Academic literature on the topic 'Bottom-hole pressure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bottom-hole pressure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bottom-hole pressure"
Faizullin, Rinat, Sergey Miroshnichenko, and Ravil Sultanov. "Bottom-hole pressure optimization when operating the well lateral horizontal hole." E3S Web of Conferences 217 (2020): 03008. http://dx.doi.org/10.1051/e3sconf/202021703008.
Full textAstakhov, V. P., J. Frazao, and M. O. M. Osman. "On the Experimental Optimization of Tool Geometry for Uniform Pressure Distribution in Single Edge Gundrilling." Journal of Engineering for Industry 116, no. 4 (November 1, 1994): 449–56. http://dx.doi.org/10.1115/1.2902127.
Full textChang, Bao Hua, Jing Nan Zhang, Wei Xiong, and Shu Sheng Gao. "Elastic Exploring Law Analysis of the Deep Vuggy Reservoir." Applied Mechanics and Materials 110-116 (October 2011): 3068–73. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.3068.
Full textAwadalla, Medhat, and Hassan Yousef. "Neural Networks for Flow Bottom Hole Pressure Prediction." International Journal of Electrical and Computer Engineering (IJECE) 6, no. 4 (August 1, 2016): 1839. http://dx.doi.org/10.11591/ijece.v6i4.10774.
Full textAwadalla, Medhat, and Hassan Yousef. "Neural Networks for Flow Bottom Hole Pressure Prediction." International Journal of Electrical and Computer Engineering (IJECE) 6, no. 4 (August 1, 2016): 1839. http://dx.doi.org/10.11591/ijece.v6i4.pp1839-1856.
Full textZhang, Yichi, Jin Yang, Wei Liu, Mu Li, Zhenxiang Zhang, and Xin Zhao. "Bottom Hole Pressure Calculation of Fractured Carbonate Formation." IOP Conference Series: Earth and Environmental Science 570 (November 12, 2020): 022018. http://dx.doi.org/10.1088/1755-1315/570/2/022018.
Full textSvalov, A. M. "Bottom-hole filtration at a positive differential pressure." Soviet Mining Science 25, no. 1 (January 1989): 56–60. http://dx.doi.org/10.1007/bf02528431.
Full textZhao, Heqian, Huaizhong Shi, Zhongwei Huang, Zhenliang Chen, Ziang Gu, and Fei Gao. "Mechanism of Cuttings Removing at the Bottom Hole by Pulsed Jet." Energies 15, no. 9 (May 3, 2022): 3329. http://dx.doi.org/10.3390/en15093329.
Full textXiong, Ping, Wang-shui Hu, Hai-xia Hu, and Hailong Liu. "Mechanism of shear failure near fracture face during drainage process of CBM well." Journal of Petroleum Exploration and Production Technology 10, no. 8 (April 27, 2018): 3309–17. http://dx.doi.org/10.1007/s13202-018-0467-y.
Full textWang, Xiaoming, Junbin Chen, Dazhong Ren, and Zhaolong Shi. "Role of Gas Viscosity for Shale Gas Percolation." Geofluids 2020 (September 30, 2020): 1–10. http://dx.doi.org/10.1155/2020/8892461.
Full textDissertations / Theses on the topic "Bottom-hole pressure"
Samadov, Hidayat. "Analyzing Reservoir Thermal Behavior By Using Thermal Simulation Model (sector Model In Stars)." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613336/index.pdf.
Full texthowever no significant changes were observed due to iteration number differences and refined grids. These latter cases showed clearly that variations of temperature don&rsquo
t occur only due to geothermal gradient, but also pressure and saturation changes. On the whole, BHT can be used to get data ranging from daily gas-oil ratios to interwell connection if analyzed correctly.
Tercan, Erdem. "Managed Pressure Drilling Techniques, Equipment &." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611824/index.pdf.
Full textincluding stuck pipe, lost circulation, and excessive mud cost. In order to decrease the percentage of non-productive time (NPT) caused by these kind of problems, the aim is to control annular frictional pressure losses especially in the fields where pore pressure and fracture pressure gradient is too close which is called narrow drilling window. If we can solve these problems, the budget spent for drilling the wells will fall, therefore enabling the industry to be able to drill wells that were previously uneconomical. Managed Pressure Drilling (MPD) is a new technology that allows us to overcome these kinds of drilling problems by controlling the annular frictional pressure losses. As the industry remains relatively unaware of the full spectrum of benefits, this thesis involves the techniques used in Managed Pressure Drilling with an emphasis upon revealing several of its lesser known and therefore less appreciated applications.
Patr?cio, Rafael Veloso. "Estudos de controle na perfura??o de po?os de petr?leo em presen?a de Kick de g?s." Universidade Federal Rural do Rio de Janeiro, 2016. https://tede.ufrrj.br/jspui/handle/jspui/1543.
Full textMade available in DSpace on 2017-04-20T13:29:23Z (GMT). No. of bitstreams: 1 2016 - Rafael Veloso Patr?cio.pdf: 9711857 bytes, checksum: 5f7e5b198769c9a633040fd42126df03 (MD5) Previous issue date: 2016-08-24
Funda??o de Apoio a Pesquisa Cient?fica e Tecnol?gica da UFRRJ-FAPUR
Controling of downhole pressure is essential for a safety process of oil well drilling. In a permeable formation, fluids from reservoir come into the annulus region (wellbore) when the downhole pressure is below pore pressure, featuring a disorder called kick. Literature reports some mathematical models developed to predict the behavior of the wellbore in presence of gas kick, however, there are few works reporting control and experiments. By this reason, it was built an experimental plant in order to study system?s behavior during fluid inlet (gas) from reservoir to annulus, and then, sought to develop a control strategy able to mitigate this disorder, without shut-in the well. A strategy with reconfiguration of the control law feedback?feedforward was designed to reject disturbance (gas inlet in the annular), to ensure the drilling within the operating window. Parallelly,simulation studies were developed which are: the construction of mathematical model, validated by the employment of the experimental unit, and the implementation of control based on reconfiguration of control law.
O controle da press?o anular de fundo ? fundamental para que a perfura??o de po?os de petr?leo seja feita de forma segura. Em uma forma??o perme?vel, fluidos do reservat?rio migram para a regi?o anular quando a press?o anular de fundo est? abaixo da press?o de poros, caracterizando o dist?rbio denominado kick. A literatura reporta alguns modelos matem?ticos desenvolvidos para prever o comportamento do po?o na presen?a de kick de g?s, por?m poucos s?o os trabalhos abordando controle e experimentos. A partir desta motiva??o, foi constru?do uma planta experimental para estudar o comportamento do sistema durante a entrada de fluido (g?s) do reservat?rio no anular, e assim, buscou-se desenvolver uma estrat?gia de controle que mitigue tal dist?rbio sem a necessidade do fechamento total do po?o. Uma estrat?gia com reconfigura??o da lei de controle feedback?feedforward foi desenvolvida para rejeitar a perturba??o (entrada de g?s no anular), visando assegurar a perfura??o dentro da janela operacional. Paralelamente, foram desenvolvidos estudos de simula??o quais sejam: a constru??o de um modelo matem?tico, validado empregando-se a unidade experimental, e a implanta??o de controle baseado em reconfigura??o da lei de controle
Marko, Libor. "Konstrukční návrh destilační kolony." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231294.
Full textГригораш, В. В. "Методи і засоби контролю за підготовкою та проведенням потужного гідророзриву пласта." Thesis, Івано-Франківський національний технічний університет нафти і газу, 2008. http://elar.nung.edu.ua/handle/123456789/4243.
Full textПроблема интенсификации добычи нефти и газа на Украине стоит очень остро. Мировой опыт использования методов интенсификации свидетельствует о том, что гидравлический разрыв пласта играет главную роль в увеличении добычи нефти и газа. Поэтому на протяжении последних 50-лет постоянно развивается техника и технология этого метода интенсификации притока нефти и газа в скважину, вследствие чего он существенно усовершенствовался и изменялся. Описано теоретические основы процесса гидравлического разрыва нефтегазоносных пластов и перечислены параметры, которые являются определяющими для данного процесса. Проанализировано известные системы контроля подготовки и проведения процесса. Показано что процесс гидравлического разрыва пласта представляет собой сложную динамическую систему со многими факторами, для которых необходим контроль, как на этапе подготовки, так и на этапе управления в реальном масштабе времени при его проведении. Описано комплект спецтехники фирмы “Stewart & Stevenson" предназначенного для проведения процесса гидроразрыва. Отмечено что проблеме качественного контроля проведения процесса и автоматизированного сбора информации в комплекте спецтехники уделено очень большое внимание. Система контроля спецтехники “Stewart & Stevenson" обеспечивает сбор и сохранение информации с устья скважины, а именно: давления на устье, плотности закачиваемых жидкостей, её расход и объем. Однако во время использования указанной техники на Украине часто случались случаи, когда, не имея возможности оценки текущих забойных параметров в скважине во время проведения процесса, внесение оперативных изменений в технологию ведения процесса было невозможно, что приводило к аварийным ситуациям и преждевременным остановкам процесса. Проведено теоретическое обоснование предложенного метода контроля давления на забое в скважине во время проведения гидроразрывов пласта, который даёт возможность рассчитать его значения на основе технологических параметров измеряемых на устье скважины (давления на устье, плотности жидкости, и её расхода при закачке) с учётом определяемых заранее реологических параметров технологических жидкостей. Разработано и теоретически обосновано ряд методик для определения гидравлических потерь при движении технологических жидкостей в НКТ во время проведения гидроразрыва пласта. Разработана методика и алгоритм для определения гидравлических потерь с учётом реологических параметров технологических жидкостей (индекса нелинейности неньютоновской технологической жидкости, и коэффициента консистентности), что позволит повысить точность расчёта реальных гидравлических потерь при движении жидкостей в НКТ. Разработано установку УВРГ1-1 и методики проведения лабораторных исследований изучения реологических параметров жидкости, которые используются для проведения гидроразрыва пласта в условиях проведения процесса. Теоретически обосновано, разработано структурную схему и программу "Frloss", усовершенствованной системы контроля подготовки и проведения ГРП, что позволяет в реальном времени производить контроль технологических параметров процесса на забое скважины (давления на забое, потерь давления на трение, чистого давления разрыва пласта и т.д.). Осуществлено внедрение разработанной системы контроля за подготовкой и проведением процессов гидроразрыва пласта на скважинах ОАО"Укрнафта".
The Dissertation is dedicated to issues of methods and measures of control over preparation and conducting PHFL development (Powerful Hydraulic Layer Fracturing) on boreholes. The offered theoretically grounded method of control over bottom-hole pressure during conducting PHLF, which enables to calculate its values on the basis of technological parameters, measured at the wellhead of the borehole (wellhead pressure, liquids density and their consumption during pumping) taking into account the previously valued rheological parameters of process liquids. A number of methods for determination of hydraulic losses during process liquids flow to pipes during PHLF was developed and theoretically grounded. Methodic and algorithm for determination of hydraulic losses, with allowance for rheological parameters of process liquids (the non-Newtonian process liquid behavior index, and its consistency ratio), which enables to improve the accuracy of calculation of real hydraulic losses during liquid flow to pipes. The Plant "UVRP-1" and a number of methods of conducting the appropriate researches in it for the purpose of studying the rheological parameters of liquid and changes of their characteristics under the surface conditions and conditions of PHLF process conducting is developed. The functional chart and program ’’Frloss” of the improved system of control over preparation and conducting PHLF is developed, which enables to perform control over bottom-hole technological parameters during conducting PHLF in real-time mode (bottom-hole pressure, friction pressure losses, neat pressure of layer fracturing etc.). Introductiof the developed system of control over preparation and conducting PHLF processes at operating boreholes of Ukrnafta OJSC is carried out.
Ming-HaoWu and 吳珉豪. "The Study of Bottom-hole Pressure and Flow Rate Behaviors Affected by Formation Boundary and Anticline Structure of a Reservoir." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/51835420222213690221.
Full text國立成功大學
資源工程學系碩博士班
101
An oil reservoir’s area is related to the original oil in place, and wellbore flow-pressure and flow-rate are affected by reservoir boundaries. The literature pays little attention to the effect of the formation structure on wellbore flow-pressure and flow-rate. The boundary effect time of flow-pressure and flow-rate data and radius of investigation are fundamental for understanding the distance from wellbore to boundary and how much original oil there was. We aimed to (1) determine whether reservoir boundaries and formation structure affected wellbore flow-pressure and flow-rate, and (2) estimate the distance from the wellbore to the reservoir boundaries by analyzing the flow-pressure and flow-rate. We used a flat model of a finite reservoir (with different boundary radii) that simulated bottom-hole flow-pressure in a case of constant production, and flow-rate in a case of constant pressure. The simulation results were validated by analytical solutions from the literature. Based on the validated model, variable depths for each grid and for mapping the anticline structure were part of the structure model. Similarly, the structure model was set up to calculate bottom-hole flow-pressure and flow-rate. The results were compared with the bottom-hole flow-pressure and flow-rate of the structure model with the flat model. We used the intersection method and well-test analysis software to analyze the bottom-hole flow-pressure and flow-rate and to calculate the distance from the wellbore to the reservoir boundary. Using the same reservoir volume for the flat and structure models, we found that (1) with or without an anticline structure, the result of the structure effect on bottom-hole flow-pressure, flow-rate, and radius of investigation was very slight. Therefore, we could ignore the effect of reservoir structure and use only the flat model as the field model; and that (2) by analyzing the effect of the boundaries on flow-pressure and flow-rate data, and then calculating the boundary radius using the radius-of-investigation equation, the distance from the wellbore to the reservoir boundaries could be determined. The calculated and actual radii of the boundary were close. The accuracy of the radius calculated by analyzing the flow-pressure data using the intersection method was more accurate than using the visual deviation point. Analyzing the flow-rate data using the visual deviation point between the infinite-acting and finite-flow period causes a judgment error and affects the calculated distance from the wellbore to the boundary.
Books on the topic "Bottom-hole pressure"
Serebryakov, Andrey, and Gennadiy Zhuravlev. Exploitation of oil and gas fields by horizontal wells. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/971768.
Full textBook chapters on the topic "Bottom-hole pressure"
Memon, Paras Q., Suet-Peng Yong, William Pao, and Jion Sean Pau. "Dynamic Well Bottom-Hole Flowing Pressure Prediction Based on Radial Basis Neural Network." In Studies in Computational Intelligence, 279–92. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14654-6_17.
Full textKrishna, Shwetank, Syahrir Ridha, and Pandian Vasant. "Prediction of Bottom-Hole Pressure Differential During Tripping Operations Using Artificial Neural Networks (ANN)." In Intelligent Computing and Innovation on Data Science, 379–88. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3284-9_43.
Full textZhang, Bing, Jin-long Wang, and Ning-sheng Zhang. "New Method for Flow Rate and Bottom-Hole Pressure Prediction Based on Support Vector Regression." In Springer Series in Geomechanics and Geoengineering, 3812–29. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2485-1_345.
Full text"hole bottom pressure." In Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, 683. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41714-6_81181.
Full text"bottom-hole pressure." In Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, 153–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41714-6_22768.
Full text"(bore)hole bottom pressure." In Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, 148. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41714-6_22556.
Full text"Computing Flowing Bottom-Hole Pressure from Wellhead Pressure." In Gas Well Testing Handbook, 748–51. Elsevier, 2003. http://dx.doi.org/10.1016/b978-075067705-9/50026-5.
Full textFredericks, Paul. "Constant Bottom-Hole Pressure with Pressure as a Primary Control." In Managed Pressure Drilling, 81–107. Elsevier, 2008. http://dx.doi.org/10.1016/b978-1-933762-24-1.50009-7.
Full text"Determination of Formation Temperature from Bottom-Hole Temperature Logs: A Generalized Horner Method." In Pressure and Temperature Well Testing, 117–28. CRC Press, 2015. http://dx.doi.org/10.1201/b19295-19.
Full text"Application of the Horner Method for a Well Produced at a Constant Bottom-hole Pressure." In Pressure and Temperature Well Testing, 103–7. CRC Press, 2015. http://dx.doi.org/10.1201/b19295-15.
Full textConference papers on the topic "Bottom-hole pressure"
Stakvik, Jon Age, Christian Berg, Glenn-Ole Kaasa, and Ole Morten Aamo. "Cascaded bottom hole pressure control in managed pressure drilling." In 2017 IEEE Conference on Control Technology and Applications (CCTA). IEEE, 2017. http://dx.doi.org/10.1109/ccta.2017.8062748.
Full textRiddoch, James, Chad Wuest, and Julmar Shaun S. Toralde. "Managing Constant Bottom Hole Pressure with Continuous Flow Systems." In Offshore Technology Conference Asia. Offshore Technology Conference, 2016. http://dx.doi.org/10.4043/26752-ms.
Full textEltahan, Esmail, Reza Ganjdanesh, Wei Yu, Kamy Sepehrnoori, Ryan Williams, and Jack Nohavitsa. "Machine Learning Approach to Improve Calculated Bottom-hole Pressure." In Unconventional Resources Technology Conference. Tulsa, OK, USA: American Association of Petroleum Geologists, 2021. http://dx.doi.org/10.15530/urtec-2021-5645.
Full textLizak, Kenneth F., and Charles Hinnant. "Deepwater Frac-Pack Maximum Treating Pressure Limits, An Examination Using Bottom-Hole Pressure Gauges." In Offshore Technology Conference. Offshore Technology Conference, 2010. http://dx.doi.org/10.4043/20434-ms.
Full textScofield, J. R., and C. F. G. Baxter. "Applications Of Subsea Bottom-Hole Pressure Monitoring Systems In Reservoir Development." In Offshore Europe. Society of Petroleum Engineers, 1987. http://dx.doi.org/10.2118/16549-ms.
Full textTiab, Djebbar. "Inferring Interwell Connectivity from Well Bottom Hole Pressure Fluctuations in Waterfloods." In Production and Operations Symposium. Society of Petroleum Engineers, 2007. http://dx.doi.org/10.2118/106881-ms.
Full textAkinsete, Oluwatoyin, and Blessing Adetoye Adesiji. "Bottom-Hole Pressure Estimation from Wellhead Data Using Artificial Neural Network." In SPE Nigeria Annual International Conference and Exhibition. Society of Petroleum Engineers, 2019. http://dx.doi.org/10.2118/198762-ms.
Full textDetournay, Emmanuel, and Chee P. Tan. "Dependence of Drilling Specific Energy on Bottom-Hole Pressure in Shales." In SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers, 2002. http://dx.doi.org/10.2118/78221-ms.
Full textMemon, Paras Q., Suet-Peng Yong, William Pao, and Pau J. Seanl. "Prediction of Bottom-Hole Flowing Pressure using general regression neural network." In 2014 International Conference on Computer and Information Sciences (ICCOINS). IEEE, 2014. http://dx.doi.org/10.1109/iccoins.2014.6868849.
Full textGalkin, Vladislav I., Inna N. Ponomareva, and Irina A. Chernykh. "Development of method for determining bottom-hole pressure in production wells." In International Conference "Actual Issues of Mechanical Engineering" 2017 (AIME 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/aime-17.2017.38.
Full textReports on the topic "Bottom-hole pressure"
Rojas, M., C. K. Martin, L. Hernandez-Johnson, D. I. Ashford, J. F. Wright, K. Yamamoto, M. Numasawa, S. R. Dallimore, and R E Isted. Electric submersible pump as an effective artificial lift method to control bottom-hole pressure in a producing gas hydrate well, JOGMEC/NRCan/Aurora Mallik 2007-2008 Gas Hydrate Production Research Well Program. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2012. http://dx.doi.org/10.4095/292083.
Full text