To see the other types of publications on this topic, follow the link: Boundary integral equations.

Dissertations / Theses on the topic 'Boundary integral equations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Boundary integral equations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Ivanyshyn, Olha. "Nonlinear boundary integral equations in inverse scattering." Lichtenberg (Odw.) Harland Media, 2007. http://d-nb.info/988643316/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ivanyshyn, Olha. "Nonlinear boundary integral equations in inverse scattering /." Fischbachtal, Odenw : HARLAND media, 2008. http://deposit.d-nb.de/cgi-bin/dokserv?id=3104928&prov=M&dok_var=1&dok_ext=htm.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Harbrecht, Helmut, and Reinhold Schneider. "Wavelet based fast solution of boundary integral equations." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600649.

Full text
Abstract:
This paper presents a wavelet Galerkin scheme for the fast solution of boundary integral equations. Wavelet Galerkin schemes employ appropriate wavelet bases for the discretization of boundary integral operators which yields quasi-sparse system matrices. These matrices can be compressed such that the complexity for solving a boundary integral equation scales linearly with the number of unknowns without compromising the accuracy of the underlying Galerkin scheme. Based on the wavelet Galerkin scheme we present also an adaptive algorithm. By numerical experiments we provide results which demonstrate the performance of our algorithm.
APA, Harvard, Vancouver, ISO, and other styles
4

Yuen, P. K. "Bivariational methods and their application to integral equations." Thesis, University of Bradford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Preston, Mark Daniel. "A boundary integral equation method for solving second kind integral equations arising in unsteady water waves problems." Thesis, University of Reading, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493803.

Full text
Abstract:
In this thesis we consider two dimensional, half-plane, unsteady water wave problems and their solution by boundary integral methods. Well-posed boundary integral solutions and convergent numerical schemes exist within the literature under the restrictive assumption of periodicity in both the boundary and the boundary data (overturning, or breaking, waves are included). The boundary integral formulation presented within gives a well-posed solution and leads to a convergent numerical scheme without the restriction of periodicity in the boundary and boundary data (while still allowing overturning waves).
APA, Harvard, Vancouver, ISO, and other styles
6

Dahmen, Wolfgang, Helmut Harbrecht, and Reinhold Schneider. "Compression Techniques for Boundary Integral Equations - Optimal Complexity Estimates." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600464.

Full text
Abstract:
In this paper matrix compression techniques in the context of wavelet Galerkin schemes for boundary integral equations are developed and analyzed that exhibit optimal complexity in the following sense. The fully discrete scheme produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that is proven to stay proportional to the number of unknowns. Key issues are the second compression, that reduces the near field complexity significantly, and an additional a-posteriori compression. The latter one is based on a general result concerning an optimal work balance, that applies, in particular, to the quadrature used to compute the compressed stiffness matrix with sufficient accuracy in linear time. The theoretical results are illustrated by a 3D example on a nontrivial domain.
APA, Harvard, Vancouver, ISO, and other styles
7

Harbrecht, Helmut, and Reinhold Schneider. "Wavelets for the fast solution of boundary integral equations." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600540.

Full text
Abstract:
This paper presents a wavelet Galerkin scheme for the fast solution of boundary integral equations. Wavelet Galerkin schemes employ appropriate wavelet bases for the discretization of boundary integral operators. This yields quasi-sparse system matrices which can be compressed to O(N_J) relevant matrix entries without compromising the accuracy of the underlying Galerkin scheme. Herein, O(N_J) denotes the number of unknowns. The assembly of the compressed system matrix can be performed in O(N_J) operations. Therefore, we arrive at an algorithm which solves boundary integral equations within optimal complexity. By numerical experiments we provide results which corroborate the theory.
APA, Harvard, Vancouver, ISO, and other styles
8

Kachanovska, Maryna. "Fast, Parallel Techniques for Time-Domain Boundary Integral Equations." Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-132183.

Full text
Abstract:
This work addresses the question of the efficient numerical solution of time-domain boundary integral equations with retarded potentials arising in the problems of acoustic and electromagnetic scattering. The convolutional form of the time-domain boundary operators allows to discretize them with the help of Runge-Kutta convolution quadrature. This method combines Laplace-transform and time-stepping approaches and requires the explicit form of the fundamental solution only in the Laplace domain to be known. Recent numerical and analytical studies revealed excellent properties of Runge-Kutta convolution quadrature, e.g. high convergence order, stability, low dissipation and dispersion. As a model problem, we consider the wave scattering in three dimensions. The convolution quadrature discretization of the indirect formulation for the three-dimensional wave equation leads to the lower triangular Toeplitz system of equations. Each entry of this system is a boundary integral operator with a kernel defined by convolution quadrature. In this work we develop an efficient method of almost linear complexity for the solution of this system based on the existing recursive algorithm. The latter requires the construction of many discretizations of the Helmholtz boundary single layer operator for a wide range of complex wavenumbers. This leads to two main problems: the need to construct many dense matrices and to evaluate many singular and near-singular integrals. The first problem is overcome by the use of data-sparse techniques, namely, the high-frequency fast multipole method (HF FMM) and H-matrices. The applicability of both techniques for the discretization of the Helmholtz boundary single-layer operators with complex wavenumbers is analyzed. It is shown that the presence of decay can favorably affect the length of the fast multipole expansions and thus reduce the matrix-vector multiplication times. The performance of H-matrices and the HF FMM is compared for a range of complex wavenumbers, and the strategy to choose between two techniques is suggested. The second problem, namely, the assembly of many singular and nearly-singular integrals, is solved by the use of the Huygens principle. In this work we prove that kernels of the boundary integral operators $w_n^h(d)$ ($h$ is the time step and $t_n=nh$ is the time) exhibit exponential decay outside of the neighborhood of $d=nh$ (this is the consequence of the Huygens principle). The size of the support of these kernels for fixed $h$ increases with $n$ as $n^a,a<1$, where $a$ depends on the order of the Runge-Kutta method and is (typically) smaller for Runge-Kutta methods of higher order. Numerical experiments demonstrate that theoretically predicted values of $a$ are quite close to optimal. In the work it is shown how this property can be used in the recursive algorithm to construct only a few matrices with the near-field, while for the rest of the matrices the far-field only is assembled. The resulting method allows to solve the three-dimensional wave scattering problem with asymptotically almost linear complexity. The efficiency of the approach is confirmed by extensive numerical experiments.
APA, Harvard, Vancouver, ISO, and other styles
9

Mohamed, Nurul Akmal. "Numerical solution and spectrum of boundary-domain integral equations." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/7592.

Full text
Abstract:
A numerical implementation of the direct Boundary-Domain Integral Equation (BDIE)/ Boundary-Domain Integro-Differential Equations (BDIDEs) and Localized Boundary-Domain Integral Equation (LBDIE)/Localized Boundary-Domain Integro-Differential Equations (LBDIDEs) related to the Neumann and Dirichlet boundary value problem for a scalar elliptic PDE with variable coefficient is discussed in this thesis. The BDIE and LBDIE related to Neumann problem are reduced to a uniquely solvable one by adding an appropriate perturbation operator. The mesh-based discretisation of the BDIE/BDIDEs and LBDIE/LBDIDEs with quadrilateral domain elements leads to systems of linear algebraic equations (discretised BDIE/BDIDEs/LBDIE/BDIDEs). Then the systems obtained from BDIE/BDIDE (discretised BDIE/BDIDE) are solved by the LU decomposition method and Neumann iterations. Convergence of the iterative method is analyzed in relation with the eigen-values of the corresponding discrete BDIE/BDIDE operators obtained numerically. The systems obtained from LBDIE/LBDIDE (discretised LBDIE/LBDIDE) are solved by the LU decomposition method as the Neumann iteration method diverges.
APA, Harvard, Vancouver, ISO, and other styles
10

Kachanovska, Maryna. "Fast, Parallel Techniques for Time-Domain Boundary Integral Equations." Doctoral thesis, Max-Planck-Institut für Mathematik in den Naturwissenschaften, 2013. https://ul.qucosa.de/id/qucosa%3A12278.

Full text
Abstract:
This work addresses the question of the efficient numerical solution of time-domain boundary integral equations with retarded potentials arising in the problems of acoustic and electromagnetic scattering. The convolutional form of the time-domain boundary operators allows to discretize them with the help of Runge-Kutta convolution quadrature. This method combines Laplace-transform and time-stepping approaches and requires the explicit form of the fundamental solution only in the Laplace domain to be known. Recent numerical and analytical studies revealed excellent properties of Runge-Kutta convolution quadrature, e.g. high convergence order, stability, low dissipation and dispersion. As a model problem, we consider the wave scattering in three dimensions. The convolution quadrature discretization of the indirect formulation for the three-dimensional wave equation leads to the lower triangular Toeplitz system of equations. Each entry of this system is a boundary integral operator with a kernel defined by convolution quadrature. In this work we develop an efficient method of almost linear complexity for the solution of this system based on the existing recursive algorithm. The latter requires the construction of many discretizations of the Helmholtz boundary single layer operator for a wide range of complex wavenumbers. This leads to two main problems: the need to construct many dense matrices and to evaluate many singular and near-singular integrals. The first problem is overcome by the use of data-sparse techniques, namely, the high-frequency fast multipole method (HF FMM) and H-matrices. The applicability of both techniques for the discretization of the Helmholtz boundary single-layer operators with complex wavenumbers is analyzed. It is shown that the presence of decay can favorably affect the length of the fast multipole expansions and thus reduce the matrix-vector multiplication times. The performance of H-matrices and the HF FMM is compared for a range of complex wavenumbers, and the strategy to choose between two techniques is suggested. The second problem, namely, the assembly of many singular and nearly-singular integrals, is solved by the use of the Huygens principle. In this work we prove that kernels of the boundary integral operators $w_n^h(d)$ ($h$ is the time step and $t_n=nh$ is the time) exhibit exponential decay outside of the neighborhood of $d=nh$ (this is the consequence of the Huygens principle). The size of the support of these kernels for fixed $h$ increases with $n$ as $n^a,a<1$, where $a$ depends on the order of the Runge-Kutta method and is (typically) smaller for Runge-Kutta methods of higher order. Numerical experiments demonstrate that theoretically predicted values of $a$ are quite close to optimal. In the work it is shown how this property can be used in the recursive algorithm to construct only a few matrices with the near-field, while for the rest of the matrices the far-field only is assembled. The resulting method allows to solve the three-dimensional wave scattering problem with asymptotically almost linear complexity. The efficiency of the approach is confirmed by extensive numerical experiments.
APA, Harvard, Vancouver, ISO, and other styles
11

Harbrecht, Helmut, and Reinhold Schneider. "Wavelet Galerkin Schemes for Boundary Integral Equations - Implementation and Quadrature." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600560.

Full text
Abstract:
In this paper we consider the fully discrete wavelet Galerkin scheme for the fast solution of boundary integral equations in three dimensions. It produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that stays proportional to the number of unknowns. We focus on implementational details of the scheme, in particular on numerical integration of relevant matrix coefficients. We illustrate the proposed algorithms by numerical results.
APA, Harvard, Vancouver, ISO, and other styles
12

Lee, Chang-Ho. "Numerical methods for boundary integral equations in wave body interactions." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/14392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yu, Jing. "Iterative Solution of Boundary Integral Equations for Shallow Water Waves." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1415056847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Desiderio, Luca. "H-matrix based Solver for 3D Elastodynamics Boundary Integral Equations." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLY002/document.

Full text
Abstract:
Cette thèse porte sur l'étude théorique et numérique des méthodes rapides pour résoudre les équations de l'élastodynamique 3D en domaine fréquentiel, et se place dans le cadre d'une collaboration avec la société Shell en vue d'optimiser la convergence des problèmes d'inversion sismique. La méthode repose sur l'utilisation des éléments finis de frontière (BEM) pour la discrétisation et sur les techniques de matrices hiérarchiques (H-matrices) pour l'accélération de la résolution du système linéaire. Dans le cadre de cette thèse on a développé un solveur direct pour les BEMs en utilisant une factorisation LU et un stockage hiérarchique. Si le concept des H-matrices est simple à comprendre, sa mise en oeuvre requiert des développements algorithmiques importants tels que la gestion de la multiplication de matrices représentées par des structures différentes (compressées ou non) qui ne comprend pas mois de 27 sous-cas. Un autre point délicat est l'utilisation des méthodes d'approximations par matrices compressées (de rang faible) dans le cadre des problèmes vectoriels. Une étude algorithmique a donc été faite pour mettre en oeuvre la méthode des H-matrices. Nous avons par ailleurs estimé théoriquement le rang faible attendu pour les noyaux oscillants, ce qui constitue une nouveauté, et montré que la méthode est utilisable en élastodynamique. En outre on a étudié l'influence des divers paramètres de la méthode en acoustique et en élastodynamique 3D, à fin de calibrer leur valeurs numériques optimales. Dans le cadre de la collaboration avec Shell, un cas test spécifique a été étudié. Il s'agit d'un problème de propagation d'une onde sismique dans un demi-espace élastique soumis à une force ponctuelle en surface. Enfin le solveur direct développé a été intégré au code COFFEE développé a POEMS (environ 25000 lignes en Fortran 90)
This thesis focuses on the theoretical and numerical study of fast methods to solve the equations of 3D elastodynamics in frequency-domain. We use the Boundary Element Method (BEM) as discretization technique, in association with the hierarchical matrices (H-matrices) technique for the fast solution of the resulting linear system. The BEM is based on a boundary integral formulation which requires the discretization of the only domain boundaries. Thus, this method is well suited to treat seismic wave propagation problems. A major drawback of classical BEM is that it results in dense matrices, which leads to high memory requirement (O (N 2 ), if N is the number of degrees of freedom) and computational costs.Therefore, the simulation of realistic problems is limited by the number of degrees of freedom. Several fast BEMs have been developed to improve the computational efficiency. We propose a fast H-matrix based direct BEM solver
APA, Harvard, Vancouver, ISO, and other styles
15

Quesnel, Pierre Carleton University Dissertation Engineering Mechanical. "Boundary integral equation fracture mechanics analysis using the subdomain method." Ottawa, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gläfke, Matthias. "Adaptive methods for time domain boundary integral equations for acoustic scattering." Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/7378.

Full text
Abstract:
This thesis is concerned with the study of transient scattering of acoustic waves by an obstacle in an infinite domain, where the scattered wave is represented in terms of time domain boundary layer potentials. The problem of finding the unknown solution of the scattering problem is thus reduced to the problem of finding the unknown density of the time domain boundary layer operators on the obstacle’s boundary, subject to the boundary data of the known incident wave. Using a Galerkin approach, the unknown density is replaced by a piecewise polynomial approximation, the coefficients of which can be found by solving a linear system. The entries of the system matrix of this linear system involve, for the case of a two dimensional scattering problem, integrals over four dimensional space-time manifolds. An accurate computation of these integrals is crucial for the stability of this method. Using piecewise polynomials of low order, the two temporal integrals can be evaluated analytically, leading to kernel functions for the spatial integrals with complicated domains of piecewise support. These spatial kernel functions are generalised into a class of admissible kernel functions. A quadrature scheme for the approximation of the two dimensional spatial integrals with admissible kernel functions is presented and proven to converge exponentially by using the theory of countably normed spaces. A priori error estimates for the Galerkin approximation scheme are recalled, enhanced and discussed. In particular, the scattered wave’s energy is studied as an alternative error measure. The numerical schemes are presented in such a way that allows the use of non-uniform meshes in space and time, in order to be used with adaptive methods that are based on a posteriori error indicators and which modify the computational domain according to the values of these error indicators. The theoretical analysis of these schemes demands the study of generalised mapping properties of time domain boundary layer potentials and integral operators, analogously to the well known results for elliptic problems. These mapping properties are shown for both two and three space dimensions. Using the generalised mapping properties, three types of a posteriori error estimators are adopted from the literature on elliptic problems and studied within the context of the two dimensional transient problem. Some comments on the three dimensional case are also given. Advantages and disadvantages of each of these a posteriori error estimates are discussed and compared to the a priori error estimates. The thesis concludes with the presentation of two adaptive schemes for the two dimensional scattering problem and some corresponding numerical experiments.
APA, Harvard, Vancouver, ISO, and other styles
17

Kokkinos, Filis-Triantaphyllos T. "Three-dimensional layerwise modeling of layered media with boundary integral equations." Diss., This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-02132009-170805/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Adrian, Simon. "Rapidly converging boundary integral equation solvers in computational electromagnetics." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2018. http://www.theses.fr/2018IMTA0074/document.

Full text
Abstract:
L'équation intégrale du champ électrique (EFIE) et l'équation intégrale du champ combiné (CFIE) souffrent d'un mauvais conditionnement à haute discrétisation et à bassefréquence : si la taille moyenne des arrêtes du maillage est réduite ou si la fréquence est diminuée le conditionnement du système se dégrade rapidement. Cela provoque le ralentissement ou la non convergence des solveurs itératifs. Cette dissertation présente de nouveaux paradigmes permettant l'obtention de solveurs à convergence rapide pour équations intégrales; pour prévenir la dégradation du conditionnement nous avançons l'état de l'art des techniques de préconditionnement dites de Calderon et de celles reposant sur l'utilisation des bases hiérarchiques. Pour traiter l'EFIE, nous introduisons une base hiérarchique pour maillages structurés et non-structurés dérivant des pré-ondelettes primaires et duales de Haar. De plus, nous introduisons un nouveau cadre permettant de préconditionner efficacement l'EFIE dans le cas d'objets à connexion multiples. L'applicabilité à la CFIE des préconditionneurs à bases hiérarchiques fait l'objet d'une étude aboutissant à la formalisation d'une technique de préconditionnement. Nous présentons aussi un préconditionneur multiplicatif de type Calderon (RF-CMP) qui permet l'obtention d'une matrice système Hermitienne, définie positive (HDP) et bien conditionnée, sans avoir recours, contrairement aux préconditionneurs existants, au raffinement du maillage ni à l'utilisation de fonction duales. Puisque la matrice est HPD, la méthode du gradient conjugué peut servir de solveur itératif avec une convergence garantie
The electric field integral equation (EFIE) and the combined field integral equation(CFIE) suffer from the dense-discretization and the low-frequency breakdown: if the average edgelength of the mesh is reduced, or if the frequency is decreased, then the condition number of the system matrix grows. This leads to slowly or non-converging iterative solvers. This dissertation presents new paradigms for rapidly converging integral equation solvers: to overcome the illconditioning, we advance and extend the state of the art both in hierarchical basis and in Calderón preconditioning techniques. For the EFIE, we introduce a hierarchical basis for structured and unstructured meshes based on generalized primal and dual Haar prewavelets. Furthermore, a framework is introduced which renders the hierarchical basis able to efficiently precondition the EFIE in the case that the scatterer is multiply connected. The applicability of hierarchical basis preconditioners to the CFIE is analyzed and an efficient preconditioning scheme is derived. In addition, we present a refinement-free Calderón multiplicative preconditioner (RF-CMP) that yields a system matrix which is Hermitian, positive definite (HPD), and well-conditioned. Different from existing Calderón preconditioners, no dual basis functions and thus no refinement of the mesh is required. Since the matrix is HPD—in contrast to standard discretizations of the EFIE—we can apply the conjugate gradient (CG) method as iterative solver, which guarantees convergence. Eventually, the RF-CMP is extended to the CFIE
APA, Harvard, Vancouver, ISO, and other styles
19

Nishida, Brian Allen. "Fully simultaneous coupling of the full potential equation and the integral boundary layer equations in three dimensions." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/11188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Atle, Andreas. "Numerical approximations of time domain boundary integral equation for wave propagation." Licentiate thesis, KTH, Numerical Analysis and Computer Science, NADA, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1682.

Full text
Abstract:

Boundary integral equation techniques are useful in thenumerical simulation of scattering problems for wave equations.Their advantage over methods based on partial di.erentialequations comes from the lack of phase errors in the wavepropagation and from the fact that only the boundary of thescattering object needs to be discretized. Boundary integraltechniques are often applied in frequency domain but recentlyseveral time domain integral equation methods are beingdeveloped.

We study time domain integral equation methods for thescalar wave equation with a Galerkin discretization of twodi.erent integral formulations for a Dirichlet scatterer. The.rst method uses the Kirchho. formula for the solution of thescalar wave equation. The method is prone to get unstable modesand the method is stabilized using an averaging .lter on thesolution. The second method uses the integral formulations forthe Helmholtz equation in frequency domain, and this method isstable. The Galerkin formulation for a Neumann scattererarising from Helmholtz equation is implemented, but isunstable.

In the discretizations, integrals are evaluated overtriangles, sectors, segments and circles. Integrals areevaluated analytically and in some cases numerically. Singularintegrands are made .nite, using the Du.y transform.

The Galerkin discretizations uses constant basis functionsin time and nodal linear elements in space. Numericalcomputations verify that the Dirichlet methods are stable, .rstorder accurate in time and second order accurate in space.Tests are performed with a point source illuminating a plateand a plane wave illuminating a sphere.

We investigate the On Surface Radiation Condition, which canbe used as a medium to high frequency approximation of theKirchho. formula, for both Dirichlet and Neumann scatterers.Numerical computations are done for a Dirichlet scatterer.

APA, Harvard, Vancouver, ISO, and other styles
21

O'Donoghue, Padraic Eimear. "Boundary integral equation approach to nonlinear response control of large space structures : alternating technique applied to multiple flaws in three dimensional bodies." Diss., Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/20685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Mughal, Bilal Hafeez. "A calculation method for the three-dimensional boundary-layer equations in integral form." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/12938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dély, Alexandre. "Computational strategies for impedance boundary condition integral equations in frequency and time domains." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2019. http://www.theses.fr/2019IMTA0135.

Full text
Abstract:
L'équation intégrale du champ électrique (EFIE) est très utilisée pour résoudre des problèmes de diffusion d'ondes électromagnétiques grâce à la méthode aux éléments de frontière (BEM). En domaine fréquentiel, les systèmes matriciels émergeant de la BEM souffrent, entre autres, de deux problèmes de mauvais conditionnement : l'augmentation du nombre d'inconnues et la diminution de la fréquence entrainent l'accroissement du nombre de conditionnement. En conséquence, les solveurs itératifs requièrent plus d'itérations pour converger vers la solution, voire ne convergent pas du tout. En domaine temporel, ces problèmes sont également présents, en plus de l'instabilité DC qui entraine une solution erronée en fin de simulation. La discrétisation en temps est obtenue grâce à une quadrature de convolution basée sur les méthodes de Runge-Kutta implicites.Dans cette thèse, diverses formulations d'équations intégrales utilisant notamment des conditions d'impédance aux frontières (IBC) sont étudiées et préconditionnées. Dans une première partie en domaine fréquentiel, l'IBC-EFIE est stabilisée pour les basses fréquences et les maillages denses grâce aux projecteurs quasi-Helmholtz et à un préconditionnement de type Calderón. Puis une nouvelle forme d'IBC est introduite, ce qui permet la construction d'un préconditionneur multiplicatif. Dans la seconde partie en domaine temporel, l'EFIE est d'abord régularisée pour le cas d'un conducteur électrique parfait (PEC), la rendant stable pour les pas de temps larges et immunisée à l'instabilité DC. Enfin, unerésolution efficace de l'IBC-EFIE est recherchée, avant de stabiliser l'équation pour les pas de temps larges et les maillages denses
The Electric Field Integral Equation (EFIE) is widely used to solve wave scattering problems in electromagnetics using the Boundary Element Method (BEM). In frequency domain, the linear systems stemming from the BEM suffer, amongst others, from two ill-conditioning problems: the low frequency breakdown and the dense mesh breakdown. Consequently, the iterative solvers require more iterations to converge to the solution, or they do not converge at all in the worst cases. These breakdowns are also present in time domain, in addition to the DC instability which causes the solution to be completely wrong in the late time steps of the simulations. The time discretization is achieved using a convolution quadrature based on Implicit Runge-Kutta (IRK) methods, which yields a system that is solved by Marching-On-in-Time (MOT). In this thesis, several integral equations formulations, involving Impedance Boundary Conditions (IBC) for most of them, are derived and subsequently preconditioned. In a first part dedicated to the frequency domain, the IBC-EFIE is stabilized for the low frequency and dense meshes by leveraging the quasi-Helmholtz projectors and a Calderón-like preconditioning. Then, a new IBC is introduced to enable the development of a multiplicative preconditioner for the new IBC-EFIE. In the second part on time domain,the EFIE is regularized for the Perfect Electric Conductor (PEC) case, to make it stable in the large time step regime and immune to the DC instability. Finally, the solution of the time domain IBC-EFIE is investigated by developing an efficient solution scheme and by stabilizing the equation for large time steps and dense meshes
APA, Harvard, Vancouver, ISO, and other styles
24

Sheludchenko, Dmytro, and Daria Novoderezhkina. "Pricing American options using approximations by Kim integral equations." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-14366.

Full text
Abstract:
The purpose of this thesis is to look into the difficulty of valuing American options, put as well as call, on an asset that pays continuous dividends. The authors are willing to demonstrate how mentioned above securities can be priced using a simple approximation of the Kim integral equations by quadrature formulas. This approach is compared with closed form American Option price formula proposed by Bjerksund-Stenslands in 2002. The results obtained by Bjerksund-Stenslands method are numerically compared by authors to the Kim’s. In Joon Kim’s approximation seems to be more accurate and closer to the chosen “true” value of an American option, however, Bjerksund-Stenslands model is demonstrating a higher speed in calculations.
APA, Harvard, Vancouver, ISO, and other styles
25

Ortiz, guzman John Erick. "Fast boundary element formulations for electromagnetic modelling in biological tissues." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2017. http://www.theses.fr/2017IMTA0051/document.

Full text
Abstract:
Cette thèse présente plusieurs nouvelles techniques pour la convergence rapide des solutions aux éléments de frontière de problèmes électromagnétiques. Une attention spéciale a été dédiée aux formulations pertinentes pour les solutions aux problèmes électromagnétiques dans les tissus biologiques à haute et basse fréquence. Pour les basses fréquences, de nouveaux schémas pour préconditionner et accélérer le problème direct de l'électroencéphalographie sont présentés dans cette thèse. La stratégie de régularisation repose sur une nouvelle formule de Calderon, obtenue dans cette thèse, alors que l'accélération exploite le paradigme d'approximation adaptive croisée (ACA). En ce qui concerne le régime haute fréquence, en vue d'applications de dosimétrie, l'attention de ce travail a été concentrée sur l'étude de la régularisation de l'équation intégrale de Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) à l'aide de techniques hiérarchiques. Le travail comprend une analyse complète de l'équation pour des géométries simplement et non-simplement connectées. Cela a permis de concevoir une nouvelle stratégie de régularisation avec une base hiérarchique permettant d'obtenir une équation pour les milieux pénétrable stable pour un large spectre de fréquence. Un cadre de travail propédeutique de discrétisation et une bibliothèque de calcul pour des thèmes de recherches sur les techniques de Calderon en 2D sont proposés en dernière partie de cette thèse. Cela permettra d'étendre nos recherches à l'imagerie par tomographie
This thesis presents several new techniques for rapidly converging boundary element solutions of electromagnetic problems. A special focus has been given to formulations that are relevant for electromagnetic solutions in biological tissues both at low and high frequencies. More specifically, as pertains the low-frequency regime, this thesis presents new schemes for preconditioning and accelerating the Forward Problem in Electroencephalography (EEG). The regularization strategy leveraged on a new Calderon formula, obtained in this thesis work, while the acceleration leveraged on an Adaptive-Cross-Approximation paradigm. As pertains the higher frequency regime, with electromagnetic dosimetry applications in mind, the attention of this work focused on the study and regularization of the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) integral equation via hierarchical techniques. In this effort, a complete analysis of the equation for both simply and non-simply connected geometries has been obtained. This allowed to design a new hierarchical basis regularization strategy to obtain an equation for penetrable media which is stable in a wide spectrum of frequencies. A final part of this thesis work presents a propaedeutic discretization framework and associated computational library for 2D Calderon research which will enable our future investigations in tomographic imaging
APA, Harvard, Vancouver, ISO, and other styles
26

Grudsky, Serguey, and Nikolai Tarkhanov. "Conformal reduction of boundary problems for harmonic functions in a plane domain with strong singularities on the boundary." Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/5774/.

Full text
Abstract:
We consider the Dirichlet, Neumann and Zaremba problems for harmonic functions in a bounded plane domain with nonsmooth boundary. The boundary curve belongs to one of the following three classes: sectorial curves, logarithmic spirals and spirals of power type. To study the problem we apply a familiar method of Vekua-Muskhelishvili which consists in using a conformal mapping of the unit disk onto the domain to pull back the problem to a boundary problem for harmonic functions in the disk. This latter is reduced in turn to a Toeplitz operator equation on the unit circle with symbol bearing discontinuities of second kind. We develop a constructive invertibility theory for Toeplitz operators and thus derive solvability conditions as well as explicit formulas for solutions.
APA, Harvard, Vancouver, ISO, and other styles
27

Goh, K. H. M. "Numerical solution of quadratically non-linear boundary value problems using integral equation techniques : with applications to nozzle and wall flows /." Title page, contents and summary only, 1986. http://web4.library.adelaide.edu.au/theses/09PH/09phg614.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Paneah, Boris. "On a new problem in integral geometry related to boundary problems for partial differential equations." Universität Potsdam, 2001. http://opus.kobv.de/ubp/volltexte/2008/2608/.

Full text
Abstract:
Contents: 1 Introduction 2 Statement of the problem and definitions 3 The main results 4 Proof of theorem 2 4.1 Reduction of problem (2) to functional - integral equations 4.2 The uniqueness of a solution of equation (2) 4.3 The existence of a solution of equation (2) 5 Proof of theorem 1 6 Proof of theorem 3 7 First boundary problem for hyperbolic differential equations 7.1 Statement of the problem 7.2 The formulation of the result and a sketch of the proof
APA, Harvard, Vancouver, ISO, and other styles
29

Ostermann, Elke [Verfasser]. "Numerical methods for space-time variational formulations of retarded potential boundary integral equations / Elke Ostermann." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover, 2010. http://d-nb.info/1005409331/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Rahman, Mizanur. "Fast boundary element methods for integral equations on infinite domains and scattering by unbounded surfaces." Thesis, Brunel University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Misawa, Ryota. "Boundary integral equation methods for the calculation of complex eigenvalues for open spaces." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Klimova, Elena. "Some Non-Local Boundary-Value Problems and their Relationship to Problems for Loaded Equations." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-145227.

Full text
Abstract:
In several mathematical models of physical or technical processes there are non-local boundary-value problems in terms of partial differential equations with integral conditions. In this article we consider hyperbolic differential equations of second order in the rectangle with some integral conditions and their relationship to boundary-value problems for some certain type of loaded equations
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
APA, Harvard, Vancouver, ISO, and other styles
33

SHELLEY, MICHAEL JOHN. "THE APPLICATION OF BOUNDARY INTEGRAL TECHNIQUES TO MULTIPLY CONNECTED DOMAINS (VORTEX METHODS, EULER EQUATIONS, FLUID MECHANICS)." Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/188100.

Full text
Abstract:
Very accurate methods, based on boundary integral techniques, are developed for the study of multiple, interacting fluid interfaces in an Eulerian fluid. These methods are applied to the evolution of a thin, periodic layer of constant vorticity embedded in irrotational fluid. Numerical regularity experiments are conducted and suggest that the interfaces of the layer develop a curvature singularity in infinite time. This is to be contrasted with the more singular vorticity distribution of a vortex sheet developing such a singularity in a finite time.
APA, Harvard, Vancouver, ISO, and other styles
34

Shu, Chang. "Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation." Thesis, University of Glasgow, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Saeed, Usman. "Adaptive numerical techniques for the solution of electromagnetic integral equations." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41173.

Full text
Abstract:
Various error estimation and adaptive refinement techniques for the solution of electromagnetic integral equations were developed. Residual based error estimators and h-refinement implementations were done for the Method of Moments (MoM) solution of electromagnetic integral equations for a number of different problems. Due to high computational cost associated with the MoM, a cheaper solution technique known as the Locally-Corrected Nyström (LCN) method was explored. Several explicit and implicit techniques for error estimation in the LCN solution of electromagnetic integral equations were proposed and implemented for different geometries to successfully identify high-error regions. A simple p-refinement algorithm was developed and implemented for a number of prototype problems using the proposed estimators. Numerical error was found to significantly reduce in the high-error regions after the refinement. A simple computational cost analysis was also presented for the proposed error estimation schemes. Various cost-accuracy trade-offs and problem-specific limitations of different techniques for error estimation were discussed. Finally, a very important problem of slope-mismatch in the global error rates of the solution and the residual was identified. A few methods to compensate for that mismatch using scale factors based on matrix norms were developed.
APA, Harvard, Vancouver, ISO, and other styles
36

Klimova, Elena. "Some Non-Local Boundary-Value Problems and their Relationship to Problems for Loaded Equations." EMS Publishing House, 2011. https://tud.qucosa.de/id/qucosa%3A28136.

Full text
Abstract:
In several mathematical models of physical or technical processes there are non-local boundary-value problems in terms of partial differential equations with integral conditions. In this article we consider hyperbolic differential equations of second order in the rectangle with some integral conditions and their relationship to boundary-value problems for some certain type of loaded equations.
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
APA, Harvard, Vancouver, ISO, and other styles
37

Brown, Sarah M. "A numerical scheme for Mullins-Sekerka flow in three space dimensions /." Diss., CLICK HERE for online access, 2004. http://contentdm.lib.byu.edu/ETD/image/etd493.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ke, Chen. "Analysis of iterative methods for the solution of boundary integral equations with applications to the Helmholtz problem." Thesis, University of Plymouth, 1989. http://hdl.handle.net/10026.1/1710.

Full text
Abstract:
This thesis is concerned with the numerical solution of boundary integral equations and the numerical analysis of iterative methods. In the first part, we assume the boundary to be smooth in order to work with compact operators; while in the second part we investigate the problem arising from allowing piecewise smooth boundaries. Although in principle most results of the thesis apply to general problems of reformulating boundary value problems as boundary integral equations and their subsequent numerical solutions, we consider the Helmholtz equation arising from acoustic problems as the main model problem. In Chapter 1, we present the background material of reformulation of Helmhoitz boundary value problems into boundary integral equations by either the indirect potential method or the direct method using integral formulae. The problem of ensuring unique solutions of integral equations for exterior problems is specifically discussed. In Chapter 2, we discuss the useful numerical techniques for solving second kind integral equations. In particular, we highlight the superconvergence properties of iterated projection methods and the important procedure of Nystrom interpolation. In Chapter 3, the multigrid type methods as applied to smooth boundary integral equations are studied. Using the residual correction principle, we are able to propose some robust iterative variants modifying the existing methods to seek efficient solutions. In Chapter 4, we concentrate on the conjugate gradient method and establish its fast convergence as applied to the linear systems arising from general boundary element equations. For boundary integral equalisations on smooth boundaries we have observed, as the underlying mesh sizes decrease, faster convergence of multigrid type methods and fixed step convergence of the conjugate gradient method. In the case of non-smooth integral boundaries, we first derive the singular forms of the solution of boundary integral solutions for Dirichlet problems and then discuss the numerical solution in Chapter 5. Iterative methods such as two grid methods and the conjugate gradient method are successfully implemented in Chapter 6 to solve the non-smooth integral equations. The study of two grid methods in a general setting and also much of the results on the conjugate gradient method are new. Chapters 3, 4 and 5 are partially based on publications [4], [5] and [35] respectively.
APA, Harvard, Vancouver, ISO, and other styles
39

Zhang, Shun S. M. Massachusetts Institute of Technology. "A non-parametric discontinuous Galerkin formulation of the integral boundary layer equations with strong viscous-inviscid coupling." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119272.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2018.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 117-121).
A non-parametric discontinuous Galerkin (DG) finite-element formulation is developed for the integral boundary layer (IBL) equations with strong viscous-inviscid coupling. This DG formulation eliminates the need of explicit curvilinear coordinates in traditional boundary layer solvers, and thus enables application to complex geometries even involving non-smooth features. The usual curvilinear coordinates are replaced by a local Cartesian basis, which is conveniently constructed in the DG finite-element formulation. This formulation is also applicable to the general convection-source type of partial differential equations defined on curved manifolds. Other benefits of DG methods are maintained, including support for high-order solutions and applicability to general unstructured meshes. For robust solution of the coupled IBL equations, a strong viscous-inviscid coupling scheme is also proposed, utilizing a global Newton method. This method provides for flexible and convenient coupling of viscous and inviscid solutions, and is readily extensible to coupling with more disciplines, such as structural analysis. As a precursor to the three-dimensional strongly-coupled IBL method, a two-dimensional IBL solver coupled with a panel method is implemented. Numerical examples are presented to demonstrate the viability and utility of the proposed methodology.
by Shun Zhang.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
40

Hellon, C. S. "On the use of the boundary layer integral equations for the prediction of skin friction and heat transfer." Thesis, Cranfield University, 1986. http://hdl.handle.net/1826/3616.

Full text
Abstract:
The usefulness of the energy equation integrated over the thickness of the boundary layer, in predicing heat transfer rates to smooth body surfaces in investigated. It is found that on assuming very simple closure relations, similar to those often used with the momentum equation, highly accurate predictions are made. It is shown further that the usefulness of these predictions extend into areas where the momentum equation-skin friction predictions, which have proved so popular, break down such as regions of reverse flow and shock/boundary layer interactions. The technique is has been tested in laminar transitional and turbulent flows with both experiment and other more complex theories. The technique is extended to three-dimensional laminar flows with the inclusion of a crossflow model.
APA, Harvard, Vancouver, ISO, and other styles
41

Kotik, Nikolai. "Solution to boundary-contact problems of elasticity in mathematical models of the printing-plate contact system for flexographic printing." Doctoral thesis, Karlstad : Faculty of Technology and Science, Mathematics, Karlstad University, 2007. http://www.diva-portal.org/kau/abstract.xsql?dbid=773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Axelsson, Andreas, and kax74@yahoo se. "Transmission problems for Dirac's and Maxwell's equations with Lipschitz interfaces." The Australian National University. School of Mathematical Sciences, 2002. http://thesis.anu.edu.au./public/adt-ANU20050106.093019.

Full text
Abstract:
The aim of this thesis is to give a mathematical framework for scattering of electromagnetic waves by rough surfaces. We prove that the Maxwell transmission problem with a weakly Lipschitz interface,in finite energy norms, is well posed in Fredholm sense for real frequencies. Furthermore, we give precise conditions on the material constants ε, μ and σ and the frequency ω when this transmission problem is well posed. To solve the Maxwell transmission problem, we embed Maxwell’s equations in an elliptic Dirac equation. We develop a new boundary integral method to solve the Dirac transmission problem. This method uses a boundary integral operator, the rotation operator, which factorises the double layer potential operator. We prove spectral estimates for this rotation operator in finite energy norms using Hodge decompositions on weakly Lipschitz domains. To ensure that solutions to the Dirac transmission problem indeed solve Maxwell’s equations, we introduce an exterior/interior derivative operator acting in the trace space. By showing that this operator commutes with the two basic reflection operators, we are able to prove that the Maxwell transmission problem is well posed. We also prove well-posedness for a class of oblique Dirac transmission problems with a strongly Lipschitz interface, in the L_2 space on the interface. This is shown by employing the Rellich technique, which gives angular spectral estimates on the rotation operator.
APA, Harvard, Vancouver, ISO, and other styles
43

Pillain, Axelle. "Line, Surface, and Volume Integral Equations for the Electromagnetic Modelling of the Electroencephalography Forward Problem." Thesis, Télécom Bretagne, 2016. http://www.theses.fr/2016TELB0412/document.

Full text
Abstract:
La reconstruction des sources de l'activité cérébrale à partir des mesures de potentiel fournies par un électroencéphalographie (EEG) nécessite de résoudre le problème connu sous le nom de « problème inverse de l'EEG ». La solution de ce problème dépend de la solution du « problème direct de l'EEG », qui fournit à partir de sources de courant connues, le potentiel mesuré au niveau des électrodes. Pour des modèles de tête réels, ce problème ne peut être résolut que de manière numérique. En particulier, les équations intégrales de surfaces requièrent uniquement la discrétisation des interfaces entre les différents compartiments constituant le milieu cérébral. Cependant, les formulations intégrales existant actuellement ne prennent pas en comptent l'anisotropie du milieu. Le travail présenté dans cette thèse introduit deux nouvelles formulations intégrales permettant de palier à cette faiblesse. Une formulation indirecte capable de prendre en compte l'anisotropie du cerveau est proposée. Elle est discrétisée à l'aide de fonctions conformes aux propriétés spectrales des opérateurs impliqués. L'effet de cette discrétisation de type mixe lors de la reconstruction des sources cérébrales est aussi étudié. La seconde formulation se concentre sur l'anisotropie due à la matière blanche. Calculer rapidement la solution du système numérique obtenu est aussi très désirable. Le travail est ainsi complémenté d'une preuve de l'applicabilité des stratégies de préconditionnement de type Calderon pour les milieux multicouches. Le théorème proposé est appliqué dans le contexte de la résolution du problème direct de l'EEG. Un préconditionneur de type Calderon est aussi introduit pour l'équation intégrale du champ électrique (EFIE) dans le cas de structures unidimensionnelles. Finalement, des résultats préliminaires sur l'impact d'un solveur rapide direct lors de la résolution rapide du problème direct de l'EEG sont présentés
Electroencephalography (EEG) is a very useful tool for characterizing epileptic sources. Brain source imaging with EEG necessitates to solve the so-called EEG inverse problem. Its solution depends on the solution of the EEG forward problem that provides from known current sources the potential measured at the electrodes positions. For realistic head shapes, this problem can be solved with different numerical techniques. In particular surface integral equations necessitates to discretize only the interfaces between the brain compartments. However, the existing formulations do not take into account the anisotropy of the media. The work presented in this thesis introduces two new integral formulations to tackle this weakness. An indirect formulation that can handle brain anisotropies is proposed. It is discretized with basis functions conform to the mapping properties of the involved operators. The effect of this mixed discretization on brain source reconstruction is also studied. The second formulation focuses on the white matter fiber anisotropy. Obtaining the solution to the obtained numerical system rapidly is also highly desirable. The work is hence complemented with a proof of the preconditioning effect of Calderon strategies for multilayered media. The proposed theorem is applied in the context of solving the EEG forward problem. A Calderon preconditioner is also introduced for the wire electric field integral equation. Finally, preliminary results on the impact of a fast direct solver in solving the EEG forward problem are presented
APA, Harvard, Vancouver, ISO, and other styles
44

Milewski, William Michael. "Three-dimensional viscous flow computations using the integral boundary layer equations simultaneously coupled with a low order panel method." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kachanovska, Maryna [Verfasser], Lehel [Akademischer Betreuer] Banjai, Wolfgang [Gutachter] Hackbusch, and Achim [Gutachter] Schädle. "Fast, Parallel Techniques for Time-Domain Boundary Integral Equations / Maryna Kachanovska ; Gutachter: Wolfgang Hackbusch, Achim Schädle ; Betreuer: Lehel Banjai." Leipzig : Universitätsbibliothek Leipzig, 2014. http://d-nb.info/1238599982/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Brown, Sarah Marie. "A Numerical Scheme for Mullins-Sekerka Flow in Three Space Dimensions." BYU ScholarsArchive, 2004. https://scholarsarchive.byu.edu/etd/136.

Full text
Abstract:
The Mullins-Sekerka problem, also called two-sided Hele-Shaw flow, arises in modeling a binary material with two stable concentration phases. A coarsening process occurs, and large particles grow while smaller particles eventually dissolve. Single particles become spherical. This process is described by evolving harmonic functions within the two phases with the moving interface driven by the jump in the normal derivatives of the harmonic functions at the interface. The harmonic functions are continuous across the interface, taking on values equal to the mean curvature of the interface. This dissertation reformulates the three-dimensional problem as one on the two-dimensional interface by using boundary integrals. A semi-implicit scheme to solve the free boundary problem numerically is implemented. Numerical analysis tasks include discretizing surfaces, overcoming node bunching, and dealing with topology change in a toroidal particle. A particle (node)-cluster technique is developed with the aim of alleviating excessive run time caused by filling the dense matrix used in solving a system of linear equations.
APA, Harvard, Vancouver, ISO, and other styles
47

Rösch, Thomas [Verfasser], and T. [Akademischer Betreuer] Arens. "Electromagnetic Wave Scattering at Biperiodic Surfaces: Variational Formulation, Boundary Integral Equations and High Order Solvers / Thomas Rösch ; Betreuer: T. Arens." Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1117701867/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Dušanka, Perišić. "On Integral Transforms and Convolution Equations on the Spaces of Tempered Ultradistributions." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 1992. https://www.cris.uns.ac.rs/record.jsf?recordId=73337&source=NDLTD&language=en.

Full text
Abstract:
In the thesis are introduced and investigated spaces of Burling and of Roumieu type tempered ultradistributions, which are natural generalization of the space of Schwartz’s tempered distributions in Denjoy-Carleman-Komatsu’s theory of ultradistributions.  It has been proved that the introduced spaces preserve all of the good properties Schwartz space has, among others, a remarkable one, that the Fourier transform maps continuposly the spaces into themselves.In the first chapter the necessary notation and notions are given.In the second chapter, the spaces of ultrarapidly decreasing ultradifferentiable functions and their duals, the spaces of Beurling and of Roumieu tempered ultradistributions, are introduced; their topological properties and relations with the known distribution and ultradistribution spaces and structural properties are investigated;  characterization of  the Hermite expansions  and boundary value representation of the elements of the spaces are given.The spaces of multipliers of the spaces of Beurling and of Roumieu type tempered ultradistributions are determined explicitly in the third chapter.The fourth chapter is devoted to the investigation of  Fourier, Wigner, Bargmann and Hilbert transforms on the spaces of Beurling and of Roumieu type tempered ultradistributions and their test spaces.In the fifth chapter the equivalence of classical definitions of the convolution of Beurling type ultradistributions is proved, and the equivalence of, newly introduced definitions, of ultratempered convolutions of Beurling type ultradistributions is proved.In the last chapter is given a necessary and sufficient condition for a convolutor of a space of tempered ultradistributions to be hypoelliptic in a space of integrable ultradistribution, is given, and hypoelliptic convolution equations are studied in the spaces.Bibliograpy has 70 items.
U ovoj tezi su proučavani prostori temperiranih ultradistribucija Beurlingovog  i Roumieovog tipa, koji su prirodna uopštenja prostora Schwarzovih temperiranih distribucija u Denjoy-Carleman-Komatsuovoj teoriji ultradistribucija. Dokazano je ovi prostori imaju sva dobra svojstva, koja ima i Schwarzov prostor, izmedju ostalog, značajno svojstvo da Furijeova transformacija preslikava te prostore neprekidno na same sebe.U prvom poglavlju su uvedene neophodne oznake i pojmovi.U drugom poglavlju su uvedeni prostori ultrabrzo opadajucih ultradiferencijabilnih funkcija i njihovi duali, prostori Beurlingovih i Rumieuovih temperiranih ultradistribucija; proučavana su njihova topološka svojstva i veze sa poznatim prostorima distribucija i ultradistribucija, kao i strukturne osobine; date su i karakterizacije Ermitskih ekspanzija i graničnih reprezentacija elemenata tih prostora.Prostori multiplikatora Beurlingovih i Roumieuovih temperiranih ultradistribucija su okarakterisani u trećem poglavlju.Četvrto poglavlje je posvećeno proučavanju Fourierove, Wignerove, Bargmanove i Hilbertove transformacije na prostorima Beurlingovih i Rouimieovih temperiranih ultradistribucija i njihovim test prostorima.U petoj glavi je dokazana ekvivalentnost klasičnih definicija konvolucije na Beurlingovim prostorima ultradistribucija, kao i ekvivalentnost novouvedenih definicija ultratemperirane konvolucije ultradistribucija Beurlingovog tipa.U poslednjoj glavi je dat potreban i dovoljan uslov da konvolutor prostora temperiranih ultradistribucija bude hipoeliptičan u prostoru integrabilnih ultradistribucija i razmatrane su neke konvolucione jednačine u tom prostoru.Bibliografija ima 70 bibliografskih jedinica.
APA, Harvard, Vancouver, ISO, and other styles
49

Akeab, Imad. "Accurate techniques for 2D electromagnetic scattering." Licentiate thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-31523.

Full text
Abstract:
This thesis consists of three parts. The first part is an introduction and referencessome recent work on 2D electromagnetic scattering problems at high frequencies. It alsopresents the basic integral equation types for impenetrable objects. A brief discussionof the standard elements of the method of moments is followed by summaries of thepapers.Paper I presents an accurate implementation of the method of moments for a perfectlyconducting cylinder. A scaling for the rapid variation of the solution improves accuracy.At high frequencies, the method of moments leads to a large dense system of equations.Sparsity in this system is obtained by modifying the integration path in the integralequation. The modified path reduces the accuracy in the deep shadow.In paper II, a hybrid method is used to handle the standing waves that are prominentin the shadow for the TE case. The shadow region is treated separately, in a hybridscheme based on a priori knowledge about the solution. An accurate method to combinesolutions in this hybrid scheme is presented.
APA, Harvard, Vancouver, ISO, and other styles
50

Ayala, Obregón Alan. "Complexity reduction methods applied to the rapid solution to multi-trace boundary integral formulations." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS581.

Full text
Abstract:
L'objectif de cette thèse est de fournir des techniques de réduction de complexité pour la solution des équations intégrales de frontière (BIE). En particulier, nous sommes intéressés par les BIE issues de la modélisation des problèmes acoustiques et électromagnétiques via les méthodes des éléments de frontière (BEM). Nous utilisons la formulation multi-trace locale pour laquelle nous trouvons une expression explicite pour l’inverse de l'opérateur multi-trace pour un problème modèle de diffusion. Ensuite, nous proposons cet opérateur inverse pour préconditionner des problèmes de diffusion plus générales. Nous montrons également que la formulation multi-trace locale est stable pour les équations de Maxwell posées sur un domaine particulier. Nous posons les problèmes de type BEM dans le cadre des matrices hiérarchiques, pour lesquelles c'est possible d'identifier sous-matrices admettant des approximations de rang faible (blocs admissibles). Nous introduisons une technique appelée échantillonnage géométrique qui utilise des structures d'arbre pour créer des algorithmes CUR en complexité linéaire, lesquelles sont orientés pour créer des algorithmes parelles avec communication optimale. Finalement, nous étudions des méthodes QR et itération sur sous-espaces; pour le premier, nous fournissons de nouvelles bornes pour l’erreur d’approximation, et pour le deuxième nous résolvons une question ouverte dans la littérature consistant à prouver que l'approximation des vecteurs singuliers converge exponentiellement. Enfin, nous proposons une technique appelée approximation affine de rang faible destinée à accroître la précision des méthodes classiques d’approximation de rang faible
In this thesis, we provide complexity reduction techniques for the solution of Boundary Integral Equations (BIE). In particular, we focus on BIE arising from the modeling of acoustic and electromagnetic problems via Boundary Element Methods (BEM). We use the local multi-trace formulation which is friendly to operator preconditioning. We find a closed form inverse of the local multi-trace operator for a model problem and then we propose this inverse operator for preconditioning general scattering problems. Moreover, we show that the local multi-trace formulation is stable for Maxwell equations posed on a particular domain configuration. For general problems where BEM are applied, we propose to use the framework of hierarchical matrices, which are constructed using cluster trees and allow to represent the original matrix in such a way that submatrices that admit low-rank approximations (admissible blocks) are well identified. We introduce a technique called geometric sampling which uses cluster trees to create accurate linear-time CUR algorithms for the compression and matrix-vector product acceleration of admissible matrix blocks, and which are oriented to develop parallel communication-avoiding algorithms. We also contribute to the approximation theory of QR and subspace iteration methods; for the former we provide new bounds for the approximation error, and for the later we solve an open question in the literature consisting in proving that the approximation of singular vectors exponentially converges. Finally, we propose a technique called affine low-rank approximation intended to increase the accuracy of classical low-rank approximation methods
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography