Academic literature on the topic 'Boundary Conditions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Boundary Conditions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Boundary Conditions"

1

Gast, Alice P. "Boundary Conditions." Scientific American 306, no. 5 (April 17, 2012): 14. http://dx.doi.org/10.1038/scientificamerican0512-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nish-Lapidus, Matt. "Boundary Conditions." KronoScope 20, no. 2 (November 16, 2020): 282–89. http://dx.doi.org/10.1163/15685241-12341474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Busse, Christian, Andrew P. Kach, and Stephan M. Wagner. "Boundary Conditions." Organizational Research Methods 20, no. 4 (April 14, 2016): 574–609. http://dx.doi.org/10.1177/1094428116641191.

Full text
Abstract:
Boundary conditions (BC) have long been discussed as an important element in theory development, referring to the “who, where, when” aspects of a theory. However, it still remains somewhat vague as to what exactly BC are, how they can or even should be explored, and why their understanding matters. This research tackles these important questions by means of an in-depth theoretical-methodological analysis. The study contributes fourfold to organizational research methods: First, it develops a more accurate and explicit conceptualization of BC. Second, it widens the understanding of how BC can be explored by suggesting and juxtaposing new tools and approaches. It also illustrates BC-exploring processes, drawing on two empirical case examples. Third, it analyzes the reasons for exploring BC, concluding that BC exploration fosters theory development, strengthens research validity, and mitigates the research-practice gap. Fourth, it synthesizes the analyses into 12 tentative suggestions for how scholars should subsequently approach the issues surrounding BC. The authors hope that the study contributes to consensus shifting with respect to BC and draws more attention to BC.
APA, Harvard, Vancouver, ISO, and other styles
4

Whitcher, Ursula. "Boundary Conditions." College Mathematics Journal 42, no. 1 (January 2011): 56. http://dx.doi.org/10.4169/college.math.j.42.1.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Infante, Gennaro, and Paolamaria Pietramala. "A third order boundary value problem subject to nonlinear boundary conditions." Mathematica Bohemica 135, no. 2 (2010): 113–21. http://dx.doi.org/10.21136/mb.2010.140687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhu, Shaoqiang Tang &. Xi. "Accurate Boundary Conditions for Twin Boundary." Communications in Computational Physics 29, no. 2 (June 2021): 399–419. http://dx.doi.org/10.4208/cicp.oa-2019-0070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Berggren, Martin, Anders Bernland, and Daniel Noreland. "Acoustic boundary layers as boundary conditions." Journal of Computational Physics 371 (October 2018): 633–50. http://dx.doi.org/10.1016/j.jcp.2018.06.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Arrieta, José M., and Simone M. Bruschi. "Boundary oscillations and nonlinear boundary conditions." Comptes Rendus Mathematique 343, no. 2 (July 2006): 99–104. http://dx.doi.org/10.1016/j.crma.2006.05.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Graef, John R., Lingju Kong, Qingkai Kong, and Bo Yang. "Second order boundary value problems with sign-changing nonlinearities and nonhomogeneous boundary conditions." Mathematica Bohemica 136, no. 4 (2011): 337–56. http://dx.doi.org/10.21136/mb.2011.141693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Goard, Joanna. "Noninvariant Boundary Conditions." Applicable Analysis 82, no. 5 (June 2003): 473–81. http://dx.doi.org/10.1080/0003681031000109639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Boundary Conditions"

1

Ehrhardt, Matthias. "Discrete artificial boundary conditions." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=965232921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

le, coupanec erwan. "Boundary conditions for the lattice Boltzmann method : Mass conserving boundary conditions for moving walls." Thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10154.

Full text
Abstract:

Based on the no-slip boundary condition for walls at rest for the lattice Boltzmann Bathnagar-Gross-Krook method by J.C.G. Verschaeve [Phys. Rev. 80,036703 (2009)], a no-slip boundary condition for walls with a tangential movement is derived. Numerical tests verify that the present boundary condition is second order accurate and stable for relaxation frequencies close to two.

APA, Harvard, Vancouver, ISO, and other styles
3

Boström, Erik. "Boundary Conditions for Spectral Simulations of Atmospheric Boundary Layers." Licentiate thesis, KTH, Stabilitet, Transition, Kontroll, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218054.

