Journal articles on the topic 'Boundary layer'

To see the other types of publications on this topic, follow the link: Boundary layer.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Boundary layer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bösenberg, Jens, and Holger Linné. "Laser remote sensing of the planetary boundary layer." Meteorologische Zeitschrift 11, no. 4 (October 30, 2002): 233–40. http://dx.doi.org/10.1127/0941-2948/2002/0011-0233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chlond, Andreas, and Hartmut Grassl. "The atmospheric boundary layer." Meteorologische Zeitschrift 11, no. 4 (October 30, 2002): 227. http://dx.doi.org/10.1127/0941-2948/2002/0011-0227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holloway, Simon, Hugo Ricketts, and Geraint Vaughan. "Boundary layer temperature measurements of a noctual urban boundary layer." EPJ Web of Conferences 176 (2018): 06004. http://dx.doi.org/10.1051/epjconf/201817606004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A low-power lidar system based in Manchester, United Kingdom has been developed to measure temperature profiles in the nocturnal urban boundary layer. The lidar transmitter uses a 355nm diode-pumped solid state Nd:YAG laser and two narrow-band interference filters in the receiver filter out rotational Raman lines that are dependent on temperature. The spectral response of the lidar is calibrated using a monochromator. Temperature profiles measured by the system are calibrated by comparison to co-located radiosondes.
4

Mamtaz, Farhana, Ahammad Hossain, and Nusrat Sharmin. "Solution of Boundary Layer and Thermal Boundary Layer Equation." Asian Research Journal of Mathematics 11, no. 4 (December 19, 2018): 1–15. http://dx.doi.org/10.9734/arjom/2018/45267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kenyon, Kern E. "Curvature Boundary Layer." Physics Essays 16, no. 1 (March 2003): 74–85. http://dx.doi.org/10.4006/1.3025569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vranková, Andrea, and Milan Palko. "Atmospheric Boundary Layer." Applied Mechanics and Materials 820 (January 2016): 338–44. http://dx.doi.org/10.4028/www.scientific.net/amm.820.338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Atmospheric Boundary Layer (ABL) is the lowest part of the troposphere. The main feature of the Atmospheric Boundary Layer is the turbulent nature of the flow. The thickness of the boundary layer, formed by flowing air friction on the earth’s surface under various conditions move in quite a wide range. ABL is generally defined as being 0.5 km above the surface, although it can extend up to 2 km depending on time and location. The flow properties are most important over the surface of solid objects, which carry out all the reactions between fluid and solid.
7

Müller, Bernhard M. "Boundary‐layer microphone." Journal of the Acoustical Society of America 96, no. 5 (November 1994): 3206. http://dx.doi.org/10.1121/1.411273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Piau, J. M. "Viscoplastic boundary layer." Journal of Non-Newtonian Fluid Mechanics 102, no. 2 (February 2002): 193–218. http://dx.doi.org/10.1016/s0377-0257(01)00178-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fernholz, H. H. "Boundary Layer Theory." European Journal of Mechanics - B/Fluids 20, no. 1 (January 2001): 155–57. http://dx.doi.org/10.1016/s0997-7546(00)01101-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cha, S. S., R. K. Ahluwalia, and K. H. Im. "Boundary layer nucleation." International Journal of Heat and Mass Transfer 32, no. 5 (May 1989): 825–35. http://dx.doi.org/10.1016/0017-9310(89)90231-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bahl, Ravi. "Boundary-layer blowing." AIAA Journal 23, no. 1 (January 1985): 157–58. http://dx.doi.org/10.2514/3.8887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Koizumi, David H. "Boundary layer microphone." Journal of the Acoustical Society of America 113, no. 2 (2003): 683. http://dx.doi.org/10.1121/1.1560240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Schmidt, Axel, and Michael Nickel. "Boundary layer adapter." Journal of the Acoustical Society of America 128, no. 4 (2010): 2252. http://dx.doi.org/10.1121/1.3500761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Garratt, J. R. "Boundary layer climates." Earth-Science Reviews 27, no. 3 (May 1990): 265. http://dx.doi.org/10.1016/0012-8252(90)90005-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Holtslag, Bert. "Preface: GEWEX Atmospheric Boundary-layer Study (GABLS) on Stable Boundary Layers." Boundary-Layer Meteorology 118, no. 2 (February 2006): 243–46. http://dx.doi.org/10.1007/s10546-005-9008-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Donnelly, M. J., O. K. Rediniotis, S. A. Ragab, and D. P. Telionis. "The Interaction of Rolling Vortices With a Turbulent Boundary Layer." Journal of Fluids Engineering 117, no. 4 (December 1, 1995): 564–70. http://dx.doi.org/10.1115/1.2817302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Laser-Doppler velocimetry is employed to measure the periodic field created by releasing spanwise vortices in a turbulent boundary layer. Phase-averaged vorticity and turbulence level contours are estimated and presented. It is found that vortices with diameter of the order of the boundary layer quickly diffuse and disappear while their turbulent kinetic energy spreads uniformly across the entire boundary layer. Larger vortices have a considerably longer life span and in turn feed more vorticity into the boundary layer.
17

Fabian, Peter, Bernhard Rappenglück, Andreas Stohl, Herbert Werner, Martin Winterhalter, Hans Schlager, Paul Stock, et al. "Boundary layer photochemistry during a total solar eclipse." Meteorologische Zeitschrift 10, no. 3 (May 1, 2001): 187–92. http://dx.doi.org/10.1127/0941-2948/2001/0010-0187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Carpenter, D. L., and J. Lemaire. "The Plasmasphere Boundary Layer." Annales Geophysicae 22, no. 12 (December 22, 2004): 4291–98. http://dx.doi.org/10.5194/angeo-22-4291-2004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract. As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities)
19

Iamandi, Constantin, Andrei Georgescu, and Cristian Erbasu. "Atmospheric Boundary Layer Change." International Journal of Fluid Mechanics Research 29, no. 3-4 (2002): 5. http://dx.doi.org/10.1615/interjfluidmechres.v29.i3-4.170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Vranková, Andrea, and Milan Palko. "Atmospheric Boundary Layer Modelling." Applied Mechanics and Materials 820 (January 2016): 351–58. http://dx.doi.org/10.4028/www.scientific.net/amm.820.351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The aim of the paper was to define the input options over the boundary layer, as the entrance boundary conditions for simulation in ANSYS. The boundary layer is designed for use in external aerodynamics of buildings (part of the urban structure) for selected sites occurring in the territory of the Slovak Republic.
21

Donner, L. J. "The atmospheric boundary layer." Eos, Transactions American Geophysical Union 76, no. 17 (1995): 177. http://dx.doi.org/10.1029/95eo00101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hiraoka, H., M. Ohashi, Susumu Kurita, Manabu Kanda, Takashi Karasudani, Hiromasa Ueda, Yuji Ohya, and Takanori Uchida. "TC4 Atmospheric Boundary Layer." Wind Engineers, JAWE 2006, no. 108 (2006): 693–708. http://dx.doi.org/10.5359/jawe.2006.693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

BLOTTNER, F. G. "Chemical Nonequilibrium Boundary Layer." Journal of Spacecraft and Rockets 40, no. 5 (September 2003): 810–18. http://dx.doi.org/10.2514/2.6907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Swain, Mark R., and Hubert Gallée. "Antarctic Boundary Layer Seeing." Publications of the Astronomical Society of the Pacific 118, no. 846 (August 2006): 1190–97. http://dx.doi.org/10.1086/507153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Anderson, John D. "Ludwig Prandtl’s Boundary Layer." Physics Today 58, no. 12 (December 2005): 42–48. http://dx.doi.org/10.1063/1.2169443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kerschen, E. J. "Boundary Layer Receptivity Theory." Applied Mechanics Reviews 43, no. 5S (May 1, 1990): S152—S157. http://dx.doi.org/10.1115/1.3120795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The receptivity mechanisms by which free-stream disturbances generate instability waves in laminar boundary layers are discussed. Free-stream disturbances have wavelengths which are generally much longer than those of instability waves. Hence, the transfer of energy from the free-stream disturbance to the instability wave requires a wavelength conversion mechanism. Recent analyses using asymptotic methods have shown that the wavelength conversion takes place in regions of the boundary layer where the mean flow adjusts on a short streamwise length scale. This paper reviews recent progress in the theoretical understanding of these phenomena.
27

Bridges, Thomas J., and Philip J. Morris. "Boundary layer stability calculations." Physics of Fluids 30, no. 11 (1987): 3351. http://dx.doi.org/10.1063/1.866467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Esplin, G. J. "Boundary Layer Emission Monitoring." JAPCA 38, no. 9 (September 1988): 1158–61. http://dx.doi.org/10.1080/08940630.1988.10466465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mahrt, L. "Nocturnal Boundary-Layer Regimes." Boundary-Layer Meteorology 88, no. 2 (August 1998): 255–78. http://dx.doi.org/10.1023/a:1001171313493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Trowbridge, John H., and Steven J. Lentz. "The Bottom Boundary Layer." Annual Review of Marine Science 10, no. 1 (January 3, 2018): 397–420. http://dx.doi.org/10.1146/annurev-marine-121916-063351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Arav, Nahum, and Mitchell C. Begelman. "Radiation-viscous boundary layer." Astrophysical Journal 401 (December 1992): 125. http://dx.doi.org/10.1086/172045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cheskidov, Alexey. "Turbulent boundary layer equations." Comptes Rendus Mathematique 334, no. 5 (January 2002): 423–27. http://dx.doi.org/10.1016/s1631-073x(02)02275-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

BOTTARO, ALESSANDRO. "A ‘receptive’ boundary layer." Journal of Fluid Mechanics 646 (March 8, 2010): 1–4. http://dx.doi.org/10.1017/s0022112009994228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Receptivity is the process which describes how environmental disturbances (such as gusts, acoustic waves or wall roughness) are filtered by a boundary layer and turned into downstream-growing waves. It is closely related to the identification of initial conditions for the disturbances and requires knowledge of the characteristics of the specific external forcing field. Without such a knowledge, it makes sense to focus on worst case scenarios and search for those initial states which maximize the disturbance amplitude at a given downstream position, and hence to identify upper bounds on growth rates, which will be useful in predicting the transition to turbulence. This philosophical approach has been taken by Tempelmann, Hanifi & Henningson (J. Fluid Mech., 2010, vol. 646, pp. 5–37) in a remarkably complete parametric study of ‘optimal disturbances’ for a model of the flow over a swept wing; they pinpoint the crucial importance both of the spatial variation of the flow and of non-modal disturbances, even when the flow is ‘supercritical’ and hence subject to classical ‘normal mode’ instabilities.
34

Bénech, B. "The atmospheric boundary layer." Atmospheric Research 29, no. 3-4 (May 1993): 286–87. http://dx.doi.org/10.1016/0169-8095(93)90017-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Durand, Pierre. "Atmospheric boundary layer flows." Atmospheric Research 41, no. 2 (July 1996): 177–78. http://dx.doi.org/10.1016/0169-8095(95)00045-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

King, J. C. "The atmospheric boundary layer." Dynamics of Atmospheres and Oceans 18, no. 1-2 (June 1993): 115–16. http://dx.doi.org/10.1016/0377-0265(93)90006-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

De Keyser, J., M. W. Dunlop, C. J. Owen, B. U. Ö. Sonnerup, S. E. Haaland, A. Vaivads, G. Paschmann, R. Lundin, and L. Rezeau. "Magnetopause and Boundary Layer." Space Science Reviews 118, no. 1-4 (June 2005): 231–320. http://dx.doi.org/10.1007/s11214-005-3834-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Simpson, R. L. "Turbulent Boundary-Layer Separation." Annual Review of Fluid Mechanics 21, no. 1 (January 1989): 205–32. http://dx.doi.org/10.1146/annurev.fl.21.010189.001225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wu, Xiaohua, Parviz Moin, and Jean-Pierre Hickey. "Boundary layer bypass transition." Physics of Fluids 26, no. 9 (September 2014): 091104. http://dx.doi.org/10.1063/1.4893454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Xu, Qin, and Wei Gu. "Semigeostrophic Frontal Boundary Layer." Boundary-Layer Meteorology 104, no. 1 (July 2002): 99–110. http://dx.doi.org/10.1023/a:1015565624074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Businger, J. A. "The atmospheric boundary layer." Earth-Science Reviews 34, no. 4 (August 1993): 283–84. http://dx.doi.org/10.1016/0012-8252(93)90069-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hobbs, S. E. "The atmospheric boundary layer." Journal of Atmospheric and Terrestrial Physics 57, no. 3 (March 1995): 322. http://dx.doi.org/10.1016/0021-9169(95)90026-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ostermeyer, Georg-Peter, Thomas Vietor, Michael Müller, David Inkermann, Johannes Otto, and Hendrik Lembeck. "The Boundary Layer Machine." PAMM 17, no. 1 (December 2017): 159–60. http://dx.doi.org/10.1002/pamm.201710049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mahrt, L. "Boundary-layer moisture regimes." Quarterly Journal of the Royal Meteorological Society 117, no. 497 (January 1991): 151–76. http://dx.doi.org/10.1002/qj.49711749708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Smith, Roger K., and Michael T. Montgomery. "Hurricane boundary-layer theory." Quarterly Journal of the Royal Meteorological Society 136, no. 652 (October 2010): 1665–70. http://dx.doi.org/10.1002/qj.679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kuntz, D. W., V. A. Amatucci, and A. L. Addy. "Turbulent boundary-layer properties downstream of the shock-wave/boundary-layer interaction." AIAA Journal 25, no. 5 (May 1987): 668–75. http://dx.doi.org/10.2514/3.9681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

S. S. PARASNIS, M. K. KULKARNI, and J. S. PILLAI. "Simulation of boundary layer parameters using one dimensional atmospheric boundary layer model." Journal of Agrometeorology 3, no. 1-2 (September 1, 2001): 261–66. http://dx.doi.org/10.54386/jam.v3i1-2.411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Manisha Patel, Hema Surati, and M. G. Timol. "Extension of Blasius Newtonian Boundary Layer to Blasius Non-Newtonian Boundary Layer." Mathematical Journal of Interdisciplinary Sciences 9, no. 2 (June 8, 2021): 35–41. http://dx.doi.org/10.15415/mjis.2021.92004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Blasius equation is very well known and it aries in many boundary layer problems of fluid dynamics. In this present article, the Blasius boundary layer is extended by transforming the stress strain term from Newtonian to non-Newtonian. The extension of Blasius boundary layer is discussed using some non-newtonian fluid models like, Power-law model, Sisko model and Prandtl model. The Generalised governing partial differential equations for Blasius boundary layer for all above three models are transformed into the non-linear ordinary differewntial equations using the one parameter deductive group theory technique. The obtained similarity solutions are then solved numerically. The graphical presentation is also explained for the same. It concludes that velocity increases more rapidly when fluid index is moving from shear thickninhg to shear thininhg fluid.MSC 2020 No.: 76A05, 76D10, 76M99
49

Peridier, Vallorie J., F. T. Smith, and J. D. A. Walker. "Vortex-induced boundary-layer separation. Part 2. Unsteady interacting boundary-layer theory." Journal of Fluid Mechanics 232, no. -1 (November 1991): 133. http://dx.doi.org/10.1017/s0022112091003658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Angevine, Wayne M., Allen B. White, and S. K. Avery. "Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler." Boundary-Layer Meteorology 68, no. 4 (March 1994): 375–85. http://dx.doi.org/10.1007/bf00706797.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography