Academic literature on the topic 'Bose-Einstein condensation. Superfluidity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bose-Einstein condensation. Superfluidity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bose-Einstein condensation. Superfluidity"
Bunkov, Yuriy M. "Spin superfluidity and magnons Bose–Einstein condensation." Physics-Uspekhi 53, no. 8 (November 15, 2010): 848–53. http://dx.doi.org/10.3367/ufne.0180.201008m.0884.
Full textBunkov, Yu M. "Spin superfluidity and magnons Bose - Einstein condensation." Uspekhi Fizicheskih Nauk 180, no. 8 (2010): 884. http://dx.doi.org/10.3367/ufnr.0180.201008m.0884.
Full textBunkov, Yuriy M., and Grigory E. Volovik. "Magnon Bose–Einstein condensation and spin superfluidity." Journal of Physics: Condensed Matter 22, no. 16 (March 30, 2010): 164210. http://dx.doi.org/10.1088/0953-8984/22/16/164210.
Full textKobayashi, Michikazu, and Makoto Tsubota. "Bose–Einstein condensation and superfluidity of dirty Bose gas." Physica B: Condensed Matter 329-333 (May 2003): 212–13. http://dx.doi.org/10.1016/s0921-4526(02)01962-2.
Full textStringari, Sandro. "Bose–Einstein condensation and superfluidity in trapped atomic gases." Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2, no. 3 (April 2001): 381–97. http://dx.doi.org/10.1016/s1296-2147(01)01178-7.
Full textFortin, E., and A. Mysyrowicz. "Bose–Einstein condensation and superfluidity of excitons in Cu2O." Journal of Luminescence 87-89 (May 2000): 12–14. http://dx.doi.org/10.1016/s0022-2313(99)00206-9.
Full textChela-Flores, J., and H. B. Ghassib. "Solitons, Bose-Einstein condensation, and superfluidity in helium II." International Journal of Theoretical Physics 26, no. 11 (November 1987): 1039–49. http://dx.doi.org/10.1007/bf00669359.
Full textNozières, P. "Superfluidity and Bose Einstein Condensation Yesterday, Today and Tomorrow." Journal of Low Temperature Physics 162, no. 3-4 (December 22, 2010): 89–95. http://dx.doi.org/10.1007/s10909-010-0335-8.
Full textBoudjemâa, Abdelâali. "Superfluidity and Bose–Einstein Condensation in a Dipolar Bose Gas with Weak Disorder." Journal of Low Temperature Physics 180, no. 5-6 (June 10, 2015): 377–93. http://dx.doi.org/10.1007/s10909-015-1312-z.
Full textSILVERMAN, M. P. "FERMION CONDENSATION IN A RELATIVISTIC DEGENERATE STAR: ARRESTED COLLAPSE AND MACROSCOPIC EQUILIBRIUM." International Journal of Modern Physics D 15, no. 12 (December 2006): 2257–65. http://dx.doi.org/10.1142/s0218271806009522.
Full textDissertations / Theses on the topic "Bose-Einstein condensation. Superfluidity"
Fletcher, Richard Jonathan. "Bose-Einstein condensation and superfluidity in two dimensions." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709200.
Full textNaik, Devang S. "Bose-Einstein Condensation: Building the Testbeds to Study Superfluidity." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-09072006-141453/.
Full textDavidovic, Dragomir, Committee Member ; Kennedy, T.A. Brian, Committee Member ; Chapman, Mike, Committee Member ; Raman, Chandra, Committee Chair ; Bunz, Uwe, Committee Member.
Jackson, Brian. "Vortices in trapped Bose-Einstein condensates." Thesis, Durham University, 2000. http://etheses.dur.ac.uk/4241/.
Full textBoţan, Vitalie. "Bose-Einstein Condensation of Magnetic Excitons in Semiconductor Quantum Wells." Doctoral thesis, Uppsala University, Department of Physics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7112.
Full textIn this thesis regimes of quantum degeneracy of electrons and holes in semiconductor quantum wells in a strong magnetic field are studied theoretically. The coherent pairing of electrons and holes results in the formation of Bose-Einstein condensate of magnetic excitons in a single-particle state with wave vector K. We show that correlation effects due to coherent excitations drastically change the properties of excitonic gas, making possible the formation of a novel metastable state of dielectric liquid phase with positive compressibility consisting of condensed magnetoexcitons with finite momentum. On the other hand, virtual transitions to excited Landau levels cause a repulsive interaction between excitons with zero momentum, and the ground state of the system in this case is a Bose condensed gas of weakly repulsive excitons. We introduce explicitly the damping rate of the exciton level and show that three different phases can be realized in a single quantum well depending on the exciton density: excitonic dielectric liquid surrounded by weakly interacting gas of condensed excitons versus metallic electron-hole liquid. In the double quantum well system the phase transition from the excitonic dielectric liquid phase to the crystalline state of electrons and holes is predicted with the increase of the interwell separation and damping rate.
We used a framework of Green's function to investigate the collective elementary excitations of the system in the presence of Bose-Einstein condensate, introducing "anomalous" two-particle Green's functions and symmetry breaking terms into the Hamiltonian. The analytical solution of secular equation was obtained in the Hartree-Fock approximation and energy spectra were calculated. The Coulomb interactions in the system results in a multiple-branch structure of the collective excitations energy spectrum. Systematic classification of the branches is proposed, and the condition of the stability of the condensed excitonic phase is discussed.
Harutinian, Jorge Amin Seman. "Study of excitations in a Bose-Einstein condensate." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-24102011-140439/.
Full textNeste trabalho, estudamos um condensado de Bose-Einstein de átomos de 87Rb sob os efeitos de uma excitação oscilatória. O condensado é produzido por meio de resfriamento evaporativo por radiofreqüência em uma armadilha magnética harmônica. A excitação é gerada por um campo quadrupolar oscilatório sobreposto ao potencial de aprisionamento. Para um valor fixo da freqüência de excitação, observamos a produção de diferentes regimes no condensado como função de dois parâmetros da excitação, a saber, o tempo e a amplitude. Para os valores mais baixos destes parâmetros observamos a inclinação do eixo principal do condensado, isto demonstra que a excitação transfere momento angular à amostra. Ao aumentar o tempo ou a amplitude da excitação observamos a nucleação de um número crescente de vórtices quantizados. Se incrementarmos ainda mais o valor dos parâmetros da excitação, os vórtices evoluem para um novo regime que identificamos como turbulência quântica. Neste regime, os vórtices se encontram emaranhados entre si, dando origem a um arranjo altamente irregular. Para os valores mais altos da excitação o condensado se quebra em pedaços rodeados por uma nuvem térmica. Isto constitui um novo regime que identificamos como a granulação do condensado. Apresentamos simulações numéricas junto com outras considerações teóricas que nos permitem interpretar as nossas observações. Nesta tese, apresentamos ainda a descrição da montagem de um segundo sistema experimental cujo objetivo é o de estudar propriedades magnéticas de um condensado de Bose-Einstein de 87Rb. Neste novo sistema o condensado é produzido em uma armadilha híbrida composta por uma armadilha magnética junto com uma armadilha óptica de dipolo. A condensação de Bose-Einstein foi já observada neste novo sistema, os experimentos serão realizados no futuro próximo.
Morgan, Samuel Alexander. "A gapless theory of Bose-Einstein condensation in dilute gases at finite temperature." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302178.
Full textRota, Riccardo. "Path Integral Monte Carlo and Bose-Einstein condensation in quantum fluids and solids." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/70010.
Full textDang, Suzanne. "Exploration de la transition Berezinskii-Kosterlitz-Thouless avec des excitons dipolaires." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS385/document.
Full textThis work is devoted to the study of a two dimensional exciton gas created in a semiconductordouble quantum wells. Thanks to an electric field applied perpendicular to these layers,the exciton constituents, namely, the electron and the hole, are confined each in one quantumwell so that excitons inherit a strong electric dipole. In this manuscript, we study the propertiesof such exciton gas trapped at very low temperature, through the photoluminescence emittedby electron-hole recombinations. We particularly study the emitted light using spectroscopic andinterferometric techniques. Thus, we explore the thermodynamics of a trapped gas and quantifyits equation of state. We unveil an important feature: the universality of the equation of state,which allows the first demonstration of thermodynamic equilibrium for excitons, and we realizea direct measurement of the excitons dipolar interaction strength. By probing both the spatialcoherence and the density of defects of the excitons photoluminescence, we show that it exists acentral region (R < 3 μm) in an exciton trap where a high degree of spatial coherence is conditionedby a decrease of the defects density. Our experiments thus provide a set of evidences pointingtowards a Berezinskii-Kosterlitz-Thouless transition for trapped 2D exciton gas
Chomaz, Lauriane. "Cohérence et Superfluidité de gaz de Bose en dimension réduite : des pièges harmoniques aux fluides uniformes." Thesis, Paris, Ecole normale supérieure, 2014. http://www.theses.fr/2014ENSU0013/document.
Full textThe dimensionality of a system strongly affects its physical properties; the phase transitions that takeplace and the type of order that arises depend on the dimension. In low dimensional systems phasecoherence proves more difficult to achieve as both thermal and quantum fluctuations play a strongerrole. The two-dimensional Bose fluid is of particular interest as even if full order is precluded, a residual"quasi-long" range order arises at low temperatures. Then two ingredients have a significant effecton the state of the system: (i) the finite size of a real system enables one to recover of a macroscopicoccupation of a single-particle state; (ii) the interactions between particles lead to the emergence of anon-conventional type of phase transition toward a superfluid state.In this thesis, we present an experimental study of the two-dimensional (2D) Bose gas using two differentenergy landscapes to trap our atoms. In the first part, we use the spatial dependence of somelocal properties of an inhomogeneous gas to characterize the state of the equivalent homogeneous system.We extract its equation of state with a high accuracy from the gas density profiles and test itssuperfluid behavior by measuring the heating induced by a moving local perturbation. In the secondpart, we observe and characterize the emergence of an extended phase coherence in a 2D homogeneousgas in particular via a 3D-to-2D dimensional crossover. We investigate the dynamical establishment ofthe coherence via a rapid crossing of the dimensional crossover and observe topological defects in thefinal superfluid state. We compare our findings with the predictions for the Kibble–Zurek mechanism
Zhang, Wei. "Triplet Superfluidity in Quasi-one-dimensional Conductors and Ultra-cold Fermi Gases." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14139.
Full textBooks on the topic "Bose-Einstein condensation. Superfluidity"
Sasaki, Shōsuke. Bose-Einstein condensation and superfluidity. Nomi, Ishikawa, Japan: JAIST Press, 2008.
Find full textStringari, S. L'aventure des gaz ultra-froids: Condensation de Bose-Einstein et superfluidité : chaire européenne 2004-2005. Paris: Collège de France, 2005.
Find full textGriffin, Allan. Excitations in a Bose-condensed liquid. Cambridge [England]: Cambridge University Press, 1993.
Find full textTetsuro, Nikuni, and Zaremba Eugene 1946-, eds. Bose-condensed gases at finite temperatures. Cambridge: Cambridge University Press, 2009.
Find full textPitaevskii, Lev, and Sandro Stringari. Bose-Einstein Condensation and Superfluidity. Oxford University Press, 2016.
Find full textSuperconductivity, Superfluids, and Condensates (Oxford Master Series in Condensed Matter Physics). Oxford University Press, USA, 2004.
Find full textSuperconductivity, Superfluids, and Condensates (Oxford Master Series in Condensed Matter Physics). Oxford University Press, USA, 2004.
Find full textGriffin, Allan. Excitations in a Bose-condensed Liquid (Cambridge Studies in Low Temperature Physics). Cambridge University Press, 2005.
Find full textBook chapters on the topic "Bose-Einstein condensation. Superfluidity"
Kagan, M. Yu. "Bose–Einstein Condensation and Feshbach Resonance in Ultracold Quantum Gases and Mixtures." In Modern trends in Superconductivity and Superfluidity, 153–80. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6961-8_5.
Full textNozières, Philippe. "Bose-Einstein Condensation and Quantum Coherence: From Superfluidity to Localization,from Fermi Liquids to Superconductors." In Poincaré Seminar 2003, 85–98. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7932-3_5.
Full textFortin, E., E. Benson, and A. Mysyrowicz. "Excitonic Superfluidity in Cu2O." In Bose-Einstein Condensation, 519–23. Cambridge University Press, 1995. http://dx.doi.org/10.1017/cbo9780511524240.029.
Full textHuang, Kerson. "Bose–Einstein Condensation and Superfluidity." In Bose-Einstein Condensation, 31–50. Cambridge University Press, 1995. http://dx.doi.org/10.1017/cbo9780511524240.005.
Full textPitaevskii, Lev, and Sandro Stringari. "Superfluidity." In Bose-Einstein Condensation and Superfluidity, 65–88. Oxford University Press, 2016. http://dx.doi.org/10.1093/acprof:oso/9780198758884.003.0006.
Full textHellmich, A., G. Röpke, A. Schnell, and H. Stein. "Onset of Superfluidity in Nuclear Matter." In Bose-Einstein Condensation, 584–94. Cambridge University Press, 1995. http://dx.doi.org/10.1017/cbo9780511524240.038.
Full textRöpke, G. "Bound States and Superfluidity in Strongly Coupled Fermion Systems." In Bose-Einstein Condensation, 574–83. Cambridge University Press, 1995. http://dx.doi.org/10.1017/cbo9780511524240.037.
Full text"Superfluidity." In Bose–Einstein Condensation in Dilute Gases, 264–88. Cambridge University Press, 2001. http://dx.doi.org/10.1017/cbo9780511755583.011.
Full textSilvera, Isaac F. "Spin-Polarized Hydrogen: Prospects for Bose–Einstein Condensation and Two-Dimensional Superfluidity." In Bose-Einstein Condensation, 160–72. Cambridge University Press, 1995. http://dx.doi.org/10.1017/cbo9780511524240.010.
Full text"Bose–Einstein Condensation and Superfluidity." In Modern Condensed Matter Physics, 531–48. Cambridge University Press, 2019. http://dx.doi.org/10.1017/9781316480649.019.
Full textConference papers on the topic "Bose-Einstein condensation. Superfluidity"
Llano, M. de, Rocio R. Jauregui, Jose A. Recamier, and Oscar Rosas-Ortiz. "Generalized Bose-Einstein condensation in superconductivity and superfluidity." In LATIN-AMERICAN SCHOOL OF PHYSICS XXXVIII ELAF: Quantum Information and Quantum Cold Matter. AIP, 2008. http://dx.doi.org/10.1063/1.2907757.
Full textISAYEV, A. A. "CROSSOVER FROM NEUTRON–PROTON SUPERFLUIDITY TO BOSE–EINSTEIN CONDENSATION OF DEUTERONS IN NUCLEAR MATTER." In Proceedings of the Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705129_0033.
Full text