Contents
Academic literature on the topic 'Bose-Einstein-Kondensat'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bose-Einstein-Kondensat.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bose-Einstein-Kondensat"
Klaers, Jan, Julian Schmitt, Frank Vewinger, and Martin Weitz. "Bose-Einstein-Kondensat aus Licht." Physik in unserer Zeit 42, no. 2 (March 2011): 58–59. http://dx.doi.org/10.1002/piuz.201190007.
Full textBalewski, Jonathan, and Sebastian Hofferberth. "Riesenatom im Bose-Einstein-Kondensat." Physik in unserer Zeit 45, no. 2 (March 2014): 59–60. http://dx.doi.org/10.1002/piuz.201490027.
Full textBrand, Joachim. "Solitonenkollisionen im Bose-Einstein-Kondensat." Physik in unserer Zeit 36, no. 3 (May 2005): 110. http://dx.doi.org/10.1002/piuz.200590039.
Full textWildermuth, Stephan, and Jörg Schmiedmayer. "Bose-Einstein-Kondensat als Magnetfeldsensor." Physik in unserer Zeit 37, no. 6 (November 2006): 258. http://dx.doi.org/10.1002/piuz.200690104.
Full textWurstbauer, Ursula, and Alexander W. Holleitner. "Bose‐Einstein‐Kondensat aus Exzitonen?" Physik in unserer Zeit 52, no. 3 (May 2021): 140–45. http://dx.doi.org/10.1002/piuz.202101600.
Full textZiegler, Thomas. "Helle Solitonen in Bose-Einstein-Kondensat." Physik in unserer Zeit 33, no. 4 (July 2002): 154. http://dx.doi.org/10.1002/1521-3943(200207)33:4<154::aid-piuz154>3.0.co;2-s.
Full textEiermann, Bernd, and Markus Oberthaler. "Solitonen im Bose-Einstein-Kondensat: Nichtlineare Materiewellenoptik." Physik in unserer Zeit 37, no. 4 (July 2006): 184–90. http://dx.doi.org/10.1002/piuz.200601100.
Full textGörlitz, Axel, and Tilman Pfau. "Quantenoptik: Ein Verstärker für Materie- und Lichtwellen: Ein beleuchtetes Bose-Einstein-Kondensat vermag Lichtpulse abzubremsen sowie Licht- und Materiewellen zu verstärken." Physik Journal 57, no. 5 (May 2001): 55–59. http://dx.doi.org/10.1002/phbl.20010570521.
Full textKock, Holger, Alexander Pawlak, Marc-Denis Weitze, Dieter Hoffmann, Rainer Scharf, and Thomas Otto. "Physik-Nobelpreis für Bose-Einstein-Kondensat/Kurzgefasst…/Physik und Leben: „Highlights der Physik”︁ zum „Jahr der Lebenswissenschaften”︁ im Deutschen Museum in München/Kurzgefasst…/Helmholtz-Gemeinschaft beginnt Umstrukturierung/Wissenschaft schnuppert." Physik Journal 57, no. 11 (November 2001): 6–14. http://dx.doi.org/10.1002/phbl.20010571103.
Full text"Mikrowellen manipulieren Bose-Einstein-Kondensat." Physik in unserer Zeit 40, no. 5 (September 2009): 227. http://dx.doi.org/10.1002/piuz.200990088.
Full textDissertations / Theses on the topic "Bose-Einstein-Kondensat"
Schuster, Johannes. "Stosslawinen in einem Bose-Einstein-Kondensat." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965104060.
Full textSchuster, Johannes. "Stoßlawinen in einem Bose-Einstein-Kondensat /." [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10151318.
Full textHenkel, Nils. "Rydberg-dressed Bose-Einstein condensates." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-130499.
Full textLewoczko-Adamczyk, Wojciech. "Bose-Einstein condensation in microgravity." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2009. http://dx.doi.org/10.18452/15970.
Full textRecently, cooling, trapping and manipulation of neutral atoms and ions has become an especially active field of quantum physics. The main motivation for the cooling is to reduce motional effects in high precision measurements including spectroscopy, atomic clocks and matter interferometry. The spectrum of applications of these quantum devices cover a broad area from geodesy, through metrology up to addressing the fundamental questions in physics, as for instance testing the Einstein’s equivalence principle. However, the unprecedented precision of the quantum sensors is limited in terrestial laboratories. Freezing atomic motion can be nowadays put to the limit at which gravity becomes a major perturbation in a system. Gravity can significantly affect and disturb the trapping potential. This limits the use of ultra-shallow traps for low energetic particles. Moreover, free particles are accelerated by gravitational force, which substantially limits the observation time. Targeting the long-term goal of studying cold quantum gases on a space platform, we currently focus on the implementation of a Bose-Einstein condensate (BEC) experiment under microgravity conditions at the drop tower in Bremen. Special challenges in the construction of the experimental setup are posed by a low volume of the drop capsule as well as critical decelerations up to 50g during recapture at the bottom of the tower. All mechanical and electronic components were thus been designed with stringent demands on miniaturization and mechanical stability. This work reports on the observation of a BEC released from an ultra-shallow magnetic potential and freely expanding for one second. Both, the low trapping frequency and long expansion time are not achievable in any earthbound laboratory. This unprecedented time of free evolution leads to new possibilities for the study of BEC-coherence. It can also be applied to enhance the sensitivity of inertial quantum sensors based on ultra-cold matter waves.
Lettner, Matthias [Verfasser], Gerhard Akademischer Betreuer] Rempe, and Rudolf [Akademischer Betreuer] [Gross. "Ein Bose-Einstein-Kondensat als Quantenspeicher für Zwei-Teilchen-Verschränkung / Matthias Lettner. Gutachter: Gerhard Rempe ; Rudolf Gross. Betreuer: Gerhard Rempe." München : Universitätsbibliothek der TU München, 2011. http://d-nb.info/1015629148/34.
Full textSimon, Lena. "Semiklassische Dynamik ultrakalter Bose-Gase." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-106246.
Full textThe dynamics of initially non equilibrium interacting quantum many body systems is an ongoing and interesting field of research. It is still an open question in which form relaxation occurs in such systems, and in which observables and on which timescales a possible thermalization might appear. A perfect playground for the investigations of relaxation dynamics in interacting many body schemes is provided by ultracold quantum gases, which are easily to be controlled and varied in experiments. However, a general theoretical framework for the investigation of such processes is still missing, due to the huge amount of involved degrees of freedom. One of the main theoretical tools in the field of ultracold bosonic gases represents the famous Gross-Pitaevskii equation, a field equation for the Bose-Einstein condensate wave function in terms of a mean-field approximation. However, the underlying approximation prevents the possibility to draw non-trivial conclusions about the full N-particle state, the information of which is necessary for the analysis of relaxation processes. To gain the theoretical description of the full bosonic field, the present thesis deals with the application of semiclassical methods to ultracold boson gases. Those techniques become in general exact, as long as the involved actions are large compared to Planck's constant. For many body systems it turns out that semiclassics are expected to give good results also for the condition of high particle numbers, which is precisely fulfilled in these schemes, making the semiclassical approaches promising. As an essential model system an initially out of equilibrium ultracold bosonic double-well system is investigated. This configuration provides highly interesting dynamics due to the interplay of the tunneling dynamics on the one hand and the interaction amongst the particles on the other. The special trap geometry makes exact numerical calculations in the framework of the two-mode approximation available, which serve in the following as reference data. By applying the common semiclassical WKB approximation and the reflection principle known from molecule physics, a closed analytical expression for the so-called population imbalance of the bosons in the double-well is derived, depending only on the few relevant system parameters. This mighty formula allows for the first time the quantitative investigation of the characteristic sequence consisting of oscillations, collapse and revivals in dependence on the parameters of the system. Since the semiclassical approaches succeeded for the double-well model so far the so-called Herman-Kluk propagator is adopted, to go beyond the reduced dynamics of the population imbalance. The propagator provides the possibility to treat the full N-particle state theoretically and is introduced for the most general case of a bosonic quantum field. Its application to the double-well system yields for all investigated parameter regimes very good agreement with the numerical exact results. Furthermore the outcomes are compared to the Truncated Wigner approximation, which is frequently used in the research field of ultracold bosons. This approach pictures the time evolution of a Wigner distribution, without taking into account the quantum interferences. In the present thesis it is shown that the Herman-Kluk propagation goes clearly beyond the truncated Wigner approach by considering in addition the quantum phases: The propagator is able to reproduce all of the distinctive features of the double-well dynamics. In order to test the performance of semiclassical methods in matters of even more complex systems, the ultracold bosonic triple-well model is finally considered, which exhibits unlike the double-well scheme chaotic regions in phase space. It turns out that the semiclassical propagation outplays again the truncated Wigner approximation. On the other hand the instability of the highly chaotic trajectories causes numerical problems, which have to be solved in the future
Ugarte, Crystal. "A numerical investigation of Anderson localization in weakly interacting Bose gases." Thesis, KTH, Numerisk analys, NA, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-269167.
Full textSyftet med denna avhandling är att undersöka hur väl Gross-Pitaevskii egenvärdesekvation (GPE) passar som en fysisk modell för bildandet av stationära elektronstater i utspädda Bose-gaser vid extremt låga temperaturer. Fenomenet som skall undersökas heter Anderson lokalisering och uppstår när potentialfältets styrka och störning i systemet är tillräckligt hög. Undersökningen görs i denna avhandling genom att numeriskt lösa GPE samt illustrera olika utfall av Anderson lokaliseringen vid olika numeriska värden. Den första delen av rapporten introducerar det icke-linjära matematiska uttrycket för GPE samt de numeriska metoderna som används för att lösa problemet numerisk: finita elementmetoden (FEM) samt egenvärdesalgoritmen som heter inversiiteration. Finita elementmetoden används för att diskretisera variationsproblemet av GPE och ta fram en enkel algebraisk ekvation. Egenvärdesalgoritmen tillämpas på den algebraiska ekvation för att iterativt beräkna egenfunktionen som motsvarar det minsta egenvärdet. Det minsta egenvärdet av en fullt definierad (linjär) Schrödinger ekvation löses i rapportens andra del. Den linjära ekvationen löses för att ta fram en förenklad numerisk algoritm att utgå ifrån innan den icke-linjära algoritmen tas fram. För att försäkra sig att den linjära algoritmen stämmer bra jämförs det exakta egenvärdet för problemet med ett numeriskt framtaget värde. Undersökningen av den linjära algoritmen visar att vi får en bra uppskattning av egenvärdet - även vid få iterationer. Vidare konstrueras den ickelinjära algoritmen baserat på den linjära. Ekvationen löses och undersökes. Egenfunktionen som motsvarar minsta egenvärdet framtas och beskriver kvantsystemet i lägsta energitillståndet, så kallade grundtillståndet. Undersökningen av GPE visar att de numeriska metoderna kräver många fler iterationer innan en tillräckligt bra uppskattning av egenvärdet fås. Å andra sidan fås markanta Anderson lokaliseringar för ett skalningsområde som beskrivs av styrkan av potentialfältet i relation till dess störning. Slutsatsen är att Gross-Pitaevskii egenvärdesekvation passar bra som en fysisk modell för detta kvantsystem.
Vo, Christoph [Verfasser], Gerhard [Akademischer Betreuer] Rempe, and Alexander [Akademischer Betreuer] Holleitner. "Ein kohärentes Logikgatter für Lichtpulse basierend auf atomarer Vierwellenmischung in einem Bose-Einstein-Kondensat / Christoph Vo. Gutachter: Gerhard Rempe ; Alexander Holleitner. Betreuer: Gerhard Rempe." München : Universitätsbibliothek der TU München, 2012. http://d-nb.info/1031550755/34.
Full textSchuster, Johannes [Verfasser]. "Stoßlawinen in einem Bose-Einstein-Kondensat / vorgelegt von Johannes Schuster." 2002. http://d-nb.info/965104060/34.
Full textHenkel, Nils. "Rydberg-dressed Bose-Einstein condensates." Doctoral thesis, 2013. https://tud.qucosa.de/id/qucosa%3A27353.
Full text