Full text
Abstract:
An atmospheric boundary layer (ABL) is generally a very high Reynolds number boundary layer over a fully rough surface that is influenced by different external forces. Numerical simulations of ABLs are typically demanding, particularly due to the high Reynolds numbers. Large eddy simulation (LES) where the grid filtered Navier--Stokes equations are solved together with a turbulence model for the subgrid-scale motions is the most accurate and widely used technique to date for ABLs. However, high Reynolds numbers, filtered equations and rough surfaces do not support the simple no-slip boundary conditions together with a feasible grid resolution. A paramount part for the performance of an ABL LES simulation therefore lies in the quality of approximate wall boundary conditions, so called wall models.      The vast majority of LES codes used for ABL simulations rely on spatial discretization methods with low order finite difference approximations for the derivatives in the inhomogeneous wall normal direction. Furthermore, the wall boundary conditions are typically chosen in a mesh-dependent, non-local way, relying on the finite differences formulation.      In this thesis we focus on solving the ABL LES equations with a fully (pseudo) spectral Fourier--Chebyshev code. We present how wall boundary conditions can be formulated through Robin boundary conditions and how to implement these in the normal-velocity normal-vorticity formulation that we solve. A new idea of specifying boundary conditions directly in Fourier space where also the turbulence intensity statistics can be controlled is presented and verified. The present results show that the Robin-type formulation is effective at least in near-equilibrium boundary layers.      The code and boundary conditions were tested in both low and high Reynolds number (open and full) channel flows of neutral and stable stratification. Results were validated with both low to moderate Reynolds number DNS statistics as well as with the logarithmic law. Our results indicate great potential for both the the new boundary condition formulation and the specific code implementation. Further analysis of more complex flow situations will show whether the Robin-type formulation will give similarly good results.
Ett atmosfäriskt gränsskikt (ABL) är generellt sett ett gränsskikt med väldigt högt Reynolds-tal över en rand med ojämn yta och som är påverkad av yttre krafter. Numeriska simuleringar av ABLs är typiskt sett väldigt krävande, speciellt på grund av de höga Reynolds-talen. Large eddy simulation (LES) där de filtrerade Navier--Stokes ekvationerna är lösta tillsammans med en turbulensmodell för the oupplösta skalorna är den mest noggranna och mest använda tekniken för ABLs. Men, för höga Reynolds-tal, filtrerade ekvationer och ytojämnheter är inte ``no-slip'' randvillkor giltiga för en genomförbart hög nätupplösning. En viktig del för kvalitén hos en ABL LES simulering ligger därför i prestandan i approximativa randvillkor, så kallade väggmodeller.      Majoriteten av alla LES koder som används för ABL simuleringar är baserade på en lågordnings finita-differens diskretisering för derivatorna i den inhomogena väggnormalriktningen. Dessutom så är vägg-randvillkoren typiskt valda nätberoende och icke-lokala och direkt beroende av finita-differens diskretiseringen.      I den här avhandlingen så fokuserar vi i att lösa ABL LES ekvationerna med en fullt (pseudo) spektral Fourier--Chebyshev kod. Vi förklarar vidare hur väggrandvillkor kan formuleras genom Robin-randvillkor och hur man implementerar dessa i normalhastighet normalvorticitet formuleringen som vi löser. En ny idé i att specifiera randvillkor direkt i Fourier-rummet där statistiken för den turbulenta intensiteten kan kontrolleras är också presenterad och verifierad. Resultaten vi härmed presenterar visar att Robin-randvillkor formuleringen är effektiv åtminstone for gränsskikt i nära jämvikt.      Den numeriska koden och randvillkoren var testade för kanalströmning (öppen och stängd) av både neutral och stabil stratifikation och för både låga och höga Reynolds-tal. Våra resultat visar på en god potential hos både den nya randvillkorsformuleringen och den nya kodimplementationen. Vidare analys i mer komplexa flödessituationer kommer att visa om Robin-randvillkor formuleringen ger lika goda resultat.

QC 20171122

APA, Harvard, Vancouver, ISO, and other styles
4

Gamlin, Samuel. "Boundary conditions in Abelian sandpiles." Thesis, University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.687371.

Full text
Abstract:
The focus of this thesis is to investigate the impact of the boundary conditions on configurations in the Abelian sandpile model. We have two main results to present in this thesis. Firstly we give a family of continuous, measure preserving, almost one-to-one mappings from the wired spanning forest to recurrent sandpiles. In the special case of $Z^d$, $d \geq 2$, we show how these bijections yield a power law upper bound on the rate of convergence to the sandpile measure along any exhaustion of $Z^d$. Secondly we consider the Abelian sandpile on ladder graphs. For the ladder sandpile measure, $\nu$, a recurrent configuration on the boundary, I, and a cylinder event, E, we provide an upper bound for $\nu(E|I) − \nu(E)$.
APA, Harvard, Vancouver, ISO, and other styles
5

Roman, Svetlana. "Green's functions for boundary-value problems with nonlocal boundary conditions." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20111227_092148-01085.

Full text
Abstract:
In the dissertation, second-order and higher-order differential and discrete equations with additional conditions which are described by linearly independent linear functionals are investigated. The solutions to these problems, formulae and the existence conditions of Green's functions are presented, if the general solution of a homogeneous equation is known. The relation between two Green's functions of two nonhomogeneous problems for the same equation but with different additional conditions is obtained. These results are applied to problems with nonlocal boundary conditions. In the introduction the topicality of the problem is defined, the goals and tasks of the research are formulated, the scientific novelty of the dissertation, the methodology of research, the practical value and the significance of the results are presented. m-order differential problem and its Green's function are investigated in the first chapter. The relation between two Green's functions and the existence condition of Green's function are obtained. In the second chapter, the main definitions and results of the first chapter are formulated for the second-order differential equation with additional conditions. In the examples the application of the received results is analyzed for problems with nonlocal boundary conditions in detail. In the third chapter, the second-order difference equation with two additional conditions is considered. The expression of Green's function and its existence... [to full text]
Disertacijoje tiriami antros ir aukštesnės eilės diferencialinis ir diskretusis uždaviniai su įvairiomis, tame tarpe ir nelokaliosiomis, sąlygomis, kurios yra aprašytos tiesiškai nepriklausomais tiesiniais funkcionalais. Pateikiamos šių uždavinių Gryno funkcijų išraiškos ir jų egzistavimo sąlygos, jei žinoma homogeninės lygties fundamentalioji sistema. Gautas dviejų Gryno funkcijų sąryšis uždaviniams su ta pačia lygtimi, bet su papildomomis sąlygomis. Rezultatai pritaikomi uždaviniams su nelokaliosiomis kraštinėmis sąlygomis. Įvadiniame skyriuje aprašyta tiriamoji problema ir temos objektas, išanalizuotas temos aktualumas, išdėstyti darbo tikslai, uždaviniai, naudojama tyrimų metodika, mokslinis darbo naujumas ir gautų rezultatų reikšmė, pateikti ginamieji teiginiai ir darbo rezultatų aprobavimas. m-tosios eilės diferencialinis uždavinys ir jo Gryno funkcija nagrinėjami pirmajame skyriuje. Surastas uždavinio sprendinys, išreikštas per Gryno funkciją. Pateikta Gryno funkcijos egzistavimo sąlyga. Antrajame skyriuje pateikti pirmojo skyriaus pagrindiniai apibrėžimai ir rezultatai antros eilės diferencialinei lygčiai. Pavyzdžiuose išsamiai išanalizuotas gautų rezultatų pritaikymas uždaviniams su nelokaliosiomis kraštinėmis sąlygomis. Trečiajame skyriuje nagrinėjama antros eilės diskrečioji lygtis su dviem sąlygomis. Surastos diskrečiosios Gryno funkcijos išraiška ir jos egzistavimo sąlyga. Taip pat pateiktas dviejų Gryno funkcijų sąryšis, kuris leidžia surasti diskrečiosios... [toliau žr. visą tekstą]
APA, Harvard, Vancouver, ISO, and other styles
6

Onyango, Thomas Tonny Mboya. "Boundary element methods for solving inverse boundary conditions identification problems." Thesis, University of Leeds, 2008. http://etheses.whiterose.ac.uk/11283/.

Full text
Abstract:
This thesis explores various features of the boundary element method (BEM) used in solving heat transfer boundary conditions identification problems. In particular, we present boundary integral equation (BIE) formulations and procedures of the numerical computation for the approximation of the boundary temperatures, heat fluxes and space, time or temperature dependent heat transfer coefficients. There are many practical heat transfer situations where such problems occur, for example in high temperature regions or hostile environments, such as in combustion chambers, steel cooling processes, etc., in which the actual method of heat transfer on the surface is unknown. In such situations the boundary condition relating the heat flux to the difference between the boundary temperature and that of the surrounding fluid is represented by an unknown function which may depend on space, time, or temperature. In these inverse heat conduction problems (IHCP), the BEM is formulated as a minimization of some functional that measures the discrepancy between the measured data, say the average temperature on a portion of the boundary or at an instant over the whole domain. The minimization provides solutions that are consistent with the data. This indicates that the BEM algorithms for the IRCP are robust, stable and predict reliable results. When the input data is noisy, we have used the truncated singular value decomposition and the Tikhonov regularisation methods to stabilise the solution of the IRCI' boundary conditions identification. Numerical approximations have been obtained and, where possible, the results obtained are compared to the analytical solutions.
APA, Harvard, Vancouver, ISO, and other styles
7

Schulze, Bert-Wolfgang, and Nikolai Tarkhanov. "Boundary value problems with Toeplitz conditions." Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2009/2983/.

Full text
Abstract:
We describe a new algebra of boundary value problems which contains Lopatinskii elliptic as well as Toeplitz type conditions. These latter are necessary, if an analogue of the Atiyah-Bott obstruction does not vanish. Every elliptic operator is proved to admit up to a stabilisation elliptic conditions of such a kind. Corresponding boundary value problems are then Fredholm in adequate scales of spaces. The crucial novelty consists of the new type of weighted Sobolev spaces which serve as domains of pseudodifferential operators and which fit well to the nature of operators.
APA, Harvard, Vancouver, ISO, and other styles
8

Stephenson, P. W. "Glueball spectra with twisted boundary conditions." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.276836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deadman, Edvin. "Outer boundary conditions in numerical relativity." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Park, Kyeong M. "Boundary conditions of font size effects." Thesis, The University of Alabama in Huntsville, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10130786.

Full text
Abstract:

Prior research has shown that people perceive items in a larger font size as being more memorable than items in a smaller font size. This perception leads to higher judgments of learning (JOLs; i.e., confidence ratings regarding the likelihood of recalling an item) for larger font size items than smaller font size items. Yet other research has shown that people recalled more when the information was presented in a smaller font than when it was presented in a larger font size. The present study examined if there are boundary conditions of font sizes affecting JOLs and actual recall performance. As we expected, the results show that JOLs increased as a function of the size category. The results also show that font size impacted recall performance such that items in the Smallest size category were recalled at a higher rate than items in the other three font size categories.

APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Boundary Conditions"

1

Manteuffel, Thomas A. Preconditioning and boundary conditions. New York: Courant Institute of Mathematical Sciences, New York University, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yahya, Rahmat-Samii, ed. Impedance boundary conditions in electromagnetics. Washington, DC: Taylor & Francis, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1948-, Crowley Thomas J., and Burke K, eds. Tectonic boundary conditions for climate reconstructions. New York: Oxford University Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

K, Johnson D., and United States. National Aeronautics and Space Administration., eds. Boundary conditions for unsteady compressible flows. [Washington, DC]: National Aeronautics and Space Administration, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Institute for Computer Applications in Science and Engineering, ed. Absorbing boundary conditions for exterior problems. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lewis Research Center. Institute for Computational Mechanics in Propulsion., ed. On high-order radiation boundary conditions. [Cleveland, Ohio]: National Aeronautics and Space Administration, Institute for Computational Mechanics in Propulsion, Langley Research Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lewis Research Center. Institute for Computational Mechanics in Propulsion., ed. On high-order radiation boundary conditions. [Cleveland, Ohio]: National Aeronautics and Space Administration, Institute for Computational Mechanics in Propulsion, Langley Research Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Webster, Paul. Rainfall boundary conditions for hydrological design. Birmingham: University of Birmingham, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Xiaochun, and Bert-Wolfgang Schulze. Boundary Value Problems with Global Projection Conditions. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70114-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dyson, Rodger W. Towards arbitrary accuracy inviscid surface boundary conditions. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Boundary Conditions"

1

Schechter, Martin. "Boundary Conditions." In Linking Methods in Critical Point Theory, 205–18. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1596-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mohamad, A. A. "Boundary Conditions." In Lattice Boltzmann Method, 47–51. London: Springer London, 2019. http://dx.doi.org/10.1007/978-1-4471-7423-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Britz, Dieter, and Jörg Strutwolf. "Boundary Conditions." In Monographs in Electrochemistry, 101–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30292-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thaller, Bernd. "Boundary Conditions." In Visual Quantum Mechanics, 107–34. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/0-387-22770-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cercignani, Carlo, Reinhard Illner, and Mario Pulvirenti. "Boundary Conditions." In The Mathematical Theory of Dilute Gases, 226–43. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4419-8524-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kippenhahn, Rudolf, Alfred Weigert, and Achim Weiss. "Boundary Conditions." In Astronomy and Astrophysics Library, 93–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30304-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kippenhahn, Rudolf, and Alfred Weigert. "Boundary Conditions." In Astronomy and Astrophysics Library, 68–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-61523-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maso, Gianni Dal. "Boundary Conditions." In An Introduction to Γ-Convergence, 223–28. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0327-8_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dyke, Philip. "Boundary Conditions." In Topics in Environmental Fluid Mechanics, 77–94. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-4786-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gudehus, Gerd. "Boundary conditions." In Physical Soil Mechanics, 397–435. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-36354-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Boundary Conditions"

1

Clute, Cassandra, Rae Bruenderman, and Kristan Wessels. "Verification of Boundary Conditions in MCNP." In Verification of Boundary Conditions in MCNP. US DOE, 2021. http://dx.doi.org/10.2172/1867846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Clute, Cassandra. "Verification of Boundary Conditions in MCNP." In Verification of Boundary Conditions in MCNP (Monte Carlo N-Particle). US DOE, 2021. http://dx.doi.org/10.2172/1847926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

ZUBER, JEAN-BERNARD. "CONFORMAL BOUNDARY CONDITIONS." In Proceedings of the APCTP Winter School. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799739_0012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Simões, N., A. Tadeu, and W. Mansur. "Conduction heat transfer with nonzero initial conditions using the Boundary Element Method in the frequency domain." In BOUNDARY ELEMENT METHOD 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/be06015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Yun-Sheng, and Hong-Ming Chen. "Boundary conditions at edges." In 1998 Symposium on Antenna Technology and Applied Electromagnetics. IEEE, 1998. http://dx.doi.org/10.1109/antem.1998.7861796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hales, H. B. "Reservoir Simulation Boundary Conditions." In Canadian International Petroleum Conference. Petroleum Society of Canada, 2006. http://dx.doi.org/10.2118/2006-138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yaghjian, Arthur D. "Extreme electromagnetic boundary conditions." In 2010 URSI International Symposium on Electromagnetic Theory (EMTS 2010). IEEE, 2010. http://dx.doi.org/10.1109/ursi-emts.2010.5637002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lindell, Ismo V., and Ari Sihvola. "On General Boundary Conditions." In 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC). IEEE, 2018. http://dx.doi.org/10.23919/ursi-at-rasc.2018.8471657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bussone, Andrea, Michele Della Morte, Martin Hansen, and Claudio Pica. "Reweighting twisted boundary conditions." In The 33rd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.251.0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kord, Ahmed M., and Islam A. Eshrah. "Extended asymptotic corrugation boundary conditions." In 2014 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2014. http://dx.doi.org/10.1109/aps.2014.6905215.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Boundary Conditions"

1

King, David. GenCade Lateral Boundary Conditions. Coastal and Hydraulics Laboratory (U.S.), February 2017. http://dx.doi.org/10.21079/11681/21469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hale, J. K., and C. Rocha. Varying Boundary Conditions with Large Diffusivity,. Fort Belvoir, VA: Defense Technical Information Center, March 1985. http://dx.doi.org/10.21236/ada158643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hale, Jack K., and Carlos Rocha. Interaction of Diffusion and Boundary Conditions,. Fort Belvoir, VA: Defense Technical Information Center, July 1986. http://dx.doi.org/10.21236/ada170217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Whelan, Gene, Karl J. Castleton, John W. Buck, Randal Y. Taira, Gariann M. Gelston, and Dennis L. Strenge. Combining Multiple-Module Output Boundary Conditions to Produce a Single-Input-Module Boundary Condition in FRAMES. Office of Scientific and Technical Information (OSTI), October 2006. http://dx.doi.org/10.2172/894877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zywicz, E. DYNA3D Non-reflecting Boundary Conditions - Test Problems. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/895422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schultz, Ryan. Acoustoelasticity Testing: Changing Boundary Conditions and Damping. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1459101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hackney, S. A., J. K. Lee, and M. R. Plichta. Boundary stability under nonequilibrium conditions. Final report. Office of Scientific and Technical Information (OSTI), August 1999. http://dx.doi.org/10.2172/756783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wardlaw, A. B. Far Field Boundary Conditions for Underwater Explosions. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada476884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Laslett, L. J., S. Caspi, and M. Helm. Incorporation of toroidal boundary conditions into program POISSON. Office of Scientific and Technical Information (OSTI), July 1987. http://dx.doi.org/10.2172/5981119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

deRada, Sergio, and Igor Shulman. Evaluation of Global HYCOM Initial and Boundary Conditions. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada533587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography