To see the other types of publications on this topic, follow the link: Boundary layer.

Journal articles on the topic 'Boundary layer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Boundary layer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bösenberg, Jens, and Holger Linné. "Laser remote sensing of the planetary boundary layer." Meteorologische Zeitschrift 11, no. 4 (October 30, 2002): 233–40. http://dx.doi.org/10.1127/0941-2948/2002/0011-0233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chlond, Andreas, and Hartmut Grassl. "The atmospheric boundary layer." Meteorologische Zeitschrift 11, no. 4 (October 30, 2002): 227. http://dx.doi.org/10.1127/0941-2948/2002/0011-0227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holloway, Simon, Hugo Ricketts, and Geraint Vaughan. "Boundary layer temperature measurements of a noctual urban boundary layer." EPJ Web of Conferences 176 (2018): 06004. http://dx.doi.org/10.1051/epjconf/201817606004.

Full text
Abstract:
A low-power lidar system based in Manchester, United Kingdom has been developed to measure temperature profiles in the nocturnal urban boundary layer. The lidar transmitter uses a 355nm diode-pumped solid state Nd:YAG laser and two narrow-band interference filters in the receiver filter out rotational Raman lines that are dependent on temperature. The spectral response of the lidar is calibrated using a monochromator. Temperature profiles measured by the system are calibrated by comparison to co-located radiosondes.
APA, Harvard, Vancouver, ISO, and other styles
4

Mamtaz, Farhana, Ahammad Hossain, and Nusrat Sharmin. "Solution of Boundary Layer and Thermal Boundary Layer Equation." Asian Research Journal of Mathematics 11, no. 4 (December 19, 2018): 1–15. http://dx.doi.org/10.9734/arjom/2018/45267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Donnelly, M. J., O. K. Rediniotis, S. A. Ragab, and D. P. Telionis. "The Interaction of Rolling Vortices With a Turbulent Boundary Layer." Journal of Fluids Engineering 117, no. 4 (December 1, 1995): 564–70. http://dx.doi.org/10.1115/1.2817302.

Full text
Abstract:
Laser-Doppler velocimetry is employed to measure the periodic field created by releasing spanwise vortices in a turbulent boundary layer. Phase-averaged vorticity and turbulence level contours are estimated and presented. It is found that vortices with diameter of the order of the boundary layer quickly diffuse and disappear while their turbulent kinetic energy spreads uniformly across the entire boundary layer. Larger vortices have a considerably longer life span and in turn feed more vorticity into the boundary layer.
APA, Harvard, Vancouver, ISO, and other styles
6

Kenyon, Kern E. "Curvature Boundary Layer." Physics Essays 16, no. 1 (March 2003): 74–85. http://dx.doi.org/10.4006/1.3025569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vranková, Andrea, and Milan Palko. "Atmospheric Boundary Layer." Applied Mechanics and Materials 820 (January 2016): 338–44. http://dx.doi.org/10.4028/www.scientific.net/amm.820.338.

Full text
Abstract:
Atmospheric Boundary Layer (ABL) is the lowest part of the troposphere. The main feature of the Atmospheric Boundary Layer is the turbulent nature of the flow. The thickness of the boundary layer, formed by flowing air friction on the earth’s surface under various conditions move in quite a wide range. ABL is generally defined as being 0.5 km above the surface, although it can extend up to 2 km depending on time and location. The flow properties are most important over the surface of solid objects, which carry out all the reactions between fluid and solid.
APA, Harvard, Vancouver, ISO, and other styles
8

Müller, Bernhard M. "Boundary‐layer microphone." Journal of the Acoustical Society of America 96, no. 5 (November 1994): 3206. http://dx.doi.org/10.1121/1.411273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Piau, J. M. "Viscoplastic boundary layer." Journal of Non-Newtonian Fluid Mechanics 102, no. 2 (February 2002): 193–218. http://dx.doi.org/10.1016/s0377-0257(01)00178-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fernholz, H. H. "Boundary Layer Theory." European Journal of Mechanics - B/Fluids 20, no. 1 (January 2001): 155–57. http://dx.doi.org/10.1016/s0997-7546(00)01101-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Cha, S. S., R. K. Ahluwalia, and K. H. Im. "Boundary layer nucleation." International Journal of Heat and Mass Transfer 32, no. 5 (May 1989): 825–35. http://dx.doi.org/10.1016/0017-9310(89)90231-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bahl, Ravi. "Boundary-layer blowing." AIAA Journal 23, no. 1 (January 1985): 157–58. http://dx.doi.org/10.2514/3.8887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Koizumi, David H. "Boundary layer microphone." Journal of the Acoustical Society of America 113, no. 2 (2003): 683. http://dx.doi.org/10.1121/1.1560240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Schmidt, Axel, and Michael Nickel. "Boundary layer adapter." Journal of the Acoustical Society of America 128, no. 4 (2010): 2252. http://dx.doi.org/10.1121/1.3500761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Garratt, J. R. "Boundary layer climates." Earth-Science Reviews 27, no. 3 (May 1990): 265. http://dx.doi.org/10.1016/0012-8252(90)90005-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Holtslag, Bert. "Preface: GEWEX Atmospheric Boundary-layer Study (GABLS) on Stable Boundary Layers." Boundary-Layer Meteorology 118, no. 2 (February 2006): 243–46. http://dx.doi.org/10.1007/s10546-005-9008-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Anderson, E. J., W. R. McGillis, and M. A. Grosenbaugh. "The boundary layer of swimming fish." Journal of Experimental Biology 204, no. 1 (January 1, 2001): 81–102. http://dx.doi.org/10.1242/jeb.204.1.81.

Full text
Abstract:
Tangential and normal velocity profiles of the boundary layer surrounding live swimming fish were determined by digital particle tracking velocimetry, DPTV. Two species were examined: the scup Stenotomus chrysops, a carangiform swimmer, and the smooth dogfish Mustelus canis, an anguilliform swimmer. Measurements were taken at several locations over the surfaces of the fish and throughout complete undulatory cycles of their propulsive motions. The Reynolds number based on length, Re, ranged from 3×10(3) to 3×10(5). In general, boundary layer profiles were found to match known laminar and turbulent profiles including those of Blasius, Falkner and Skan and the law of the wall. In still water, boundary layer profile shape always suggested laminar flow. In flowing water, boundary layer profile shape suggested laminar flow at lower Reynolds numbers and turbulent flow at the highest Reynolds numbers. In some cases, oscillation between laminar and turbulent profile shapes with body phase was observed. Local friction coefficients, boundary layer thickness and fluid velocities at the edge of the boundary layer were suggestive of local oscillatory and mean streamwise acceleration of the boundary layer. The behavior of these variables differed significantly in the boundary layer over a rigid fish. Total skin friction was determined. Swimming fish were found to experience greater friction drag than the same fish stretched straight in the flow. Nevertheless, the power necessary to overcome friction drag was determined to be within previous experimentally measured power outputs. No separation of the boundary layer was observed around swimming fish, suggesting negligible form drag. Inflected boundary layers, suggestive of incipient separation, were observed sporadically, but appeared to be stabilized at later phases of the undulatory cycle. These phenomena may be evidence of hydrodynamic sensing and response towards the optimization of swimming performance.
APA, Harvard, Vancouver, ISO, and other styles
18

Chehroudi, B., and R. L. Simpson. "Space–time results for a separating turbulent boundary layer using a rapidly scanning laser anemometer." Journal of Fluid Mechanics 160 (November 1985): 77–92. http://dx.doi.org/10.1017/s0022112085003391.

Full text
Abstract:
A rapidly scanning one-velocity-component directionally sensitive fringe-type laser-Doppler anemometer which scans the measurement volume perpendicular to the optical axis of the transmitting optics was used to investigate the flow structure of the steady freestream separated turbulent boundary layer of Simpson, Chew & Shivaprasad (1981a). Space–time correlations were obtained for the first time in a separated turbulent boundary layer and showed that the integral lengthscale Ly for the large eddies grows in size towards detachment, although the ratio of this lengthscale to the boundary-layer thickness remains constant. Results also indicate local dependence of the backflow on the middle and outer regions of the boundary layer at a given instant in time.
APA, Harvard, Vancouver, ISO, and other styles
19

Taylor, Peter A. "Marine Stratus—A Boundary-Layer Model." Atmosphere 15, no. 5 (May 11, 2024): 585. http://dx.doi.org/10.3390/atmos15050585.

Full text
Abstract:
A relatively simple 1D RANS model of the time evolution of the planetary boundary layer is extended to include water vapor and cloud droplets plus transfers between them. Radiative fluxes and flux divergence are also included. An underlying ocean surface is treated as a source of water vapor and as a sink for cloud or fog droplets. With a constant sea surface temperature and a steady wind, initially dry or relatively dry air will moisten, starting at the surface. Turbulent boundary layer mixing will then lead towards a layer with a well-mixed potential temperature (and so temperature decreasing with height) and well-mixed water vapor mixing ratio. As a result, the air will, sooner or later, become saturated at some level, and a stratus cloud will form.
APA, Harvard, Vancouver, ISO, and other styles
20

Xu, Dachuan, Yunsong Gu, Xinglong Gao, Zebin Ren, and Jingxiang Chen. "Experimental Investigation on Boundary Layer Control and Pressure Performance for Low Reynolds Flow with Chemical Reaction." Applied Sciences 13, no. 20 (October 16, 2023): 11335. http://dx.doi.org/10.3390/app132011335.

Full text
Abstract:
This study examines boundary layer control and pressure recovery in low Reynolds number supersonic flow with chemical reactions in a chemical laser system. Our work prescribes a novel boundary layer control method for the optical cavity of a chemical laser system, and a design of a supersonic diffuser is compared and proposed to make a stable flow for the system. The flow characteristics of a low Reynolds number and internal reaction heat release were analyzed. Three types of experimental pieces were designed to passively control the boundary layer in the optical cavity. An active booster-type supersonic diffuser is proposed to study the pressure recovery problem of a low Reynolds number and chemical reaction supersonic flow generated by an optical cavity. A supersonic chemical reaction platform (SCRP) was established to conduct experimental research on boundary layer control and docking the active booster supersonic diffuser with the SCRP. The experimental results indicate that increasing the boundary layer pumping capacity within a certain range can reduce both the boundary layer thickness and the pressure on the optical cavity while simultaneously enhancing the SCRP energy power. The supersonic diffuser based on active gas pressurization can create the necessary conditions for the normal chemical reaction and improve the ability of the SCRP to resist high back pressure and airflow disturbance. Moreover, the chemical reaction energy release was full and stable with the docking of supersonic diffuser test pieces, resulting in energy power increases, which could be a significant improvement for the design of chemical laser systems.
APA, Harvard, Vancouver, ISO, and other styles
21

Carpenter, D. L., and J. Lemaire. "The Plasmasphere Boundary Layer." Annales Geophysicae 22, no. 12 (December 22, 2004): 4291–98. http://dx.doi.org/10.5194/angeo-22-4291-2004.

Full text
Abstract:
Abstract. As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities)
APA, Harvard, Vancouver, ISO, and other styles
22

Iamandi, Constantin, Andrei Georgescu, and Cristian Erbasu. "Atmospheric Boundary Layer Change." International Journal of Fluid Mechanics Research 29, no. 3-4 (2002): 5. http://dx.doi.org/10.1615/interjfluidmechres.v29.i3-4.170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Vranková, Andrea, and Milan Palko. "Atmospheric Boundary Layer Modelling." Applied Mechanics and Materials 820 (January 2016): 351–58. http://dx.doi.org/10.4028/www.scientific.net/amm.820.351.

Full text
Abstract:
The aim of the paper was to define the input options over the boundary layer, as the entrance boundary conditions for simulation in ANSYS. The boundary layer is designed for use in external aerodynamics of buildings (part of the urban structure) for selected sites occurring in the territory of the Slovak Republic.
APA, Harvard, Vancouver, ISO, and other styles
24

Donner, L. J. "The atmospheric boundary layer." Eos, Transactions American Geophysical Union 76, no. 17 (1995): 177. http://dx.doi.org/10.1029/95eo00101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hiraoka, H., M. Ohashi, Susumu Kurita, Manabu Kanda, Takashi Karasudani, Hiromasa Ueda, Yuji Ohya, and Takanori Uchida. "TC4 Atmospheric Boundary Layer." Wind Engineers, JAWE 2006, no. 108 (2006): 693–708. http://dx.doi.org/10.5359/jawe.2006.693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

BLOTTNER, F. G. "Chemical Nonequilibrium Boundary Layer." Journal of Spacecraft and Rockets 40, no. 5 (September 2003): 810–18. http://dx.doi.org/10.2514/2.6907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Swain, Mark R., and Hubert Gallée. "Antarctic Boundary Layer Seeing." Publications of the Astronomical Society of the Pacific 118, no. 846 (August 2006): 1190–97. http://dx.doi.org/10.1086/507153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Anderson, John D. "Ludwig Prandtl’s Boundary Layer." Physics Today 58, no. 12 (December 2005): 42–48. http://dx.doi.org/10.1063/1.2169443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kerschen, E. J. "Boundary Layer Receptivity Theory." Applied Mechanics Reviews 43, no. 5S (May 1, 1990): S152—S157. http://dx.doi.org/10.1115/1.3120795.

Full text
Abstract:
The receptivity mechanisms by which free-stream disturbances generate instability waves in laminar boundary layers are discussed. Free-stream disturbances have wavelengths which are generally much longer than those of instability waves. Hence, the transfer of energy from the free-stream disturbance to the instability wave requires a wavelength conversion mechanism. Recent analyses using asymptotic methods have shown that the wavelength conversion takes place in regions of the boundary layer where the mean flow adjusts on a short streamwise length scale. This paper reviews recent progress in the theoretical understanding of these phenomena.
APA, Harvard, Vancouver, ISO, and other styles
30

Bridges, Thomas J., and Philip J. Morris. "Boundary layer stability calculations." Physics of Fluids 30, no. 11 (1987): 3351. http://dx.doi.org/10.1063/1.866467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Esplin, G. J. "Boundary Layer Emission Monitoring." JAPCA 38, no. 9 (September 1988): 1158–61. http://dx.doi.org/10.1080/08940630.1988.10466465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Mahrt, L. "Nocturnal Boundary-Layer Regimes." Boundary-Layer Meteorology 88, no. 2 (August 1998): 255–78. http://dx.doi.org/10.1023/a:1001171313493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Trowbridge, John H., and Steven J. Lentz. "The Bottom Boundary Layer." Annual Review of Marine Science 10, no. 1 (January 3, 2018): 397–420. http://dx.doi.org/10.1146/annurev-marine-121916-063351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Arav, Nahum, and Mitchell C. Begelman. "Radiation-viscous boundary layer." Astrophysical Journal 401 (December 1992): 125. http://dx.doi.org/10.1086/172045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Cheskidov, Alexey. "Turbulent boundary layer equations." Comptes Rendus Mathematique 334, no. 5 (January 2002): 423–27. http://dx.doi.org/10.1016/s1631-073x(02)02275-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

BOTTARO, ALESSANDRO. "A ‘receptive’ boundary layer." Journal of Fluid Mechanics 646 (March 8, 2010): 1–4. http://dx.doi.org/10.1017/s0022112009994228.

Full text
Abstract:
Receptivity is the process which describes how environmental disturbances (such as gusts, acoustic waves or wall roughness) are filtered by a boundary layer and turned into downstream-growing waves. It is closely related to the identification of initial conditions for the disturbances and requires knowledge of the characteristics of the specific external forcing field. Without such a knowledge, it makes sense to focus on worst case scenarios and search for those initial states which maximize the disturbance amplitude at a given downstream position, and hence to identify upper bounds on growth rates, which will be useful in predicting the transition to turbulence. This philosophical approach has been taken by Tempelmann, Hanifi & Henningson (J. Fluid Mech., 2010, vol. 646, pp. 5–37) in a remarkably complete parametric study of ‘optimal disturbances’ for a model of the flow over a swept wing; they pinpoint the crucial importance both of the spatial variation of the flow and of non-modal disturbances, even when the flow is ‘supercritical’ and hence subject to classical ‘normal mode’ instabilities.
APA, Harvard, Vancouver, ISO, and other styles
37

Bénech, B. "The atmospheric boundary layer." Atmospheric Research 29, no. 3-4 (May 1993): 286–87. http://dx.doi.org/10.1016/0169-8095(93)90017-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Durand, Pierre. "Atmospheric boundary layer flows." Atmospheric Research 41, no. 2 (July 1996): 177–78. http://dx.doi.org/10.1016/0169-8095(95)00045-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

King, J. C. "The atmospheric boundary layer." Dynamics of Atmospheres and Oceans 18, no. 1-2 (June 1993): 115–16. http://dx.doi.org/10.1016/0377-0265(93)90006-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

De Keyser, J., M. W. Dunlop, C. J. Owen, B. U. Ö. Sonnerup, S. E. Haaland, A. Vaivads, G. Paschmann, R. Lundin, and L. Rezeau. "Magnetopause and Boundary Layer." Space Science Reviews 118, no. 1-4 (June 2005): 231–320. http://dx.doi.org/10.1007/s11214-005-3834-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Simpson, R. L. "Turbulent Boundary-Layer Separation." Annual Review of Fluid Mechanics 21, no. 1 (January 1989): 205–32. http://dx.doi.org/10.1146/annurev.fl.21.010189.001225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wu, Xiaohua, Parviz Moin, and Jean-Pierre Hickey. "Boundary layer bypass transition." Physics of Fluids 26, no. 9 (September 2014): 091104. http://dx.doi.org/10.1063/1.4893454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Xu, Qin, and Wei Gu. "Semigeostrophic Frontal Boundary Layer." Boundary-Layer Meteorology 104, no. 1 (July 2002): 99–110. http://dx.doi.org/10.1023/a:1015565624074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Businger, J. A. "The atmospheric boundary layer." Earth-Science Reviews 34, no. 4 (August 1993): 283–84. http://dx.doi.org/10.1016/0012-8252(93)90069-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hobbs, S. E. "The atmospheric boundary layer." Journal of Atmospheric and Terrestrial Physics 57, no. 3 (March 1995): 322. http://dx.doi.org/10.1016/0021-9169(95)90026-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ostermeyer, Georg-Peter, Thomas Vietor, Michael Müller, David Inkermann, Johannes Otto, and Hendrik Lembeck. "The Boundary Layer Machine." PAMM 17, no. 1 (December 2017): 159–60. http://dx.doi.org/10.1002/pamm.201710049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mahrt, L. "Boundary-layer moisture regimes." Quarterly Journal of the Royal Meteorological Society 117, no. 497 (January 1991): 151–76. http://dx.doi.org/10.1002/qj.49711749708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Smith, Roger K., and Michael T. Montgomery. "Hurricane boundary-layer theory." Quarterly Journal of the Royal Meteorological Society 136, no. 652 (October 2010): 1665–70. http://dx.doi.org/10.1002/qj.679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kuntz, D. W., V. A. Amatucci, and A. L. Addy. "Turbulent boundary-layer properties downstream of the shock-wave/boundary-layer interaction." AIAA Journal 25, no. 5 (May 1987): 668–75. http://dx.doi.org/10.2514/3.9681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

S. S. PARASNIS, M. K. KULKARNI, and J. S. PILLAI. "Simulation of boundary layer parameters using one dimensional atmospheric boundary layer model." Journal of Agrometeorology 3, no. 1-2 (September 1, 2001): 261–66. http://dx.doi.org/10.54386/jam.v3i1-2.411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography