To see the other types of publications on this topic, follow the link: Bottom ash.

Journal articles on the topic 'Bottom ash'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Bottom ash.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Coenen, Aaron R., Hani H. Titi, Mohammed B. Elias, T. Edil, and S. W. Dean. "Resilient Characteristics of Bottom Ash and Bottom Ash-Soil Mixtures." Journal of ASTM International 8, no. 9 (2011): 103700. http://dx.doi.org/10.1520/jai103700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kartika Sari, Enda, Yuliantini Eka Putri, Lindawati, Ferry Desromi, and Revianty Nurmeyliandari. "Potensi Dan Karakteristik Limbah Padat Fly Ash Dan Bottom Ash Hasil Pembakaran Batubara PT. Bakti Nugraha Yuda Energy Terhadap Kuat Tekan Paving Block." Jurnal Deformasi 8, no. 1 (June 30, 2023): 23–30. http://dx.doi.org/10.31851/deformasi.v8i1.11302.

Full text
Abstract:
PT. Bakti Nugraha Yuda Energy memiliki pembangkit tenaga uap dengan menggunakan batubara sebagai bahan bakar utama. Limbah Hasil Pembakaran Batubara (LHPB) terus bertambah tetapi terbatas penyimpanannya. Penelitian ini dilakukan untuk mengidentifikasi potensi dan karakteristik limbah hasil pembakaran batubara yang dihasilkan dan potensinya untuk paving block. Penelitian ini bertujuan untuk mengetahui kadar penggunaan fly ash dan bottom ash yang optimal untuk paving block dan karakteristiknya. Metode yang dilakukan berupa survey langsung. Data yangdari pengujian langsung di laboratorium terhadap kuat tekan paving block pada campuran fly ash dan bottom ash. Data sekunder berupa data karakteristik fly ash dan botom ash dan literatur lainnya. Dari pengujian, kuat tekan tertinggi pada paving block pada subtitusi fly ash dan bottom ash 30 % sebesar 105.38 MPa. Peningkatan kuat tekan terjadi akibat kandungan silika yang tinggi yang terdapat pada fly ash dan bottom ash. Karakteristik batubara di PLTU PT. Bakti Nugraha Yuda Energy adalah silika dan besi sebagai unsur kandungan utama, dan usur lainnya yaitu aluminium, kalsium, titanium dan kalium. Fly ash dan bottom ash memiliki kandungan mineral yang tinggi yaitu didominasi oleh phasa quartz 61,8% dengan struktur kristal trigonal (hexagonal axes).
APA, Harvard, Vancouver, ISO, and other styles
3

Maeno, Yuji, Tokio Hirata, and Hideo Nagase. "Mechanical Properties of Bottom Ash and Utilization of Stabilized Bottom Ash." Doboku Gakkai Ronbunshu, no. 568 (1997): 199–207. http://dx.doi.org/10.2208/jscej.1997.568_199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jo, Byung-Wan, Seung-Kook Park, and Byung-Yoon Kwon. "Alkali-Activated Coal Ash(Fly Ash, Bottom Ash) Artificial Lightweight Aggregate and Its Application of Concrete." Journal of the Korea Concrete Institute 16, no. 6 (December 1, 2004): 751–57. http://dx.doi.org/10.4334/jkci.2004.16.6.751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

G, Arunkumar, Jai Kumaresh B, and Arokia Jerome D. Parameswaran P. Rajkumar T. "Experimental Investigation on Mineral Content of Fly Bottom Ash and Strength Characteristics of Fly Bottom Ash Bricks – A Review." International Journal of Trend in Scientific Research and Development Volume-3, Issue-1 (December 31, 2018): 889–96. http://dx.doi.org/10.31142/ijtsrd19064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hosseini, Seyedsaeid, Nicholas A. Brake, Mohammad Nikookar, Özge Günaydın-Şen, and Haley A. Snyder. "Mechanochemically activated bottom ash-fly ash geopolymer." Cement and Concrete Composites 118 (April 2021): 103976. http://dx.doi.org/10.1016/j.cemconcomp.2021.103976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Susilowati, Anni, and Tsana Oktaviana. "Pengaruh Variasi Bottom Ash terhadap Sifat Fisik dan Sifat Mekanik pada Mortar Semen." RekaRacana: Jurnal Teknil Sipil 7, no. 3 (December 17, 2021): 139. http://dx.doi.org/10.26760/rekaracana.v7i3.139.

Full text
Abstract:
ABSTRAKPenggunaan batu bara untuk pembangkit listrik semakin meningkat mengakibatkan menumpuknya limbah bottom ash yang berbahaya untuk lingkungan sekitar. Penelitian ini bertujuan untuk menganalisa pengaruh campuran bottom ash terhadap sifat fisik dan mekanik mortar semen. Metode penelitian yang digunakan adalah metode eksperimental dengan perbandingan campuran yaitu 1PC: 3PS dan variasi bottom ash sebesar 0%,20%,40%,60%,80% terhadap berat pasir. Hasil analisis menunjukkan penggunaan bottom ash menurunkan nilai konsistensi sebesar 1,82% sampai dengan 45,45% dibandingkan tanpa penggunaan bottom ash. Penggunaan bottom ash 20% mampu meningkatkan kuat tekan sebesar 50% dan kuat lentur sebesar 28,3% pada umur 28 hari dibandingkan mortar semen tanpa bottom ash. Mortar semen termasuk mortar tipe S sesuai SNI 03-6882-2002.Kata kunci: abu dasar, mortar semen, pengganti agregat halus ABSTRACTThe increasing use of coal for power generation results in the accumulation of bottom ash waste which is harmful to the surrounding environment. This study aims to analyze the effect of bottom ash mixture on the physical and mechanical properties of cement mortar. The research method used is an experimental method with a mixture ratio of 1PC: 3PS and bottom ash variations of 0%,20%,40%,60%,80% by weight of sand. The results of the analysis show that the use of bottom ash reduces the consistency value by 1.82% to 45.45% compared to without the use of bottom ash. The use of bottom ash 20% was able to increase the compressive strength by 50% and flexural strength by 28.3% at the age of 28 days compared to cement mortar without bottom ash. Cement mortar including type S mortar according to SNI 03-6882-2002.Keywords: bottom ash, cement mortar, substitute for fine aggregate
APA, Harvard, Vancouver, ISO, and other styles
8

Jun, Ng Hooi, Mohd Mustafa Al Bakri Abdullah, Kamarudin Husin, Soo Jin Tan, and Mohd Firdaus Omar. "Review on the Effect of Bottom Ash in Performance of Portland Cement Mortar." Applied Mechanics and Materials 815 (November 2015): 164–69. http://dx.doi.org/10.4028/www.scientific.net/amm.815.164.

Full text
Abstract:
Utilization and suitability of bottom ash in Portland cement have been increasing significantly in recent year. Bottom ash has substantial effects on mechanical properties with different composition of replacement in mixture of bottom ash and Portland cement. Bottom ash was used to determine the feasibility of the substitution as recycling product from industry depending on the percentage of the bottom ash. On the other hand, bottom ash offers a better solution for maintaining materials characteristic of Portland cement mortar and also provide beneficial mechanical performance. The result of using bottom ash in Portland cement mortar showed that it could make better the mechanical properties and hence disposed bottom ash wastes safely in technical, economic and environmental methods.
APA, Harvard, Vancouver, ISO, and other styles
9

Suwunwong, Thitipone, Sutthida Boonsamran, Kanchana Watla-iad, Patcharanan Choto, Nuttachat Wisittipanit, Tanan Chub-uppakarn, and Khamphe Phoungthong. "Suitability and characteristics of combustion residues from renewable power plants for subbase aggregate materials, in Thailand." BioResources 16, no. 2 (February 2, 2021): 2264–78. http://dx.doi.org/10.15376/biores.16.2.2264-2278.

Full text
Abstract:
Physico-chemical properties and the environmental impacts were studied relative to the leaching of rubber fly ash and bottom ash. The pozzolanic properties of fly ash and bottom ash were confirmed by the chemical composition, including silicon oxides, calcium oxides, and aluminum oxides. The geo-technical characteristics of rubber wood fly ash and bottom ash, i.e., modified compaction, plasticity, and the soaked California Bearing Ratio, were evaluated to assess the feasibility of fly ash or bottom ash mixed with lateritic soil as aggregate materials for the subbase in road construction in order to optimize the replacement of lateritic soil by fly ash or bottom ash. The leachates from rubber fly ash and bottom ash did not exceed standard thresholds. The measured characteristics of fly ash or bottom ash mixed with lateritic soil were in good alignment with the effective engineering thresholds. Recommendations were developed for safe reuse of byproducts from rubber renewable power plant in subbase road construction.
APA, Harvard, Vancouver, ISO, and other styles
10

Kwon, Woo Teck, Byung Ik Kim, Y. Kim, Soo Ryong Kim, and Sang Wook Ha. "Characterization of Power Plant Bottom Ash and its Application to Cement Mortar." Materials Science Forum 620-622 (April 2009): 221–24. http://dx.doi.org/10.4028/www.scientific.net/msf.620-622.221.

Full text
Abstract:
In this work, the physical & chemical properties of bottom ash generated from power plant are analyzed. Characteristic mortar property and thermal conductivity for building material were investigated with content of added bottom ash. According to the analytic result of bottom ash, chemical compositions of bottom ash is similar to those of fly ash and compressive strength after 7days related to pozzolanic activity shows 2.5N/cm2 and it is confirmed that bottom ash possess a certain amount of moisture activity. Although the fluidity of cement mortar is rapidly decreased with increasing addition of bottom ash, compressive strength for 3 and 7days is increased. The thermal conductivity is not sensitive to the addition of bottom ash.
APA, Harvard, Vancouver, ISO, and other styles
11

Asof, Marwan, Susila Arita, Luthfia Luthfia, Winny Andalia, and Muhammad Naswir. "Analisis karakteristik dan potensi logam pada limbah padat fly ash dan bottom ash di PLTU industri pupuk." Jurnal Teknik Kimia 28, no. 1 (March 1, 2022): 44–50. http://dx.doi.org/10.36706/jtk.v28i2.977.

Full text
Abstract:
Pembangkit Listrik Tenaga Uap di Indonesia masih didominasi menggunakan bahan bakar batubara pada boilernya. Semakin tinggi kebutuhan listrik di Indonesia akan membuat kebutuhan batubara semakin tinggi, sehingga limbah fly ash dan bottom ash yang dihasilkan akan semakin banyak. Fly ash dan bottom ash digolongkan dalam limbah B3. Pengujian menggunakan instrument analisa X-Ray Fluorescence (XRF) akan diketahui unsur-unsur dan oksida pembawa logam berat yang terkandung dalam limbah fly ash dan bottom ash. Unsur-unsur tersebut antara lain magnesium (Mg), aluminium (Al), silika (Si), posfor (P), sulfur (S), kalium (K), kalsium (Ca), titanium (Ti), vanadium (V), kromium (Cr), mangan (Mn), besi (Fe), kobal (Co), nikel (Ni), tembaga (Cu), seng (Zn), galium (Ga), arsen (As), rubidium (Rb) stronsium (Sr), itrium (Y), zirkon (Zr), argentum (Ag), europium (Eu), timbal (Pb) dalam konsentrasi yang berbeda-beda antara kandungan fly ash dan bottom ash. Beberapa oksida dominan pembawa logam berat yang terdeteksi seperti Fe2O3 sebesar 3,658% pada fly ash dan sebesar 2,237% pada bottom ash; Ag2O pada sampel fly ash kandungannya sebanyak 0,143% dan pada bottom ash sebanyak 0,01%; MnO sebesar 0,036% pada fly ash dan sebanyak 0,015% pada bottom ash serta oksida ZnO dengan kadar sebesar 0,016% pada fly ash dan 0,019% pada bottom ash.
APA, Harvard, Vancouver, ISO, and other styles
12

Mandal, AK, Bala Ramudu Paramkusam, and OP Sinha. "Fluidized bed combustion bottom ash: A better and alternative geo-material resource for construction." Waste Management & Research: The Journal for a Sustainable Circular Economy 36, no. 4 (March 29, 2018): 351–60. http://dx.doi.org/10.1177/0734242x18761561.

Full text
Abstract:
Though the majority of research on fly ash has proved its worth as a construction material, the utility of bottom ash is yet questionable due to its generation during the pulverized combustion process. The bottom ash produced during the fluidized bed combustion (FBC) process is attracting more attention due to the novelty of coal combustion technology. But, to establish its suitability as construction material, it is necessary to characterize it thoroughly with respect to the geotechnical as well as mineralogical points of view. For fulfilling these objectives, the present study mainly aims at characterizing the FBC bottom ash and its comparison with pulverized coal combustion (PCC) bottom ash, collected from the same origin of coal. Suitability of FBC bottom ash as a dike filter material in contrast to PCC bottom ash in replacing traditional filter material such as sand was also studied. The suitability criteria for utilization of both bottom ash and river sand as filter material on pond ash as a base material were evaluated, and both river sand and FBC bottom ash were found to be satisfactory. The study shows that FBC bottom ash is a better geo-material than PCC bottom ash, and it could be highly recommended as an alternative suitable filter material for constructing ash dikes in place of conventional sand.
APA, Harvard, Vancouver, ISO, and other styles
13

Fatimah, Budi Pratama Tarigan, and Alfikri Ramadhan. "Aktivasi Bottom Ash dari Pembakaran Batubara untuk Menurunkan Kandungan Senyawa Fosfat dalam Air." Jurnal Teknik Kimia USU 8, no. 2 (September 29, 2019): 72–78. http://dx.doi.org/10.32734/jtk.v8i2.2033.

Full text
Abstract:
This study aims to look at the effect of bottom ash activation with NaOH on the morphological structure and content of the elements contained in bottom ash and see the effect of activation on the absorption of phosphate compounds in water by bottom ash. Bottom ash from PT SOCIMAS coal combustion has been activated with NaOH and has been used to adsorb phosphate. Phosphate used in the form of KH3PO4. Bottom ash was first characterized by SEM-EDS to see the morphological structure and the element content contained in the bottom ash. Bottom ash mass variations used are (1, 2, and 3 grams), and particle size (50-70 mesh, 70-110 mesh, and 110-140 mesh). The activation process lasts for 5 hours using 3 M NaOH, then washed to pH 7. The bottom ash is activated then characterized again with SEM-EDS to ensure the impurities present in the bottom ash are reduced. Furthermore, bottom ash is used to adsorb phosphate with time variations of 20, 40, and 60 minutes. The most effective adsorption capacity (6.39 mg / g) is at the 20th minute with a particle size of 110-140 mesh and a bottom ash mass of 1 gram. The Freundlich and Langmuir isotherm model is used to describe the phosphate ion adsorption isotherm by the bottom ash. Based on the data obtained, the isotherm model suitable for this research is the Freudlich (R2 = 0.9721) and Langmuir (R2 = 0.9505) isotherm model.
APA, Harvard, Vancouver, ISO, and other styles
14

Arish Pandi, Udaya Kumar, Riya Nunu, and Ajay, Ms.J.S Minimol. "EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF GEOPOLYMER RCC BEAMS USING BOTTOM ASH." international journal of engineering technology and management sciences 7, no. 4 (2023): 270–74. http://dx.doi.org/10.46647/ijetms.2023.v07i04.037.

Full text
Abstract:
Bottom ash is formed in coal furnaces. It is made from agglomerated ash particles that too large to be carried in the flue gases and fall through open grates to an ash hopper at the bottom of the furnace. Bottom ash is mainly comprised of fused coarser particles. These particles are quite porous and look like volcanic lava. Bottom ash forms up to 25% of the total ash while the fly ash is remaining 75%. The present work deals with flexural behavior of bottom ash geopolymer reinforced concrete beam. A total of six beams were cast, in which three beams were control reinforced concrete beams and thee beams were bottom ash geopolymer reinforced concrete beam. bottom ash geopolymer reinforced concrete beamwas cured at ambient temperature. The load carrying capacity, load deflection behavior and initial stiffness capacity of beams were arrived and compared with control reinforced cement concrete (RCC) specimens
APA, Harvard, Vancouver, ISO, and other styles
15

Ismail, Ardin Rozandi, Danang Purwanto, Tsulis Iqbal Khairul Amar, and Matrunevich Oksana Viktorovna. "COMPARISONAL ANALYSIS OF FLY ASH (CASE STUDY AT PLTU PORT RATU)." INTERNATIONAL JOURNAL ENGINEERING AND APPLIED TECHNOLOGY (IJEAT) 3, no. 2 (November 29, 2020): 54–66. http://dx.doi.org/10.52005/ijeat.v3i2.41.

Full text
Abstract:
Fly ash can include toxins from high levels of bottom ash in some circumstances, such as burning of solid waste to generate power (resource recovery facilities or waste-to-energy conversion), and combining fly ash and bottom ash together delivers corresponding quantities of contaminants. Under some conditions, fly ash can be classified as non-hazardous waste, but if it is not blended, it can be classified as hazardous waste. The goal of this research was to find out about the differences between fly and bottom ash, as well as the influence of fly ash on bottom ash in terms of avoiding abrasion. In addition, the study's goal was to see how fly ash affected coconut fiber's resistance to abrasion. This study employed a quantitative technique in which the researcher used primary data sources such as questionnaires and observations, as well as secondary data sources such as prior studies. The findings revealed that fly ash had no effect on bottom ash in terms of avoiding abrasion. Furthermore, it is well known that neither fly ash nor bottom ash are effective against coconut fiber. Fly ash has a coarser texture than bottom ash, according to the findings. The regression test revealed that there was no difference between fly ash and bottom ash, as well as coconut coir, in terms of reducing abrasion
APA, Harvard, Vancouver, ISO, and other styles
16

Posedung, Agnes Claudia, Frans Phengkarsa, and Desi Sandy. "Pemanfaatan Bottom Ash Sebagai Bahan Substitusi Agregat Halus Terhadap Kekuatan Beton." Paulus Civil Engineering Journal 2, no. 3 (October 2, 2020): 187–95. http://dx.doi.org/10.52722/pcej.v2i3.142.

Full text
Abstract:
Bottom ash merupakan hasil sisa pembakaran batu bara yang dapat bermanfaat untuk pemanfaatan penyusun campuran beton. Pada penelitian ini bottom ash digunakan sebagai bahan substitusi agregat halus dalam pembuatan beton. Bottom ash memiliki ukuran butir lebih besar dan lebih berat dengan karakteristik berwarna abu-abu gelap. Tujuan penelitian ini untuk mengetahui kekuatan beton yang menggunakan bottom ash sebagai bahan substitusi agregat halus. Persentase penggunaan bottom ash sebagai bahan substitusi agregat halus sebesar 0%, 25% dan 35%. Penelitian dilaksanakan di Laboratorium Teknologi Bahan Universitas Kristen Indonesia Paulus Benda uji yang digunakan berupa silinder ukuran diameter 15 cm dan tinggi 30 cm sebanyak 36 buah. Pengujian yang dilakukan berupa pengujian kuat tekan, uji kuat tarik belah dan uji modulus elastisitas dengan mutu beton rencana 30 MPa. Dari hasil penelitian, untuk hasil uji kuat tekan diperoleh variasi bottom ash optimum pada penggunaan bottom ash 35% dengan kuat tekan sebesar 33,764 MPa pada umur 28 hari, pengujian kuat tarik belah diperoleh variasi bottom ash optimum pada penggunaan bottom ash 35% dengan kuat tarik belah sebesar 3,253 MPa pada umur 28 hari sedangkan nilai modulus elastisitas tertinggi diperoleh pada penambahan bottom ash 35% yaitu sebesar 27332.0255 Mpa. Dan diperoleh persentase hubungan kuat tarik belah untuk variasi bottom ash 0%, 25% dan 35% berturut-turut sebesar 8,007%, 8,983% dan 9,635% dari kuat tekan. Nilai tersebut memenuhi atau sesuai dengan yang ditentukan yaitu rata-rata berkisar antara 7% hingga 11% dari kuat tekannya dengan rata-rata berkisar 9 %. Dari variasi bottom ash yaitu 0%, 25% dan 35% pada benda uji silinder , yang mencapai f’c 30 Mpa adalah bottom ash dengan variasi 35% dan dapat digunakan sebagai bahan substitusi agregat halus.
APA, Harvard, Vancouver, ISO, and other styles
17

Winarno, Hadi, Damris Muhammad, and Yudha Gusti Wibowo. "PEMANFAATAN LIMBAH FLY ASH DAN BOTTOM ASH DARI PLTU SUMSEL-5 SEBAGAI BAHAN UTAMA PEMBUATAN PAVING BLOCK." Jurnal Teknika 11, no. 1 (March 21, 2019): 1067. http://dx.doi.org/10.30736/jt.v11i1.288.

Full text
Abstract:
Fly ash and bottom ash are solid waste from coal combustion in the operating system of Steam Power Plant (PLTU). The research was conducted by combining fly ash and bottom ash with an adhesive consisting of portland cement. Based on the tests performed the maximum mixture obtained with cement samples, fly ash and bottom ash is 1: 2: 2. Paving blocks made from fly ash and bottom ash have compressive strength values resulting in compressive strength values of 50.52 MPa. This value indicates that the sample is in the class of paving blocks A. Paving Block made from fly ash and bottom ash also has a very good average air absorption value, in a combination of suitable cement mixtures, fly ash and bottom ash (1: 2: 2) the average air absorption value is still 5.06%. This value shows that the sample is in class B paving blocks.
APA, Harvard, Vancouver, ISO, and other styles
18

Nurkhamim, I. R. Wardani, D. P. W. Adjie, J. Purwanta, and Inmarlinianto. "Utilization of fly ash and bottom ash from TanjungJati B Coal-Fired Power Plant in Jepara, Central Java, on the quality of cellular lightweight concrete." IOP Conference Series: Earth and Environmental Science 1339, no. 1 (May 1, 2024): 012003. http://dx.doi.org/10.1088/1755-1315/1339/1/012003.

Full text
Abstract:
Abstract The research aims to address waste-related issues by producing Cellular Lightweight Concrete (CLC) bricks using fly ash and bottom ash as fine aggregates. The variations used encompass cement, fly ash, bottom ash, and sand compositions. The ratio between cement and fine aggregates utilized is 1:3. The variations in the composition of fine aggregates include P (100% sand), F (100% fly ash), B (100% bottom ash), F1B1 (50% fly ash and 50% bottom ash), F1B2 (33.3% fly ash and 66.7% bottom ash), F1B3 (25% fly ash and 75% bottom ash), F2B1 (6.7% fly ash and 33.3% bottom ash), and F3B1 (25% fly ash and 75% bottom ash). The parameters employed comprise compressive strength testing, density, and water absorption evaluation of the CLC bricks at ages 14, 28, and 35 days, also thermal conductivity at the 35-days sample. The sample age exhibits a proportional relationship with compressive strength and water absorption, while displaying an inverse relationship with density. At the 35-day sample age, the F composition demonstrates the highest compressive strength (14.74MPa) and the lowest water absorption (11%). Meanwhile, the B composition exhibits a compressive strength value of 5.9MPa and the lowest density (1.12g/cm2). Conversely, the P composition showcases the highest density (1.59g/cm2). Density affects thermal conductivity, the lower the density, the lower the thermal conductivity, which means that the heat conductivity will be smaller.
APA, Harvard, Vancouver, ISO, and other styles
19

Putri, Rahmi Dwi, Imam Taufiq, and Nurokhim Nurokhim. "Analisis Radionuklida pada Fly Ash dan Bottom Ash PLTU Teluk Sirih Menggunakan Spektrometer Gamma." Jurnal Fisika Unand 8, no. 4 (November 26, 2019): 387–93. http://dx.doi.org/10.25077/jfu.8.4.387-393.2019.

Full text
Abstract:
Analisis radionuklida pada fly ash dan bottom ash dari PLTU Teluk Sirih telah dilakukan menggunakan spektrometer gamma. Penelitian ini bertujuan untuk mengetahui radionuklida yang terdapat pada fly ash dan bottom ash PLTU Teluk Sirih, kemudian membandingkan konsentrasi aktivitas radionuklida yang didapatkan dengan PP RI no.101/2014 mengenai pengelolaan limbah B3. Sampel fly ash dan bottom ash dari PLTU Teluk Sirih dipreparasi sesuai dengan prosedur standar yang ditetapkan oleh BATAN, lalu dicacah menggunakan spektrometer gamma yang dilengkapi detektor HPGe selama 17 jam. Radionuklida yang didapatkan dari hasil pencacahan adalah 210Pb, 230Th, 234Th, 226Ra, 232Th, 228 Th, 238U, 40K. Konsentrasi aktivitas radionuklida pada sampel fly ash berkisar antara 21,20±5,378 Bq/kg sampai dengan 320,40±31,279 Bq/kg, sedangkan konsentrasi aktivitas radionuklida pada sampel bottom ash berkisar antara ≤ 2,529 Bq/kg sampai dengan 163,728±15,88 Bq/kg. Berdasarkan PP RI No.101/2014 pemanfaatan fly ash dan bottom ash dari PLTU Teluk Sirih masih diperbolehkan karena konsentrasi aktivitas pada fly ash dan bottom ash PLTU Teluk Sirih berada dibawah ambang batas yaitu untuk deret uranium dan thorium adalah 1000 Bq/kg dan untuk kalium sebesar 10.000 Bq/kg.Kata kunci : aktivitas, bottom ash, fly ash, limbah B3, radionuklida, spektrometer gamma
APA, Harvard, Vancouver, ISO, and other styles
20

Lubis, Ediantonius, Antoni Antoni, and Djwantoro Hardjito. "KOMPOSISI CAMPURAN OPTIMUM BOTTOM ASH DAN FLY ASH SEBAGAI AGREGAT BUATAN." Dimensi Utama Teknik Sipil 2, no. 1 (April 30, 2015): 16–23. http://dx.doi.org/10.9744/duts.2.1.16-23.

Full text
Abstract:
Tujuan penelitian ini adalah untuk memanfaatkan sebanyak mungkin limbah batubara terutama bottom ash sebagai bahan agregat buatan. komposisi campuran optimum bottom ash dan fly ash sebagai bahan agregat buatan adalah 1 semen: 3 fly ash: 20 bottom ash dalam perbandingan berat, kuat tekan agregat buatan pada umur 28 hari adalah 2,45 MPa. Penelitian ini menggunakan metode air di spray pada bottom ash, sehingga bottom ash dapat dimanfaatkan sebanyak mungkin untuk agregat buatan, jumlah kebutuhan air yang di spray sebanyak 25-35% dari berat bottom ash. Hasil pengujian water content pada agregat buatan dalam keadaan SSD 23,25%. Berat jenis agregat buatan pada komposisi campuran B12F3 sebesar 1672 Kg/m³ dan angka kuat tekan sebesar 3,40 MPa pada umur 28 hari. Sedangkan uji kuat tekan beton dengan komposisi campuran 1 semen: 1½ pasir: 2½ agregat buatan pada umur 28 hari sebesar 18,37 MPa, berat jenis beton berbahan agregat buatan adalah 2098 Kg/m³.
APA, Harvard, Vancouver, ISO, and other styles
21

Sriram, M. "Partial Replacement of Fine Aggregate by Using Bottom Ash & Manufacturing Sand with Addition of Silica Fume in Concrete." International Journal for Research in Applied Science and Engineering Technology 9, no. 10 (October 31, 2021): 1649–63. http://dx.doi.org/10.22214/ijraset.2021.38641.

Full text
Abstract:
Abstract: Sand is the major material used in construction all over the world. Nowadays sand is highly demand for the construction. The main purpose of this project is to investigate the effect of bottom ash in concrete and hence improving the strength and durability of concrete. So the objectives of this study were to investigate the effect of use of coal bottom ash & msand as partial replacement of fine aggregates. Percentages {M-Sand (50%), bottom ash (5%, 10% , 15% , 20%) , silica fume(2% were added) for 25% of bottom ash}. on concrete properties such as compressive strength, splitting tensile strength test. The results of specimens with and without bottom ash, Manufacturing sand, silica fume were compared. The strength of concrete was increased upto 15% replacement of bottom ash instead of fine aggregate and the 25% replacement of bottom ash with 2% of silica fume increased the strength of concrete. Keywords: Bottom ash, silica fume, manufacturing sand
APA, Harvard, Vancouver, ISO, and other styles
22

Handoko, Budy. "Studi Penyisihan Zat Warna Reaktif Dalam Air Menggunakan Bottom Ash Batu Bara Menggunakan Cara Batch." Texere 18, no. 2 (December 30, 2020): 119–33. http://dx.doi.org/10.53298/texere.v18i2.71.

Full text
Abstract:
Sisa pembakaran batu bara dari ketel uap (boiler) yang berupa bottom ash dapat menyebabkan masalah pencemaran lingkungan bila tidak dikelola dengan baik. Berdasarkan karakteristiknya, bottom ash merupakan abu yang berbentuk granula dan memiliki kadar karbon yang tinggi. Maka limbah padat ini memiliki potensi untuk dimanfaatkan sebagai adsorben limbah cair dari industri tekstil. Oleh karena itu dalam penelitian ini dilakukan studi pemanfaatan bottom ash sisa pembakaran batu bara untuk mengolah limbah zat warna reaktif. Pada percobaan pendahuluan dilakukan pengujian penyisihan warna menggunakan bottom ash yang diproses aktivasi secara kimia (menggunakan HCl, NaOH dan H2O2) dan secara fisika (dipanaskan pada suhu 600°C – 900°C), juga penyisihan warna menggunakan bottom ash tanpa aktivasi. Dari hasil pengujian diketahui bahwa bottom ash tanpa aktivasi memberikan hasil yang paling baik dibandingkan dengan bottom ash yang diaktivasi secara kimia atau fisika. Penelitian lebih lanjut menunjukkan bahwa bottom ash yang tidak diaktivasi memiliki potensi yang baik dalam menyisihkan warna pada larutan zat warna reaktif.
APA, Harvard, Vancouver, ISO, and other styles
23

Rozelle, Peter L., Sarma V. Pisupati, and Alan W. Scaroni. "Effect of Fuel Properties on the Bottom Ash Generation Rate by a Laboratory Fluidized Bed Combustor." Journal of Energy Resources Technology 129, no. 2 (August 22, 2006): 144–51. http://dx.doi.org/10.1115/1.2719205.

Full text
Abstract:
The fluidized bed combustion (FBC) process, used in power generation, can handle a variety of fuels. However, the range of fuels that can be accommodated by an FBC boiler system is affected by the ability of the fuel, sorbent, and ash-handling equipment to move the required solids through the boiler. Of specific interest is the bottom ash handling equipment, which must have sufficient capacity to remove ash from the system in order to maintain a constant bed inventory level, and must have sufficient capability to cool the ash well below the bed temperature. Quantification of a fuel’s bottom ash removal requirements can be useful for plant design. The effect of fuel properties, on the rate of bottom ash production in a laboratory FBC test system was examined. The work used coal products ranging in ash content from 20to40+wt.%. The system’s classification of solids by particle size into flyash and bottom ash was characterized using a partition curve. Fuel sizing was compared to the partition curve, and fuels were fractionated by particle size. Fuel fractions in the size range characteristic of bottom ash were further analyzed for distributions of ash content with respect to specific gravity, using float sink tests. The fuel fractions were then ashed in a fixed bed. In each case, the highest ash content fraction produced ash with the coarsest size consist (characteristic of bottom ash). The lower ash content fractions were found to produce ash in the size range characteristic of flyash, suggesting that the high ash content fractions were largely responsible for the production of bottom ash. The contributions of the specific gravity fractions to the composite ash in the fuels were quantified. The fuels were fired in the laboratory test system. Fuels with higher amounts of high specific gravity particles, in the size ranges characteristic of bottom ash, were found to produce more bottom ash, indicating the potential utility of float sink methods in the prediction of bottom ash removal requirements.
APA, Harvard, Vancouver, ISO, and other styles
24

Sondari, Nunung, and Ervina Siti Nurkhalidah. "Application of Bokashi Botom Ash for Increasing Upland Rice Yield and Decreasing Grain Pb Content in Vitric Hapludans." JOURNAL OF TROPICAL SOILS 17, no. 2 (November 13, 2012): 157. http://dx.doi.org/10.5400/jts.2012.v17i2.157-163.

Full text
Abstract:
Greenhouse experiment was conducted at Agricultural Faculty of Winaya Mukti University Tanjungsari SumedangRegency, from May to October 2009. The objective of this experiment was to study the effect of bokashi bottom ashon the growth, yield, and Pb content of upland rice. The experiment used a Randomized completely Block Design(RBD) which consisted of five treatments and five replications. The treatments were level of bokashi bottom ash i.e.0, 5, 10, 15, and 20 Mg ha-1. The results showed that the application of bokashi bottom ash increased the growth andyield of upland rice of Situbagendit variety except plant height at age of 21 days after seedling (DAS). Application15 Mg ha -1 of bokashi bottom ash gave the best effect to the plant height, number of leaves, number of tillers andshoot/root ratio, while applications of 10, 15 and 20 Mg ha -1 increased number of productive tillers, amount of filledgrains, and weight of grains. Bokashi bottom ash did not affect the heavy metal content of upland rice grain ofSitubagendit variety.[How to Cite: Sondari N and ES Nurkhalidah. 2012. Application of Bokashi Botom Ash for Increasing Upland Rice Yield and Decreasing Grain Pb Content in Vitric Hapludans. J Trop Soils 17 (2) : 157-163. Doi: 10.5400/jts.2012.17.2.157] [Permalink/DOI: www.dx.doi.org/10.5400/jts.2012.17.2.157]
APA, Harvard, Vancouver, ISO, and other styles
25

Xie, Tian Yu, and Togay Ozbakkaloglu. "Microstructure and Mechanical Properties of Ambiently-Cured Blended Coal Ash-Based Geopolymer Concrete." Materials Science Forum 857 (May 2016): 400–404. http://dx.doi.org/10.4028/www.scientific.net/msf.857.400.

Full text
Abstract:
This paper presents the results of an experimental study on the behavior of fly ash-, bottom ash-, and blended fly and bottom ash-based geopolymer concrete (GPC) cured at ambient temperature. Four bathes of GPC were manufactured to investigate the influence of the fly ash-to-bottom ash mass ratio on the microstructure, compressive strength and elastic modulus of GPC. All the results indicate that the mass ratio of fly ash-to-bottom ash significantly affects the microstructure and mechanical properties of GPCs
APA, Harvard, Vancouver, ISO, and other styles
26

Shoiful, A., M. H. Robbani, R. A. Pratama, P. A. Hendrayanto, D. P. Dewanti, I. P. A. Kristyawan, Wiharja, M. Hanif, Ikbal, and R. Nugroho. "Physicochemical characteristics of bottom ash from waste-to-energy incineration pilot plant in Indonesia." IOP Conference Series: Earth and Environmental Science 1267, no. 1 (December 1, 2023): 012026. http://dx.doi.org/10.1088/1755-1315/1267/1/012026.

Full text
Abstract:
Abstract Municipal solid waste (MSW) disposal has emerged as a major concern in large cities across Indonesia. Waste-to-energy (WtE) incineration is an attractive method that can significantly reduce volume of waste; however it generates residues, namely bottom ash and fly ash. This study presents the characteristics of bottom ash from the MSW WtE incineration pilot plant in Indonesia. The physicochemical characterization of bottom ash was determined X-ray fluorescence (XRF) and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS). The results showed that CaO (46.80%) was the major component, followed by SiO2 (12.30%), Al2O3 (8.80%), and Fe2O3 (8.20%). SEM images showed that the surface morphology of bottom ash appeared flaky, rod-like, and irregular shape. Inert materials, like iron scrap, glass, ceramic, and stone, accounted for 16.7% of the total dry weight of bottom ash. Toxicity characteristic leaching procedure (TCLP) test of 11 heavy metals in bottom ash was carried out, and all of them were detected at very low concentration, indicating that bottom ash possessed a low risk level to human health and environment. This study provides important information on the characteristics of bottom ash from MSW WtE incineration in Indonesia that would be useful in facilitating management and disposal of bottom ash.
APA, Harvard, Vancouver, ISO, and other styles
27

Huang, W. S., and C. W. Lovell. "Bottom ash as embankment material." International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 28, no. 6 (November 1991): A341. http://dx.doi.org/10.1016/0148-9062(91)91214-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Constable, Thomas W., and Geoff Ross. "Trace element leaching in bench-scale recirculating ash transport systems." Canadian Journal of Civil Engineering 13, no. 2 (April 1, 1986): 233–40. http://dx.doi.org/10.1139/l86-031.

Full text
Abstract:
Fly and bottom ash from coal-fired power generating stations are commonly disposed by transporting the ash in a water slurry to a lagoon. The recently developed "Environmental codes of practice for steam electric power generation" recommend the use of recycled lagoon decant water rather than fresh makeup water for these sluicing operations. To provide background information during the development of these environmental codes of practice, bench-scale studies were conducted to simulate the operation of recirculating bottom ash and combined fly/bottom ash lagoon systems, and data were collected on the concentrations of trace elements in the ash sluice waters. The ashes were obtained from seven Canadian coal-fuelled power generating stations. For most ash systems, the pH of the slurry water remained relatively constant after the first two recirculation cycles, and generally was lower in a bottom ash system than in the corresponding fly/bottom ash system. The major dissolved species in the slurry waters were sulphate, calcium, and sodium. Concentrations in bottom ash systems usually increased linearly with increasing cycles of concentration, whereas concentrations in fly/bottom ash systems generally increased during the first several cycles, then either remained constant or decreased. Scaling was observed only in studies involving fly/bottom ash from stations burning western Canadian coal or a mixture of western Canadian and U.S. bituminous coals. Key words: ash handling, fly ash, lagoons, leaching.
APA, Harvard, Vancouver, ISO, and other styles
29

Yoon, Won-Sub, Seung-Gu Shin, and Young-Su Chae. "A Study on Characteristics of Self-weight Consolidation of Bottom Ash Mixed Soil." Journal of the Korean Geosynthetic Society 14, no. 4 (December 30, 2015): 59–77. http://dx.doi.org/10.12814/jkgss.2015.14.4.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Inkaew, Kanawut, Amirhomayoun Saffarzadeh, and Takayuki Shimaoka. "Characterization of Residues Involved in the Ash Quenching System: A Material Recycling Perspective." Applied Mechanics and Materials 866 (June 2017): 112–15. http://dx.doi.org/10.4028/www.scientific.net/amm.866.112.

Full text
Abstract:
The Ash Quenching System has been widely used in the municipal solid waste incineration plant to cool down the bottom ash and to control the dust pollution. In this study, residues that were transferred to the ash quenching system, including the grate siftings and the unquenched bottom ash were investigated, as well as, the quenched bottom ash from the discharge point of the system. The characterization included particle size distribution analysis, chemical composition and mineralogical composition analyses. The results showed that the grate siftings, the unquenched bottom ash and the quenched bottom ash were made up of different proportions of slag, relic metal, glass, ceramics and unburnt organic matter. All residues resembled to natural sand and fine aggregates with content of CaO, SiO2, Al2O3 and Fe2O3 of about 37-52%, 17-28%, 10-16%, and 4-13% by mass, respectively. The quenched bottom ash had the potential to be used as a raw material for the engineering applications such as road construction and cement production likewise grate siftings and the unquenched ash. However, the grate siftings and the unquenched bottom ash contained Cl up to 2.3 % by mass, and the quenched bottom ash was essentially dominated by hydrate phases such as Friedel’s salt/hydrocalumite, thus further treatment is significantly required prior to any applications.
APA, Harvard, Vancouver, ISO, and other styles
31

Mohammed, Syakirah Afiza, Suhana Koting, Herda Yati Binti Katman, Ali Mohammed Babalghaith, Muhamad Fazly Abdul Patah, Mohd Rasdan Ibrahim, and Mohamed Rehan Karim. "A Review of the Utilization of Coal Bottom Ash (CBA) in the Construction Industry." Sustainability 13, no. 14 (July 19, 2021): 8031. http://dx.doi.org/10.3390/su13148031.

Full text
Abstract:
One effective method to minimize the increasing cost in the construction industry is by using coal bottom ash waste as a substitute material. The high volume of coal bottom ash waste generated each year and the improper disposal methods have raised a grave pollution concern because of the harmful impact of the waste on the environment and human health. Recycling coal bottom ash is an effective way to reduce the problems associated with its disposal. This paper reviews the current physical and chemical and utilization of coal bottom ash as a substitute material in the construction industry. The main objective of this review is to highlight the potential of recycling bottom ash in the field of civil construction. This review encourages and promotes effective recycling of coal bottom ash and identifies the vast range of coal bottom ash applications in the construction industry.
APA, Harvard, Vancouver, ISO, and other styles
32

Zhao, J. M., Z. X. Yang, Kyu Hong Hwang, J. K. Lee, M. C. Kim, and G. D. Seo. "Strength Enhancement of Bottom Ash-Based Polymer Concretes." Key Engineering Materials 488-489 (September 2011): 278–81. http://dx.doi.org/10.4028/www.scientific.net/kem.488-489.278.

Full text
Abstract:
To replace bottom ash for natural sand completely, the mix proportions of bottom ash in concrete was adjusted according to tab density and replacement ratio of polymeric resin/Potland cement(PC) were established. And then testing for slump, setting time, and compressive strength was conducted. According to test results, the compressive strength of concrete using the bottom ash was lower than that of concrete using natural sand (BA0 concrete). But by adjusting the amount of bottom ash in concrete according tab density so that the fine aggregate proportions change 44% to 38%, the compressive strength of concrete using the bottom ash could even be higher than BA0 concrete. And as the polymeric resin content of bottom ash concrete increased, strength would be increased drastically, but proper dispersant should be cooperated with polymeric resin cement with fine bottom ash powders.
APA, Harvard, Vancouver, ISO, and other styles
33

Zhang, Rui, and Tao Zhang. "Preliminary Research on Waste Incineration Bottom Ash Concrete." Advanced Materials Research 250-253 (May 2011): 1007–10. http://dx.doi.org/10.4028/www.scientific.net/amr.250-253.1007.

Full text
Abstract:
We use the bottom ash from Harbin Municipal Solid Waste Incineration Plant as concrete coarse aggregate and study the engineering properties of the coarse aggregate, failure mode of waste incineration bottom ash concrete, the relationship between compressive strength and bottom ash coarse aggregate replacement rate, water cement ratio, apparent density and development trend of compressive strength. Comparing with natural aggregates, the bottom ash has higher water absorption rate, lower apparent density and crushing value index. The failure mode of waste incineration bottom ash concrete is similar to ordinary concrete and the flat and elongated particles have effect on compressive strength. Bottom ash coarse aggregate replacement rate has different effects on compressive strength in different water cement ratio. Compressive strength of waste incineration bottom ash concrete has the same development trend with ordinary concrete. Compressive strength and apparent density has a linear relation.
APA, Harvard, Vancouver, ISO, and other styles
34

Zainal Abidin, Norul Ernida, Mohd Haziman Wan Ibrahim, Norwati Jamaluddin, Kartini Kamaruddin, and Ahmad Farhan Hamzah. "The Effect of Bottom Ash on Fresh Characteristic, Compressive Strength and Water Absorption of Self-Compacting Concrete." Applied Mechanics and Materials 660 (October 2014): 145–51. http://dx.doi.org/10.4028/www.scientific.net/amm.660.145.

Full text
Abstract:
Bottom ash is a solid residue produced through combustion process in a coal-fired power plant. It has been catogarized as a waste and usually disposed in the utility disposed site. With higher demand on the power energy, more coal-power plant are constructed and abundance of bottom ash are produced. Recently, the utilization of bottom ash in the construction industry has gained the interest of researches. Since it has similiar particle size distribution as normal sand, many attempt has been made in studying it potential use in mortar and concrete. In complementary to that, this paper presents the effect of bottom ash on fresh and hardened properties of self-compacting concrete (SCC). Bottom ash is used as fine aggregate replacing sand with replacement ratio range from 0% to 30% by volume. The effects of bottom ash on the SCC were investigated by comparing the test result of SCC mixed bottom ash with control specimens (0% of bottom ash). The test result on fresh properties of the concrete mixture revealed that, as the replacement level of bottom ash increased, the slump flow, L-box passing ratio and segregation resistance ratio (SR) decreased. Nevertheless, the slump flow time (T500) result increased with the increased of bottom ash content. The results show that the porosity and the irregular shape of the bottom ash particle has great influence on workability and viscosity of the fresh concete. The compressive strength and water absorption test are carried out on the sample at curing time of 7 and 28days. In terms of strength, the use of bottom ash in the production of SCC has increased the compressive strength of the concrete up to 15% replacement level. The increase in strength show the presence of the pozzolanic reactivity in a concrete with bottom ash particle. The water absorption rate was observed to be lower with a sample which having 10% and 15% replacement level.
APA, Harvard, Vancouver, ISO, and other styles
35

Anshar, Nanda, Sofyan M. Saleh, and Juliana Fisaini. "Karakteristik Campuran Aspal Beton Menggunakan Coal Bottom Ash dengan Persentase 0%, 5%, dan 10% Sebagai Substitusi Agregat Halus." Journal of The Civil Engineering Student 5, no. 1 (April 15, 2023): 85–91. http://dx.doi.org/10.24815/journalces.v5i1.21884.

Full text
Abstract:
Pembakaran batu bara menghasilkan limbah padat berupa coal fly ash dan coal bottom ash yang dapat mencemari lingkungan. Pemanfaatan limbah coal bottom ash sebagai bahan substitusi agregat pada perkerasan lentur merupakan salah satu solusi terhadap permasalahan tersebut. Tujuan dari penelitian ini untuk mengetahui nilai parameter Marshall pada campuran laston lapis aus (AC–WC) terhadap penggunaan coal bottom ash dengan persentase 0%, 5%, 10% sebagai substitusi agregat halus, serta mengetahui nilai durabilitas dari campuran laston lapis aus (AC–WC) dengan penggunaan coal bottom ash pada nilai stabilitas Marshall optimal. Pada penelitian ini dilakukan pembuatan benda uji dengan substitusi coal bottom ash 0%, 5%, dan 10% terhadap agregat halus, kemudian dilakukan pengujian Marshall dan pengujian durabilitas pada persentase terbaik. Hasil penelitian ini didapatkan nilai parameter Marshall telah memenuhi spesifikasi, kecuali nilai flow pada persentase coal bottom ash 10% dengan kadar aspal 6,80% yaitu 4,03 mm (2 – 4 mm). Nilai stabilitas Marshall optimal diperoleh pada campuran dengan persentase coal bottom ash 5% dan kadar aspal 5,85% yaitu 1257,80 kg. Nilai durabilitas yang diperoleh dari campuran pada persentase coal bottom ash terbaik adalah 95,69% memenuhi Spesifikasi Umum Bina Marga 2018 revisi 2 (2020) yaitu ≥ 90%.
APA, Harvard, Vancouver, ISO, and other styles
36

Rio, Bobby, Nor Hidayati, Mochammad Qomaruddin, and FERI FIRMAN Ferdiasah. "ANALISIS PENGARUH ZAT POLIMER PAVING BLOCK FABA (FLY ASH & BOTTOM ASH) DENGAN VARIABEL SEMEN DAN FLY ASH PLTU TJB JEPARA." Jurnal DISPROTEK 13, no. 1 (March 12, 2022): 82–88. http://dx.doi.org/10.34001/jdpt.v13i1.3120.

Full text
Abstract:
Penelitian ini dilatarbelakangi oleh rendahnya pemanfaatan limbah batu bara di PLTU Tanjung Jati B Jepara. Batu bara yang dimanfaatkan untuk sumber energi akan menghasilkan residu berupa fly ash dan bottom ash. Di Indonesia khususnya di Jepara banyak ditemukan fly ash dan bottom ash yang dimana jumlahnya akan bertambah setiap tahunnya bila tidak ditangani secara serius. Guna mengatasi hal itu maka dilakukan pengkajian untuk memanfaatkan limbah batu bara khususnya fly ash dan bottom ash. Dan salah satu cara pemanfaatan limbah tersebut adalah dengan menggunakan material fly ash dan bottom ash sebagai bahan pengganti sebagian semen dan agregat pada campuran pembuatan paving block. [1]Oleh karena itu, perlu dilakukan pengujian tentang pengaruh fly ash dan bottom ash sebagai pengganti sebagian semen dan agregat terhadap uji kuat tekan beton dan daya serap air pada paving block. Komposisi sudah ditentukan dengan perbandingan yaitu : A (PC 100% : FA 0%), B (PC 97% : FA 3%), C (PC94% : FA 6%), D (PC 91% : FA 9%), E (PC 88% : FA 12%), F (PC 85% : FA 15%) dengan keadaan BA (bottom ash) dengan keadaan konsisten menggunakan perbandingan dengan bindernya 3 : 1 masing-masing bottom ash : binder. Metode perbandingan komposisi campuran paving block diatur untuk mutu beton k 175 dan k 225 dengan memaksimalkan subtitusi fly ash dan bottom ash dalam campuran pembuatan paving block. Hasil yang didapatkan setelah melakukan pengujian selama 28 hari paving dengan menggunakan polimer 1% lebih tinggi dibandingkan dengan paving blok dengan kandungan polimer 2%. Sedangkan dalam perbandingan terhadap subtitusi FA terhadap PC mengalami penurunan setiap penambahan fly ash.
APA, Harvard, Vancouver, ISO, and other styles
37

Azizah, N. U., J. Andry, and F. Y. Pradana. "Analysis Stability Of Asphalt Concrete Binder Course (AC-BC) With Fly Ash And Bottom Ash Substitution Material." IOP Conference Series: Earth and Environmental Science 1321, no. 1 (April 1, 2024): 012021. http://dx.doi.org/10.1088/1755-1315/1321/1/012021.

Full text
Abstract:
Abstract Fly ash and bottom ash are ash produced from the process of burning coal as a source of energy in the steam generating unit of a coal-fired power plant (PLTU). Bottom ash is ash that forms at the bottom of a coal-burning furnace and settles there. In this research, fly ash is used as filler substitution and bottom ash is used as fine aggregate substitution (sand). The purpose of the study was to obtain a suitable Job Mix Design (JMD) for Asphalt Concrete - Binder Course (AC-BC) with fly ash and bottom ash substitution materials. To determine the effect of optimum asphalt content on the values of stability, flow, Marshall Quotient, VMA, VIM and VFB obtained from result of the Masrhall test. Based on the results of Marshall testing, the results show that Analysis Stability Of Binder Course Asphalt Concrete (AC-BC) With Fly Ash And Bottom Ash Substitution Material produces the highest VMA value of 14.462% and the highest VIM value of -1.88%, meaning that there are many gaps in the mixture containing asphalt so that it becomes waterproof and hermetic. The highest stability and MQ values are stability of 1955.55.34 kg and MQ of 1241.13 kg/mm. The appropriate Job Mix Design (JMD) for Asphalt Concrete - Binder Course (AC-BC) with fly ash and bottom ash substitution materials is the composition of Fly Ash at 0%, 50%, and 60% of the total cement while for the use of Bottom Ash from the total sand at 0%, 50%, and 60%.
APA, Harvard, Vancouver, ISO, and other styles
38

Woo, Byeong-Hun, In-Kyu Jeon, Dong-Ho Yoo, Seong-Soo Kim, Jeong-Bae Lee, and Hong-Gi Kim. "Utilization of Municipal Solid Waste Incineration Bottom Ash as Fine Aggregate of Cement Mortars." Sustainability 13, no. 16 (August 6, 2021): 8832. http://dx.doi.org/10.3390/su13168832.

Full text
Abstract:
Incineration bottom ash is generated by the incineration of solid waste. Household solid waste is increasing every year and so is incineration bottom ash. This is a problem to treat the incineration bottom ash because the ash has many toxic components. Cement composites can solve this problem and there are many studies for using the bottom ash as fine aggregate. To evaluate the usage of incineration bottom ash, compressive strength, mercury intrusion porosimetry, scanning electron microscopy-backscatter electron, X-ray diffraction, and toxicity characteristic leaching processes were performed. When using incineration bottom ash up to 20% of substitution, the compressive strength in all cases was increased. This study showed how the filler effect appeared well in the cement composites through the scanning electron microscopy-backscatter electron, and mercury intrusion porosimetry. X-ray diffraction indicated the possibility of an alkali-silica reaction of the aggregate with the components of incineration bottom ash. This problem is an obstacle to applying the incineration bottom ash as a fine aggregate. In addition, the toxicity characteristic leaching process was shown to be under the threshold of the Korean standard, however, this should nuanced by the consideration of amorphity. Comprehensively, incineration bottom ash could be used as a fine aggregate of up to 20% of substitution. However, the pre-treatment would need to eliminate or reduce alkali reactive components and heavy metals.
APA, Harvard, Vancouver, ISO, and other styles
39

., Evidasari, Banta Chairullah, and Halida Yunita. "Pengaruh Penambahan Bottom Ash Terhadap Parameter Kuat Geser Tanah Lempung Desa Beureugang Kaway XVI Aceh Barat." Journal of The Civil Engineering Student 3, no. 2 (August 30, 2021): 106–12. http://dx.doi.org/10.24815/journalces.v3i2.13487.

Full text
Abstract:
Abstrak Tanah merupakan dasar dari suatu konstruksi bangunan sipil yang berfungsi menerima dan menahan beban dari suatu struktur di atasnya. Sifat-sifat tanah di masing-masing daerah berbeda dan tidak semua tanah layak untuk digunakan sebagai tanah dasar konstruksi sebelum dilakukan perbaikan. Tindakan yang dapat dilakukan untuk memperbaiki sifat tanah tersebut antara lain dengan cara stabilisasi kimiawi menggunakan bahan campuran limbah batu bara (bottom ash). Sampel tanah yang distabilisasi merupakan tanah lempung yang berasal dari Desa Beureugang, Kecamatan Kaway XVI, Kabupaten Aceh Barat. Tujuan dari penelitian ini untuk mengetahui pengaruh yang ditimbulkan bottom ash terhadap sifat plastisitas dan kuat geser tanah. Penambahan bottom ash dilakukan dengan variasi 0%, 5%, 10%, 15%, dan 20% dari berat kering tanah. Hasil penelitian menunjukkan bahwa penambahan bottom ash pada tanah lempung Desa Beureugang berpengaruh pada batas-batas Atterberg dan nilai kuat geser tanah. Nilai indeks plastisitas (PI) terendah dicapai pada penambahan 10% bottom ash yaitu 20,35% dari yang sebelumnya 24,90%. Untuk Nilai sudut geser (ϕ) tertinggi dicapai pada campuran 20% bottom ash yaitu sebesar 37,2°, sedangkan nilai sudut geser (ϕ) terendah dicapai pada tanah tanpa campuran bottom ash yaitu sebesar 17,4°. Nilai kohesi (c) tertinggi dicapai pada campuran bottom ash 10% yaitu sebesar 0,89 kg/cm2, sedangkan nilai kohesi (c) terendah dicapai pada campuran bottom ash 20% yaitu 0,53 kg/cm2. Hasil penelitian menunjukkan bahwa penambahan campuran bottom ash secara umum menyebabkan sudut geser meningkat, namun menyebabkan nilai kohesi turun dikarenakan berkurangnya daya lekat antar partikel tanah.
APA, Harvard, Vancouver, ISO, and other styles
40

Zhao, J. M., Z. X. Yang, Kyu Hong Hwang, and M. C. Kim. "Strength Enhancement of Bottom Ash-Based Concretes Using Metakaolin." Materials Science Forum 695 (July 2011): 287–90. http://dx.doi.org/10.4028/www.scientific.net/msf.695.287.

Full text
Abstract:
To replace bottom ash for natural sand completely, the mix proportions of bottom ash in concrete was adjusted according to tab density and replacement ratio of Metakaolin/Cement were established. And then testing for slump, setting time, and compressive strength was conducted. According to test results, the compressive strength of concrete using the bottom ash was lower than that of concrete using natural sand (BAO concrete). But by adjusting the amount of bottom ash in concrete according tab density so that the fine aggregate proportions change 44% to 38%, the compressive strength of concrete using the bottom ash could even be higher than BAO concrete. And the chloric content of concrete using the bottom ash increased as the replacement ratio of bottom ash increased, but it is satisfied with the chloric content of fresh concrete 0.30 kg/m2 below (concrete standard specification regulation value).
APA, Harvard, Vancouver, ISO, and other styles
41

Menéndez, Esperanza, Cristina Argiz, and Miguel Ángel Sanjuán. "Reactivity of Ground Coal Bottom Ash to Be Used in Portland Cement." J 4, no. 3 (June 23, 2021): 223–32. http://dx.doi.org/10.3390/j4030018.

Full text
Abstract:
Ground coal bottom ash is considered a novel material when used in common cement production as a blended cement. This new application must be evaluated by means of the study of its pozzolanic properties. Coal bottom ash, in some countries, is being used as a replacement for natural sand, but in some others, it is disposed of in a landfill, leading thus to environmental problems. The pozzolanic properties of ground coal bottom ash and coal fly ash cements were investigated in order to assess their pozzolanic performance. Proportions of coal fly ash and ground coal bottom ash in the mixes were 100:0, 90:10, 80:20, 50:50, 0:100. Next, multicomponent cements were formulated using 10%, 25% or 35% of ashes. In general, the pozzolanic performance of the ground coal bottom ash is quite similar to that of the coal fly ash. As expected, the pozzolanic reaction of both of them proceeds slowly at early ages, but the reaction rate increases over time. Ground coal bottom ash is a promising novel material with pozzolanic properties which are comparable to that of coal fly ashes. Then, coal bottom ash subjected to an adequate mechanical grinding is suitable to be used to produce common coal-ash cements.
APA, Harvard, Vancouver, ISO, and other styles
42

Setiaji, Nurul Faizah, Ariyanti Sarwono, and I. Wayan Koko Suryawan. "Differences in the Quality of Bottom Ash and Fly Ash for the Cement Industry as an Alternative Fuel (AF)." Journal of Earth and Marine Technology (JEMT) 3, no. 2 (May 20, 2023): 41–47. http://dx.doi.org/10.31284/j.jemt.2023.v3i2.4154.

Full text
Abstract:
Cement is a prominent Indonesian industry. Industrial fuel needs are growing. In Indonesia, biomass is an essential natural resource with a variety of primary products such as fiber, wood, oil, food, and others that are utilized domestically and exported to generate foreign cash. This study compares fly ash and bottom ash as alternative fuel feedstock materials from the cement industry. This study uses cement industry data from East Java. As, Cd, Cr, Pb, Hg, TI, Sb, Co, Ni, Cu, V, Zn, Se, and Sn for bottom ash and fly ash quality data are employed. The investigation followed a paired t-test to compare ash types based on metal characteristics, then an ANOVA post-test to establish the significance of bottom ash and fly ash values. The paired t-test on two types of ash showed a 0.103 difference. ANOVA shows that ash kinds differ significantly. Bottom ash and fly ash have different qualities. Hence their management requires various approaches. This treatment utilizes bottom ash. For fly ash, the quality-related parameters must be lowered.
APA, Harvard, Vancouver, ISO, and other styles
43

Che Amat, Roshazita, Khairul Nizar Ismail, Norlia Mohamad Ibrahim, Rohaya Abdul Malek, and Khairel Rafezi Ahmad. "Use of Municipal Solid Waste Incineration Bottom Ash and Rice Husk Ash as Blended Cement." Key Engineering Materials 908 (January 28, 2022): 664–71. http://dx.doi.org/10.4028/p-wv3hqs.

Full text
Abstract:
The issue related to disposing the waste material from the industries becomes one of a major problem to the environmental, economic, and social issue. However, natural resources consume worldwide, while at the same time increased amount and type of waste material has resulted in a waste disposal crisis with a growing consumer population. In this project, Municipal Solid Waste Incineration (MSWI) by-product which is bottom ash and rice husk ash were used as blended cement. This research paper is prepared to investigate the utilization of municipal solid waste incineration bottom ash in blended cement and designed for the strength of 15 MPa at 28 days will be evaluated for its early-stage properties. Rice husk ash is used to reduce the amount of cement in mortar and it helps to increase the durability of mortar while keeping up consistent workability. The percentage of replacement in cement is by 0% (control), (5% rice husk ash + 10% bottom ash), (10% rice husk ash + 10% bottom ash), and (15% rice husk ash + 10% bottom ash) The result of this research indicates that 5% of replacement of rice husk ash with 10% of bottom ash shows highest compressive strength with 17.79 MPa with density 2080 kg/mɜ and water absorption of 5.18% at 28 days. This study proved that the addition of bottom ash can increase the durability, workability, and strength of mortar containing rice husk ash as a replacement for cement.
APA, Harvard, Vancouver, ISO, and other styles
44

Ramadhani, Arnesya, and Siti Khuzaimah. "Utilization of FABA Waste (Fly ash Bottom ash) of PLTU Karangkandri as an Adsorbent for Batik Waste Process in Kutawaru Village, Cilacap." Rekayasa Bahan Alam dan Energi Berkelanjutan 7, no. 2 (October 31, 2023): 25–32. http://dx.doi.org/10.21776/ub.rbaet.2023.007.02.04.

Full text
Abstract:
In this modern era, many technologies are increasingly advanced and industrial developments are increasing, resulting in waste that can contaminate water. The purpose of this study was to determine the best adsorbents from fly ash and bottom ash and to determine the effect of filtration time on the decrease in content, color, BOD5, COD, TSS and pH in the Cilacap batik fabric industrial wastewater treatment process. The steps taken in this study were to find the best filtration time from variations of 60, 120, 180 minutes on fly ash and bottom ash adsorbents and to determine the best adsorbents from fly ash and bottom ash. The results of the color, BOD5, COD, TSS and pH tests showed that the most optimum adsorbent was fly ash, which produced the highest percentage reduction in color content at 60 minutes filtration time of 34.1%, the highest percentage reduction in BOD5 levels at 180 minutes of 69, 5%, the highest percent reduction in COD levels at 120 minutes was 71.5%, the highest percent reduction in TSS levels at 180 minutes was 69.1% and a neutral pH was produced. Analysis of the results of the most optimum time is the filtration time of 180 minutes where the results of filtration using bottom ash adsorbents show the highest percentage reduction in BOD5, COD, TSS levels of 55.4%, 55.3%, 20.4%.
APA, Harvard, Vancouver, ISO, and other styles
45

Lagalung, Iksal, Jonie Tanijaya, and Suryanti Rapang Tonapa. "Karakteristik Beton Normal Substitusi Agregat Halus Bottom Ash Pada Perendaman Asam Sulfat." Paulus Civil Engineering Journal 3, no. 1 (February 4, 2021): 47–54. http://dx.doi.org/10.52722/pcej.v3i1.202.

Full text
Abstract:
Bottom ash (abu dasar) adalah sisa pembakaran batu bara di Indonesia di kategorikan sebagai limbah (B3). Kandungan logam berat dalam limbah B3 menyebabkan pencemaran lingkungan. Bottom ash melimpah dan kurang dimanfaakan. Oleh karena itu berbagai inovasi dilakukan peneliti agar penggunaan kontruksi beton layak digunakan terhadap pengaruh hujan asam serta pengelolaan bottom ash sebagai material konstruksi beton. Pada penelitian ini persentase substitusi bottom ash agregat halus sebanyak 0%, 25%, 35% dapat digunakan untuk campuran beton dengan perendaman asam sulfat pH-4. Dengan benda uji yang digunakan berukuran 15 cm x 30 cm dan 60 cm x 15 cm x 15 cm sebanyak 45 sampel, menggunakan metode American Concrete Institute (ACI). Pengujian tersebut berupa pengujian kuat tekan. kuat tarik belah dan kuat lentur beton dengan mutu rencana sebesar 30 MPa. Pada umur 28 hari didapatkan nilai kuat tekan sebesar 32,727 Mpa, 33,859 Mpa, 36,782 Mpa. Beton dengan substitusi bottom ash sebagai agregat halus dengan variasi 0%, 25% dan 35% mengalami peningkatan kekuatan seiring bertambahnya persentase substitusi bottom ash dimana semakin tinggi persentase substitusi bottom ash maka kekuatan beton semakin tinggi, sehingga dapat dikatakan bahwa persentase substitusi bottom ash berbanding lurus dengan kekuatan beton.
APA, Harvard, Vancouver, ISO, and other styles
46

Kim, Soo Ryong, Woo Teck Kwon, Byung Ik Kim, Y. Kim, and Sang Wook Ha. "Development of Non Explosive Insulating and Fire Proof Materials Using Porous Industrial Byproducts." Materials Science Forum 658 (July 2010): 300–303. http://dx.doi.org/10.4028/www.scientific.net/msf.658.300.

Full text
Abstract:
The effectiveness of bottom ash on the mechanical and physical properties of lightweight cement mortar for fire proofing application is investigated in this study. Bottom ash is well known that it can make it possible to decrease the thermal conduction in mortar by their porous structure. Physical properties of bottom ash including pozzolanic activity and compressive strength test were measured to decide the replacement amount in formulation as well as chemical composition. This study was undertaken on the use of bottom ash as fine aggregate in fire proofing mortar. Various dosage of bottom ash such as 25%, 50%, 75%, 100% were evaluated by several measurement. We found out there were serious correlation between specific gravity and thermal conductivity, so other porous materials were also investigated to decrease the thermal conductivity of cement mortar as well as bottom ash. In this study, the researches on the mixing proportion were mainly performed to design specification of spraying fire proofing mortar. Based on the laboratory test results, we’d like to suggest the proper adding amount of bottom ash by evaluation of consistency and strength development and then optimum mixing proportions of spraying fire proofing mortar using bottom ash by various evaluations.
APA, Harvard, Vancouver, ISO, and other styles
47

Seniūnaitė, Jurgita, and Saulius Vasarevičius. "Fresh Bottom Ash Characteristics Dependence on Fractional Composition." Mokslas - Lietuvos ateitis 9, no. 4 (September 11, 2017): 363–70. http://dx.doi.org/10.3846/mla.2017.1064.

Full text
Abstract:
Waste incineration process generates two main by-products streams: fly ash and bottom ash. Bottom ash is composed of a variety of oxides, heavy metals and salts. Chemical materials distributed unevenly in different fractions of bottom ash. This study investigates the heavy metals (Pb, Cd) content dependence of bottom ash and fraction composition. Studies were performed with five different fractions (0–2 mm; 2–5.6 mm; 5.6–11.2 mm; 11.2–22,4 mm; 22.4–40 mm) of fresh bottom ash. After a one-step leaching test (distilled water was used as a solvent), was determinate, that highest concentrations of the lead (Pb) (from 0.141 to 0.146 mg/l) are leached from the smallest (0–2 mm 2–5.6 mm) bottom ash fractions particles. Heavy metals concentration in these fractions eluates respectively was 2.83 and 2.91 times higher than the limit value of leaching. The highest concentration of cadmium (4.214 mg/l) was determinate in 0–2 mm fraction bottom ash eluate. concentration of cadmium was 1.40 times higher than the limit value of leaching. It can be concluded that 0–2 mm; 2–5.6 mm fraction bottom ash can’t be used in civil engineering, without pre-treatment (eg. washing or aging).
APA, Harvard, Vancouver, ISO, and other styles
48

Jeon, Dongho, Woo Sung Yum, Haemin Song, Seyoon Yoon, Younghoon Bae, and Jae Eun Oh. "Use of Coal Bottom Ash and CaO-CaCl2-Activated GGBFS Binder in the Manufacturing of Artificial Fine Aggregates through Cold-Bonded Pelletization." Materials 13, no. 24 (December 8, 2020): 5598. http://dx.doi.org/10.3390/ma13245598.

Full text
Abstract:
This study investigated the use of coal bottom ash (bottom ash) and CaO-CaCl2-activated ground granulated blast furnace slag (GGBFS) binder in the manufacturing of artificial fine aggregates using cold-bonded pelletization. Mixture samples were prepared with varying added contents of bottom ash of varying added contents of bottom ash relative to the weight of the cementless binder (= GGBFS + quicklime (CaO) + calcium chloride (CaCl2)). In the system, the added bottom ash was not simply an inert filler but was dissolved at an early stage. As the ionic concentrations of Ca and Si increased due to dissolved bottom ash, calcium silicate hydrate (C-S-H) formed both earlier and at higher levels, which increased the strength of the earlier stages. However, the added bottom ash did not affect the total quantities of main reaction products, C-S-H and hydrocalumite, in later phases (e.g., 28 days), but simply accelerated the binder reaction until it had occurred for 14 days. After considering both the mechanical strength and the pelletizing formability of all the mixtures, the proportion with 40 relative weight of bottom ash was selected for the manufacturing of pilot samples of aggregates. The produced fine aggregates had a water absorption rate of 9.83% and demonstrated a much smaller amount of heavy metal leaching than the raw bottom ash.
APA, Harvard, Vancouver, ISO, and other styles
49

James, Adrian, Ronald Thring, Steve Helle, and Harpuneet Ghuman. "Ash Management Review—Applications of Biomass Bottom Ash." Energies 5, no. 10 (October 9, 2012): 3856–73. http://dx.doi.org/10.3390/en5103856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Asal, Sinan, Steven J. Laux, Michael C. McVay, and Timothy G. Townsend. "Blending organic material with municipal solid waste incinerator bottom ash to promote in-situ carbonation in road base." Waste Management & Research 37, no. 9 (August 5, 2019): 951–55. http://dx.doi.org/10.1177/0734242x19864651.

Full text
Abstract:
The use of municipal solid waste incinerator bottom ash for road-base construction is an accepted practice in Europe and Asia, and of growing interest in the US. It is common practice to cure bottom ash by stockpiling it for several weeks before using it in this application. The curing process exposes the bottom ash to atmospheric carbon dioxide, which promotes carbonation, lowering its pH (making it less alkaline), and making many heavy metals less soluble. While this process makes bottom ash a more environmentally acceptable material, it takes time and requires additional handling. This article investigates a concept to facilitate carbonation of bottom ash in its compacted state, potentially eliminating the stockpile curing process. It is demonstrated here that blending a small amount of organic material with bottom ash will accelerate carbonation and lower pH in compacted samples by providing a carbon source for bacteria to produce carbon dioxide. Different quantities of biosolids (1%, 2%, 3%, and 5% by mass) were added to compacted bottom ash samples to examine the effect of organic materials on carbonation, and results were compared with a compacted control bottom ash sample. The pH of the control bottom ash sample decreased from 12.07 to 9.78 after 63 days, while the pH of the sample containing 5% biosolids decreased from 11.70 to 9.74 in only 7 days and to 8.18 after 63 days. Physical testing was conducted to examine suitability for beneficial use. The results indicate that bottom ash containing less than 3% biosolids met minimum bearing strength requirements for road base.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography