Stein. "Onset of Superfluidity in Nuclear Matter." In Bose-Einstein Condensation, 584–94. Cambridge University Press, 1995. http://dx.doi.org/10.1017/cbo9780511524240.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Röpke, G. "Bound States and Superfluidity in Strongly Coupled Fermion Systems." In Bose-Einstein Condensation, 574–83. Cambridge University Press, 1995. http://dx.doi.org/10.1017/cbo9780511524240.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Superfluidity." In Bose–Einstein Condensation in Dilute Gases, 264–88. Cambridge University Press, 2001. http://dx.doi.org/10.1017/cbo9780511755583.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Silvera, Isaac F. "Spin-Polarized Hydrogen: Prospects for Bose–Einstein Condensation and Two-Dimensional Superfluidity." In Bose-Einstein Condensation, 160–72. Cambridge University Press, 1995. http://dx.doi.org/10.1017/cbo9780511524240.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Bose–Einstein Condensation and Superfluidity." In Modern Condensed Matter Physics, 531–48. Cambridge University Press, 2019. http://dx.doi.org/10.1017/9781316480649.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bose-Einstein condensation. Superfluidity"

1

Llano, M. de, Rocio R. Jauregui, Jose A. Recamier, and Oscar Rosas-Ortiz. "Generalized Bose-Einstein condensation in superconductivity and superfluidity." In LATIN-AMERICAN SCHOOL OF PHYSICS XXXVIII ELAF: Quantum Information and Quantum Cold Matter. AIP, 2008. http://dx.doi.org/10.1063/1.2907757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

ISAYEV, A. A. "CROSSOVER FROM NEUTRON–PROTON SUPERFLUIDITY TO BOSE–EINSTEIN CONDENSATION OF DEUTERONS IN NUCLEAR MATTER." In Proceedings of the Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705129_0033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography