Academic literature on the topic 'Bottom-hole pressure'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bottom-hole pressure.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bottom-hole pressure"

1

Faizullin, Rinat, Sergey Miroshnichenko, and Ravil Sultanov. "Bottom-hole pressure optimization when operating the well lateral horizontal hole." E3S Web of Conferences 217 (2020): 03008. http://dx.doi.org/10.1051/e3sconf/202021703008.

Full text
Abstract:
The problem of optimization of technological parameters as a way to improve the efficiency of oil deposit exploitation is considered in the paper. There are no standards for parameters of well bottom-hole pressure for exploitation of lateral horizontal holes. The paper presents the evaluation of optimum bottom-hole pressure at which it is advisable to exploit the deposit lateral horizontal hole with maximum “water-free” production rate. Following the calculations carried out and analysis of the graphs of additional oil and liquid production dependence on bottom-hole pressure, graphs of production dynamics and water encroachment, it was concluded that 3 groups of drilling (kickoff) of lateral holes (KLH) should be distinguished: with high forecasted starting water encroachment (>90%), average starting water encroachment (about 80%), and low starting water encroachment (about 20-50%). The distinguished 3 groups allow applying the differentiation of parameters, for which optimum bottom-hole pressure parameters for each drilling group were found.
APA, Harvard, Vancouver, ISO, and other styles
2

Astakhov, V. P., J. Frazao, and M. O. M. Osman. "On the Experimental Optimization of Tool Geometry for Uniform Pressure Distribution in Single Edge Gundrilling." Journal of Engineering for Industry 116, no. 4 (November 1, 1994): 449–56. http://dx.doi.org/10.1115/1.2902127.

Full text
Abstract:
An investigation into the effect of gundrill geometry on the coolant flow, in gundrilling, is carried out. This investigation deals mainly with the loss of coolant pressure occurring in a limited space between the flank of the gundrill and the bottom of the predrilled hole. This space is named as “bottom clearance.” The pressure loss in the bottom clearance is classified into, (a) pressure loss due to flow interaction with the bottom of the drilled hole (impact pressure loss), and (b) pressure loss due to hydraulic resistance of the annular groove connecting the bottom clearance and the chip removal passage. The study indicates that a significant part of the pressure loss occurs due to flow deflection at the bottom of the hole. The reduction of pressure loss can be achieved either by reducing the coolant velocity at the orifice exit, or, by increasing the coolant pressure in the bottom clearance. In this study, the shoulder dub-off angle of the gundrill is experimentally optimized to increase the coolant pressure in the bottom clearance, thereby achieving uniform coolant pressure distribution. This uniform pressure distribution resulted in increased gundrill life without compromising the quality of the machined hole.
APA, Harvard, Vancouver, ISO, and other styles
3

Chang, Bao Hua, Jing Nan Zhang, Wei Xiong, and Shu Sheng Gao. "Elastic Exploring Law Analysis of the Deep Vuggy Reservoir." Applied Mechanics and Materials 110-116 (October 2011): 3068–73. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.3068.

Full text
Abstract:
The deep cave is an important storage space in the fractured-vuggy reservoir in the Tahe oilfield, with large differences in spatial structure and the complex relationship between oil and water features, so far, mainly in elastic energy as the driving force for mining; this paper, base on the elasticity theory, analyses mining characteristics of the three fractured-vuggy model, and found that the bottom hole pressure has a certain relationship with the fracture and cave properties, the bottom hole pressure equation was established, and verified the bottom hole pressure variation of three fractured-vuggy mode by physical simulation, and analyzed the relationship between cumulative production and accumulation of pressure drop curves, the results showed that: showed a single index of changes in bottom hole pressure for the single cave mode and single-fractured-cave mode, and the cumulative production and cumulative pressure drop curve is linear, the bottom hole pressure showed double-index change for the cave-fractured-cave model, and the cumulative production and accumulation of pressure drop curves have a bend segment, this research provide a basis for the development in the deep vuggy reservoir .
APA, Harvard, Vancouver, ISO, and other styles
4

Awadalla, Medhat, and Hassan Yousef. "Neural Networks for Flow Bottom Hole Pressure Prediction." International Journal of Electrical and Computer Engineering (IJECE) 6, no. 4 (August 1, 2016): 1839. http://dx.doi.org/10.11591/ijece.v6i4.10774.

Full text
Abstract:
Installation of down-hole gauges in oil wells to determine Flowing Bottom-Hole Pressure (FBHP) is a dominant process especially in wells lifted with electrical submersible pumps. However, intervening a well occasionally is an exhaustive task, associated with production risk, and interruption. The previous empirical correlations and mechanistic models failed to provide a satisfactory and reliable tool for estimating pressure drop in multiphase flowing wells. This paper aims to find the optimum parameters of Feed-Forward Neural Network (FFNN) with back-propagation algorithm to predict the flowing bottom-hole pressure in vertical oil wells. The developed neural network models rely on a large amount of available historical data measured from actual different oil fields. The unsurpassed number of neural network layers, the number of neurons per layer, and the number of trained samples required to get an outstanding performance have been obtained. Intensive experiments have been conducted and for the sake of qualitative comparison, Radial Basis neural and network and the empirical modes have been developed. The paper showed that the accuracy of FBHP estimation using FFNN with two hidden layer model is better than FFNN with single hidden layer model, Radial Basis neural network, and the empirical model in terms of data set used, mean square error, and the correlation coefficient error. With best results of 1.4 root mean square error (RMSE), 1.4 standard deviation of relative error (STD), correlation coefficient (R) 1.0 and 99.4% of the test data sets achieved less than 5% error. The minimum sufficient number of data sets used in training ANN model can be low as 12.5% of the total data sets to give 3.4 RMSE and 97% of the test data achieved 90% accuracy.
APA, Harvard, Vancouver, ISO, and other styles
5

Awadalla, Medhat, and Hassan Yousef. "Neural Networks for Flow Bottom Hole Pressure Prediction." International Journal of Electrical and Computer Engineering (IJECE) 6, no. 4 (August 1, 2016): 1839. http://dx.doi.org/10.11591/ijece.v6i4.pp1839-1856.

Full text
Abstract:
Installation of down-hole gauges in oil wells to determine Flowing Bottom-Hole Pressure (FBHP) is a dominant process especially in wells lifted with electrical submersible pumps. However, intervening a well occasionally is an exhaustive task, associated with production risk, and interruption. The previous empirical correlations and mechanistic models failed to provide a satisfactory and reliable tool for estimating pressure drop in multiphase flowing wells. This paper aims to find the optimum parameters of Feed-Forward Neural Network (FFNN) with back-propagation algorithm to predict the flowing bottom-hole pressure in vertical oil wells. The developed neural network models rely on a large amount of available historical data measured from actual different oil fields. The unsurpassed number of neural network layers, the number of neurons per layer, and the number of trained samples required to get an outstanding performance have been obtained. Intensive experiments have been conducted and for the sake of qualitative comparison, Radial Basis neural and network and the empirical modes have been developed. The paper showed that the accuracy of FBHP estimation using FFNN with two hidden layer model is better than FFNN with single hidden layer model, Radial Basis neural network, and the empirical model in terms of data set used, mean square error, and the correlation coefficient error. With best results of 1.4 root mean square error (RMSE), 1.4 standard deviation of relative error (STD), correlation coefficient (R) 1.0 and 99.4% of the test data sets achieved less than 5% error. The minimum sufficient number of data sets used in training ANN model can be low as 12.5% of the total data sets to give 3.4 RMSE and 97% of the test data achieved 90% accuracy.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Yichi, Jin Yang, Wei Liu, Mu Li, Zhenxiang Zhang, and Xin Zhao. "Bottom Hole Pressure Calculation of Fractured Carbonate Formation." IOP Conference Series: Earth and Environmental Science 570 (November 12, 2020): 022018. http://dx.doi.org/10.1088/1755-1315/570/2/022018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Svalov, A. M. "Bottom-hole filtration at a positive differential pressure." Soviet Mining Science 25, no. 1 (January 1989): 56–60. http://dx.doi.org/10.1007/bf02528431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Heqian, Huaizhong Shi, Zhongwei Huang, Zhenliang Chen, Ziang Gu, and Fei Gao. "Mechanism of Cuttings Removing at the Bottom Hole by Pulsed Jet." Energies 15, no. 9 (May 3, 2022): 3329. http://dx.doi.org/10.3390/en15093329.

Full text
Abstract:
Vibration drilling technology induced by hydraulic pulse can assist the bit in breaking rock at deep formation. Simultaneously, the pulsed jet generated by the hydraulic pulse promotes removal of the cuttings from the bottom hole. Nowadays, the cuttings removal mechanism of the pulsed jet is not clear, which causes cuttings to accumulate at the bottom hole and increases the risk of repeated cutting. In this paper, a pressure-flow rate fluctuation model is established to analyze the fluctuation characteristics of the pulsed jet at the bottom hole. Based on the model, the effects of displacement, well depth, drilling fluid viscosity, and flow area of the pulsed jet tool on the feature of instantaneous flow at the bottom hole are discussed. The results show that the pulsed jet causes flow rate and pressure to fluctuate at the bottom hole. When the displacement changes from 20 L/s to 40 L/s in a 2000 m well, the pulsed jet generates a flow rate fluctuation of 4–9 L/s and pressure fluctuation of 0.1–0.5 MPa at the bottom hole. With the flow area of the tool increasing from 2 cm2 to 4 cm2, the amplitude of flow rate fluctuation decreases by 72.5%, and the amplitude of pressure fluctuation decreases by more than 60%. Combined with the fluctuation feature of the flow field and the water jet attenuation law at the bottom hole, the force acting on the cuttings under the pulsed jet is derived. It is found that flow rate fluctuation improves the mechanical state of cuttings and is beneficial for cuttings tumbled off the bottom hole. This research provides theoretical guidance for pulsed jet cuttings cleaning at the bottom hole.
APA, Harvard, Vancouver, ISO, and other styles
9

Xiong, Ping, Wang-shui Hu, Hai-xia Hu, and Hailong Liu. "Mechanism of shear failure near fracture face during drainage process of CBM well." Journal of Petroleum Exploration and Production Technology 10, no. 8 (April 27, 2018): 3309–17. http://dx.doi.org/10.1007/s13202-018-0467-y.

Full text
Abstract:
Abstract In this paper, whether the coal fines can be induced by shear failure during drainage process has been discussed in detail. By coupling with the percolation theory, the elasticity mechanics were used to construe the extra stresses in the formation surrounding with the hydraulic fracture. The safe window of the bottom hole pressure was also calculated from the failure envelope. The research shows that the formation pressure on the fracture surface of the coal seam is negatively related with the bottom hole pressure, and the induced stress is positively related with the bottom hole pressure during the drainage process of fractured CBM wells. The pore pressure around the fracture changed due to pore-elastic effects, which also caused a significant change of the in situ stresses. In order to avoid the breakout of the coal seam around hydraulic fracture during drainage process, the model of the reasonable bottom hole pressure is also built.
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Xiaoming, Junbin Chen, Dazhong Ren, and Zhaolong Shi. "Role of Gas Viscosity for Shale Gas Percolation." Geofluids 2020 (September 30, 2020): 1–10. http://dx.doi.org/10.1155/2020/8892461.

Full text
Abstract:
Viscosity is an important index to evaluate gas flowability. In this paper, a double-porosity model considering the effect of pressure on gas viscosity was established to study shale gas percolation through reservoir pressure, gas velocity, and bottom hole flowing pressure. The experimental results show that when pressure affects gas viscosity, shale gas viscosity decreases, which increases the percolation velocity and pressure drop velocity of the free state shale gas in matrix and fracture systems. And it is conducive to the desorption of adsorbed shale gas and effectively supplemented the bottom hole flowing pressure with the pressure wave propagation range and velocity increasing, so that the rate of pressure drop at the bottom of the well slows down, which makes the time that bottom hole flowing pressure reaches stability shortened. Therefore, the gas viscosity should be fully considered when studying the reservoir gas percolation.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Bottom-hole pressure"

1

Samadov, Hidayat. "Analyzing Reservoir Thermal Behavior By Using Thermal Simulation Model (sector Model In Stars)." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613336/index.pdf.

Full text
Abstract:
It is observed that the flowing bottom-hole temperature (FBHT) changes as a result of production, injection or shutting the well down. Variations in temperature mainly occur due to geothermal gradient, injected fluid temperature, frictional heating and the Joule-Thomson effect. The latter is the change of temperature because of expansion or compression of a fluid in a flow process involving no heat transfer or work. CMG STARS thermal simulation sector model developed in this study was used to analyze FBHT changes and understand the reasons. Twenty three main and five additional cases that were developed by using this model were simulated and relation of BHT with other parameters was investigated. Indeed the response of temperature to the change of some parameters such as bottom-hole pressure and gas-oil ratio was detected and correlation was tried to set between these elements. Observations showed that generally FBHT increases when GOR decreases and/or flowing bottom-hole pressure (FBHP) increases. This information allows estimating daily gas-oil ratios from continuously measured BHT. Results of simulation were compared with a real case and almost the same responses were seen. The increase in temperature after the start of water and gas injection or due to stopping of neighboring production wells indicated interwell communications. Additional cases were run to determine whether there are BHT changes when initial temperature was kept constant throughout the reservoir. Different iteration numbers and refined grids were used during these runs to analyze iteration errors
however no significant changes were observed due to iteration number differences and refined grids. These latter cases showed clearly that variations of temperature don&rsquo
t occur only due to geothermal gradient, but also pressure and saturation changes. On the whole, BHT can be used to get data ranging from daily gas-oil ratios to interwell connection if analyzed correctly.
APA, Harvard, Vancouver, ISO, and other styles
2

Tercan, Erdem. "Managed Pressure Drilling Techniques, Equipment &amp." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611824/index.pdf.

Full text
Abstract:
In the most of the drilling operations it is obvious that a considerable amount of money is spent for drilling related problems
including stuck pipe, lost circulation, and excessive mud cost. In order to decrease the percentage of non-productive time (NPT) caused by these kind of problems, the aim is to control annular frictional pressure losses especially in the fields where pore pressure and fracture pressure gradient is too close which is called narrow drilling window. If we can solve these problems, the budget spent for drilling the wells will fall, therefore enabling the industry to be able to drill wells that were previously uneconomical. Managed Pressure Drilling (MPD) is a new technology that allows us to overcome these kinds of drilling problems by controlling the annular frictional pressure losses. As the industry remains relatively unaware of the full spectrum of benefits, this thesis involves the techniques used in Managed Pressure Drilling with an emphasis upon revealing several of its lesser known and therefore less appreciated applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Patr?cio, Rafael Veloso. "Estudos de controle na perfura??o de po?os de petr?leo em presen?a de Kick de g?s." Universidade Federal Rural do Rio de Janeiro, 2016. https://tede.ufrrj.br/jspui/handle/jspui/1543.

Full text
Abstract:
Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-04-20T13:29:23Z No. of bitstreams: 1 2016 - Rafael Veloso Patr?cio.pdf: 9711857 bytes, checksum: 5f7e5b198769c9a633040fd42126df03 (MD5)
Made available in DSpace on 2017-04-20T13:29:23Z (GMT). No. of bitstreams: 1 2016 - Rafael Veloso Patr?cio.pdf: 9711857 bytes, checksum: 5f7e5b198769c9a633040fd42126df03 (MD5) Previous issue date: 2016-08-24
Funda??o de Apoio a Pesquisa Cient?fica e Tecnol?gica da UFRRJ-FAPUR
Controling of downhole pressure is essential for a safety process of oil well drilling. In a permeable formation, fluids from reservoir come into the annulus region (wellbore) when the downhole pressure is below pore pressure, featuring a disorder called kick. Literature reports some mathematical models developed to predict the behavior of the wellbore in presence of gas kick, however, there are few works reporting control and experiments. By this reason, it was built an experimental plant in order to study system?s behavior during fluid inlet (gas) from reservoir to annulus, and then, sought to develop a control strategy able to mitigate this disorder, without shut-in the well. A strategy with reconfiguration of the control law feedback?feedforward was designed to reject disturbance (gas inlet in the annular), to ensure the drilling within the operating window. Parallelly,simulation studies were developed which are: the construction of mathematical model, validated by the employment of the experimental unit, and the implementation of control based on reconfiguration of control law.
O controle da press?o anular de fundo ? fundamental para que a perfura??o de po?os de petr?leo seja feita de forma segura. Em uma forma??o perme?vel, fluidos do reservat?rio migram para a regi?o anular quando a press?o anular de fundo est? abaixo da press?o de poros, caracterizando o dist?rbio denominado kick. A literatura reporta alguns modelos matem?ticos desenvolvidos para prever o comportamento do po?o na presen?a de kick de g?s, por?m poucos s?o os trabalhos abordando controle e experimentos. A partir desta motiva??o, foi constru?do uma planta experimental para estudar o comportamento do sistema durante a entrada de fluido (g?s) do reservat?rio no anular, e assim, buscou-se desenvolver uma estrat?gia de controle que mitigue tal dist?rbio sem a necessidade do fechamento total do po?o. Uma estrat?gia com reconfigura??o da lei de controle feedback?feedforward foi desenvolvida para rejeitar a perturba??o (entrada de g?s no anular), visando assegurar a perfura??o dentro da janela operacional. Paralelamente, foram desenvolvidos estudos de simula??o quais sejam: a constru??o de um modelo matem?tico, validado empregando-se a unidade experimental, e a implanta??o de controle baseado em reconfigura??o da lei de controle
APA, Harvard, Vancouver, ISO, and other styles
4

Marko, Libor. "Konstrukční návrh destilační kolony." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231294.

Full text
Abstract:
The thesis contains information about the design of pressure vessels and describes their individual parts. It is mentioned production of individual parts and the process including assembly parts in one unit. The thesis includes options of control and testing of pressure vessels. It is described kinds of built-ins of distillation column and the basic principles and types of distillation. It is created stress analysis of pressure vessels parts according to ČSN EN 13 445 – 3, and also stress analysis of the selected part of column by using FEM. Mechanical drawing of distillation column is part of the thesis.
APA, Harvard, Vancouver, ISO, and other styles
5

Григораш, В. В. "Методи і засоби контролю за підготовкою та проведенням потужного гідророзриву пласта." Thesis, Івано-Франківський національний технічний університет нафти і газу, 2008. http://elar.nung.edu.ua/handle/123456789/4243.

Full text
Abstract:
Дисертація присвячена питанням розробки методів і засобів контролю за підготовкою та проведенням ПГРП на свердловинах. Теоретично обгрунтований запропонований метод контролю вибійного тиску у свердловині під час проведення ПГРП, який дозволяє розрахувати його значення на основі технологічних параметрів виміряних на усті свердловини (устьового тиску, густин рідин і їх витрати при закачуванні) з врахуванням визначених попередньо реологічних параметрів технологічних рідин. Розроблено і теоретично обгрунтовано ряд методик для визначення гідравлічних втрат при русі технологічних рідин в НКТ під час проведенні ПГРП. Розроблена методика і алгоритм для визначення гідравлічних втрат з урахуванням реологічних параметрів технологічних рідин (індекса поведінки неньютонівської технологічної рідини і її коефіцієнта консистентності), що дозволяє підвищити точність розрахунку реальних гідравлічних втрат при русі рідин в НКТ свердловини. Розроблено установку УВРП-1 та методики проведення на ній відповідних лабораторних досліджень для вивчення реологічних параметрів рідин та зміни їх характеристик в поверхневих умовах та в умовах проведення процесу ГІГРП. Теоретично обгрунтовано і розроблено структурну схему та програму „Frloss” удосконаленої системи контролю за підготовкою та проведенням ПГРП, що дозволяє в реальному масштабі часу проведення процесу здійснювати контроль вибійних технологічних параметрів під час проведення ПГРП (вибійного тиску, втрат тиску на тертя, чистого тиску розриву пласта тощо). Здійснено впровадження розробленої системи контролю за підготовкою та проведенням процесів ПГРП на експлуатаційних свердловинах ВАТ “Укрнафта”.
Проблема интенсификации добычи нефти и газа на Украине стоит очень остро. Мировой опыт использования методов интенсификации свидетельствует о том, что гидравлический разрыв пласта играет главную роль в увеличении добычи нефти и газа. Поэтому на протяжении последних 50-лет постоянно развивается техника и технология этого метода интенсификации притока нефти и газа в скважину, вследствие чего он существенно усовершенствовался и изменялся. Описано теоретические основы процесса гидравлического разрыва нефтегазоносных пластов и перечислены параметры, которые являются определяющими для данного процесса. Проанализировано известные системы контроля подготовки и проведения процесса. Показано что процесс гидравлического разрыва пласта представляет собой сложную динамическую систему со многими факторами, для которых необходим контроль, как на этапе подготовки, так и на этапе управления в реальном масштабе времени при его проведении. Описано комплект спецтехники фирмы “Stewart & Stevenson" предназначенного для проведения процесса гидроразрыва. Отмечено что проблеме качественного контроля проведения процесса и автоматизированного сбора информации в комплекте спецтехники уделено очень большое внимание. Система контроля спецтехники “Stewart & Stevenson" обеспечивает сбор и сохранение информации с устья скважины, а именно: давления на устье, плотности закачиваемых жидкостей, её расход и объем. Однако во время использования указанной техники на Украине часто случались случаи, когда, не имея возможности оценки текущих забойных параметров в скважине во время проведения процесса, внесение оперативных изменений в технологию ведения процесса было невозможно, что приводило к аварийным ситуациям и преждевременным остановкам процесса. Проведено теоретическое обоснование предложенного метода контроля давления на забое в скважине во время проведения гидроразрывов пласта, который даёт возможность рассчитать его значения на основе технологических параметров измеряемых на устье скважины (давления на устье, плотности жидкости, и её расхода при закачке) с учётом определяемых заранее реологических параметров технологических жидкостей. Разработано и теоретически обосновано ряд методик для определения гидравлических потерь при движении технологических жидкостей в НКТ во время проведения гидроразрыва пласта. Разработана методика и алгоритм для определения гидравлических потерь с учётом реологических параметров технологических жидкостей (индекса нелинейности неньютоновской технологической жидкости, и коэффициента консистентности), что позволит повысить точность расчёта реальных гидравлических потерь при движении жидкостей в НКТ. Разработано установку УВРГ1-1 и методики проведения лабораторных исследований изучения реологических параметров жидкости, которые используются для проведения гидроразрыва пласта в условиях проведения процесса. Теоретически обосновано, разработано структурную схему и программу "Frloss", усовершенствованной системы контроля подготовки и проведения ГРП, что позволяет в реальном времени производить контроль технологических параметров процесса на забое скважины (давления на забое, потерь давления на трение, чистого давления разрыва пласта и т.д.). Осуществлено внедрение разработанной системы контроля за подготовкой и проведением процессов гидроразрыва пласта на скважинах ОАО"Укрнафта".
The Dissertation is dedicated to issues of methods and measures of control over preparation and conducting PHFL development (Powerful Hydraulic Layer Fracturing) on boreholes. The offered theoretically grounded method of control over bottom-hole pressure during conducting PHLF, which enables to calculate its values on the basis of technological parameters, measured at the wellhead of the borehole (wellhead pressure, liquids density and their consumption during pumping) taking into account the previously valued rheological parameters of process liquids. A number of methods for determination of hydraulic losses during process liquids flow to pipes during PHLF was developed and theoretically grounded. Methodic and algorithm for determination of hydraulic losses, with allowance for rheological parameters of process liquids (the non-Newtonian process liquid behavior index, and its consistency ratio), which enables to improve the accuracy of calculation of real hydraulic losses during liquid flow to pipes. The Plant "UVRP-1" and a number of methods of conducting the appropriate researches in it for the purpose of studying the rheological parameters of liquid and changes of their characteristics under the surface conditions and conditions of PHLF process conducting is developed. The functional chart and program ’’Frloss” of the improved system of control over preparation and conducting PHLF is developed, which enables to perform control over bottom-hole technological parameters during conducting PHLF in real-time mode (bottom-hole pressure, friction pressure losses, neat pressure of layer fracturing etc.). Introductiof the developed system of control over preparation and conducting PHLF processes at operating boreholes of Ukrnafta OJSC is carried out.
APA, Harvard, Vancouver, ISO, and other styles
6

Ming-HaoWu and 吳珉豪. "The Study of Bottom-hole Pressure and Flow Rate Behaviors Affected by Formation Boundary and Anticline Structure of a Reservoir." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/51835420222213690221.

Full text
Abstract:
碩士
國立成功大學
資源工程學系碩博士班
101
An oil reservoir’s area is related to the original oil in place, and wellbore flow-pressure and flow-rate are affected by reservoir boundaries. The literature pays little attention to the effect of the formation structure on wellbore flow-pressure and flow-rate. The boundary effect time of flow-pressure and flow-rate data and radius of investigation are fundamental for understanding the distance from wellbore to boundary and how much original oil there was. We aimed to (1) determine whether reservoir boundaries and formation structure affected wellbore flow-pressure and flow-rate, and (2) estimate the distance from the wellbore to the reservoir boundaries by analyzing the flow-pressure and flow-rate. We used a flat model of a finite reservoir (with different boundary radii) that simulated bottom-hole flow-pressure in a case of constant production, and flow-rate in a case of constant pressure. The simulation results were validated by analytical solutions from the literature. Based on the validated model, variable depths for each grid and for mapping the anticline structure were part of the structure model. Similarly, the structure model was set up to calculate bottom-hole flow-pressure and flow-rate. The results were compared with the bottom-hole flow-pressure and flow-rate of the structure model with the flat model. We used the intersection method and well-test analysis software to analyze the bottom-hole flow-pressure and flow-rate and to calculate the distance from the wellbore to the reservoir boundary. Using the same reservoir volume for the flat and structure models, we found that (1) with or without an anticline structure, the result of the structure effect on bottom-hole flow-pressure, flow-rate, and radius of investigation was very slight. Therefore, we could ignore the effect of reservoir structure and use only the flat model as the field model; and that (2) by analyzing the effect of the boundaries on flow-pressure and flow-rate data, and then calculating the boundary radius using the radius-of-investigation equation, the distance from the wellbore to the reservoir boundaries could be determined. The calculated and actual radii of the boundary were close. The accuracy of the radius calculated by analyzing the flow-pressure data using the intersection method was more accurate than using the visual deviation point. Analyzing the flow-rate data using the visual deviation point between the infinite-acting and finite-flow period causes a judgment error and affects the calculated distance from the wellbore to the boundary.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Bottom-hole pressure"

1

Serebryakov, Andrey, and Gennadiy Zhuravlev. Exploitation of oil and gas fields by horizontal wells. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/971768.

Full text
Abstract:
The textbook describes the design features of offshore horizontal multi-hole production wells, as well as the bottom-hole components of horizontal multi-hole wells. The classification of complications of multi-hole horizontal wells, methods of their prevention and elimination are given. Methods of underground geonavigation of the development of offshore horizontal production wells are proposed. The geological and field bases of operation of horizontal offshore multi-hole oil and gas wells, modes and dynamics of oil, gas and associated water production, methods for calculating dynamic bottom-hole and reservoir pressures are specified. The technologies of operation of offshore horizontal multi-hole wells are presented. The composition and scope of environmental, field and research marine monitoring of the operation of offshore horizontal multi-hole wells and the protection of the marine environment in the production of oil and gas are justified. Meets the requirements of the federal state educational standards of higher education of the latest generation. It is intended for undergraduates of the enlarged group of "Earth Sciences" training areas, as well as for teachers, employees of the fuel and energy complex, industrial geological exploration and oil and gas production enterprises, scientific and design organizations.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bottom-hole pressure"

1

Memon, Paras Q., Suet-Peng Yong, William Pao, and Jion Sean Pau. "Dynamic Well Bottom-Hole Flowing Pressure Prediction Based on Radial Basis Neural Network." In Studies in Computational Intelligence, 279–92. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14654-6_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krishna, Shwetank, Syahrir Ridha, and Pandian Vasant. "Prediction of Bottom-Hole Pressure Differential During Tripping Operations Using Artificial Neural Networks (ANN)." In Intelligent Computing and Innovation on Data Science, 379–88. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3284-9_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Bing, Jin-long Wang, and Ning-sheng Zhang. "New Method for Flow Rate and Bottom-Hole Pressure Prediction Based on Support Vector Regression." In Springer Series in Geomechanics and Geoengineering, 3812–29. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2485-1_345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"hole bottom pressure." In Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, 683. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41714-6_81181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"bottom-hole pressure." In Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, 153–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41714-6_22768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"(bore)hole bottom pressure." In Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, 148. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41714-6_22556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Computing Flowing Bottom-Hole Pressure from Wellhead Pressure." In Gas Well Testing Handbook, 748–51. Elsevier, 2003. http://dx.doi.org/10.1016/b978-075067705-9/50026-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fredericks, Paul. "Constant Bottom-Hole Pressure with Pressure as a Primary Control." In Managed Pressure Drilling, 81–107. Elsevier, 2008. http://dx.doi.org/10.1016/b978-1-933762-24-1.50009-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Determination of Formation Temperature from Bottom-Hole Temperature Logs: A Generalized Horner Method." In Pressure and Temperature Well Testing, 117–28. CRC Press, 2015. http://dx.doi.org/10.1201/b19295-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Application of the Horner Method for a Well Produced at a Constant Bottom-hole Pressure." In Pressure and Temperature Well Testing, 103–7. CRC Press, 2015. http://dx.doi.org/10.1201/b19295-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bottom-hole pressure"

1

Stakvik, Jon Age, Christian Berg, Glenn-Ole Kaasa, and Ole Morten Aamo. "Cascaded bottom hole pressure control in managed pressure drilling." In 2017 IEEE Conference on Control Technology and Applications (CCTA). IEEE, 2017. http://dx.doi.org/10.1109/ccta.2017.8062748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Riddoch, James, Chad Wuest, and Julmar Shaun S. Toralde. "Managing Constant Bottom Hole Pressure with Continuous Flow Systems." In Offshore Technology Conference Asia. Offshore Technology Conference, 2016. http://dx.doi.org/10.4043/26752-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eltahan, Esmail, Reza Ganjdanesh, Wei Yu, Kamy Sepehrnoori, Ryan Williams, and Jack Nohavitsa. "Machine Learning Approach to Improve Calculated Bottom-hole Pressure." In Unconventional Resources Technology Conference. Tulsa, OK, USA: American Association of Petroleum Geologists, 2021. http://dx.doi.org/10.15530/urtec-2021-5645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lizak, Kenneth F., and Charles Hinnant. "Deepwater Frac-Pack Maximum Treating Pressure Limits, An Examination Using Bottom-Hole Pressure Gauges." In Offshore Technology Conference. Offshore Technology Conference, 2010. http://dx.doi.org/10.4043/20434-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Scofield, J. R., and C. F. G. Baxter. "Applications Of Subsea Bottom-Hole Pressure Monitoring Systems In Reservoir Development." In Offshore Europe. Society of Petroleum Engineers, 1987. http://dx.doi.org/10.2118/16549-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tiab, Djebbar. "Inferring Interwell Connectivity from Well Bottom Hole Pressure Fluctuations in Waterfloods." In Production and Operations Symposium. Society of Petroleum Engineers, 2007. http://dx.doi.org/10.2118/106881-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Akinsete, Oluwatoyin, and Blessing Adetoye Adesiji. "Bottom-Hole Pressure Estimation from Wellhead Data Using Artificial Neural Network." In SPE Nigeria Annual International Conference and Exhibition. Society of Petroleum Engineers, 2019. http://dx.doi.org/10.2118/198762-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Detournay, Emmanuel, and Chee P. Tan. "Dependence of Drilling Specific Energy on Bottom-Hole Pressure in Shales." In SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers, 2002. http://dx.doi.org/10.2118/78221-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Memon, Paras Q., Suet-Peng Yong, William Pao, and Pau J. Seanl. "Prediction of Bottom-Hole Flowing Pressure using general regression neural network." In 2014 International Conference on Computer and Information Sciences (ICCOINS). IEEE, 2014. http://dx.doi.org/10.1109/iccoins.2014.6868849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Galkin, Vladislav I., Inna N. Ponomareva, and Irina A. Chernykh. "Development of method for determining bottom-hole pressure in production wells." In International Conference "Actual Issues of Mechanical Engineering" 2017 (AIME 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/aime-17.2017.38.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bottom-hole pressure"

1

Rojas, M., C. K. Martin, L. Hernandez-Johnson, D. I. Ashford, J. F. Wright, K. Yamamoto, M. Numasawa, S. R. Dallimore, and R E Isted. Electric submersible pump as an effective artificial lift method to control bottom-hole pressure in a producing gas hydrate well, JOGMEC/NRCan/Aurora Mallik 2007-2008 Gas Hydrate Production Research Well Program. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2012. http://dx.doi.org/10.4095/292083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography