Journal articles on the topic 'Boundary value problem of thermoelasticity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Boundary value problem of thermoelasticity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
YAKUBOV, YAKOV. "COMPLETENESS OF ROOT FUNCTIONS AND ELEMENTARY SOLUTIONS OF THE THERMOELASTICITY SYSTEM." Mathematical Models and Methods in Applied Sciences 05, no. 05 (1995): 587–98. http://dx.doi.org/10.1142/s0218202595000346.
Full textKhaldjigitov, Abduvali, Umidjon Djumayozov, Zebo Khasanova, and Robiya Rakhmonova. "Study on coupled problems of thermoelasticity in Strains." E3S Web of Conferences 497 (2024): 02008. http://dx.doi.org/10.1051/e3sconf/202449702008.
Full textDjumayozov, Umidjon, and Nigora Eshmanova. "Coupled Problem on Thermo-Elasticity in Strains for an Isotropic Parallelepiped." E3S Web of Conferences 497 (2024): 02016. http://dx.doi.org/10.1051/e3sconf/202449702016.
Full textKhaldjigitov, Abduvali, Umidjon Djumayozov, Zebo Khasanova, and Robiya Rakhmonova. "Numerical Solution of the Plane Problem of Thermo-Elasticity in Strains." E3S Web of Conferences 563 (2024): 02019. http://dx.doi.org/10.1051/e3sconf/202456302019.
Full textBelova, M. M., V. M. Goncharenko, and S. S. Protsenko. "Numerical method for solving a boundary-value problem of thermoelasticity." Journal of Soviet Mathematics 58, no. 5 (1992): 443–46. http://dx.doi.org/10.1007/bf01100071.
Full textRacke, Reinhard. "On the time-asymptotic behaviour of solutions in thermoelasticity." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 107, no. 3-4 (1987): 289–98. http://dx.doi.org/10.1017/s0308210500031164.
Full textBitsadze, Lamara. "Boundary Value Problems of Thermoelasticity for Porous Sphere and for A Space with Spherical Cavity." Brilliant Engineering 3, no. 1 (2021): 1–10. http://dx.doi.org/10.36937/ben.2022.4501.
Full textYuqiu, Zhao. "On plane displacement boundary value problem of quasi–static linear thermoelasticity." Applicable Analysis 56, no. 1-2 (1995): 117–29. http://dx.doi.org/10.1080/00036819508840314.
Full textPodil'chuk, Yu N., and A. M. Kirichenko. "Boundary-value problem of thermoelasticity in displacements for an elongated spheroid." Journal of Soviet Mathematics 66, no. 3 (1993): 2299–306. http://dx.doi.org/10.1007/bf01229600.
Full textJiang, Song. "Global existence of smooth solutions in one-dimensional nonlinear thermoelasticity." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 115, no. 3-4 (1990): 257–74. http://dx.doi.org/10.1017/s0308210500020631.
Full textBurchuladze, T., and Yu Bezhuashvili. "Three-Dimensional Boundary Value Problems of Elastothermodiffusion with Mixed Boundary Conditions." gmj 4, no. 3 (1997): 243–58. http://dx.doi.org/10.1515/gmj.1997.243.
Full textLychev, S. A., A. V. Manzhirov, and S. V. Joubert. "Closed solutions of boundary-value problems of coupled thermoelasticity." Mechanics of Solids 45, no. 4 (2010): 610–23. http://dx.doi.org/10.3103/s0025654410040102.
Full textChiriţă, Stan. "On the final boundary value problems in linear thermoelasticity." Meccanica 47, no. 8 (2012): 2005–11. http://dx.doi.org/10.1007/s11012-012-9570-1.
Full textZhao, Yuqiu, and Wei Lin. "On the plane stress boundary value problem of quasi-static linear thermoelasticity." Acta Mathematicae Applicatae Sinica 13, no. 4 (1997): 385–94. http://dx.doi.org/10.1007/bf02009547.
Full textJiang, Song. "Rapidly decreasing behaviour of solutions in nonlinear 3-D-thermoelasticity." Bulletin of the Australian Mathematical Society 43, no. 1 (1991): 89–99. http://dx.doi.org/10.1017/s000497270002880x.
Full textLiu, Wensen, X. Markenscoff, and M. Paukshto. "The Cosserat Spectrum Theory in Thermoelasticity and Application to the Problem of Heat Flow Past a Rigid Spherical Inclusion." Journal of Applied Mechanics 65, no. 3 (1998): 614–18. http://dx.doi.org/10.1115/1.2789102.
Full textL., A. Alexeyeva* M. M. Ahmetzhanova. "STATIONARY OSCILLATIONS OF THERMOELASTIC ROD UNDER ACTION OF EXTERNAL DISTURBANCES." Global Journal of Engineering Science and Research Management 5, no. 2 (2018): 33–43. https://doi.org/10.5281/zenodo.1186513.
Full textKhomasuridze, N. "Effective Solution of a Class of Boundary Value Problems of Thermoelasticity in Generalized Cylindrical Coordinates." gmj 11, no. 3 (2004): 495–514. http://dx.doi.org/10.1515/gmj.2004.495.
Full textBurchuladze, T., and D. Burchuladze. "On Three-Dimensional Dynamic Problems of Generalized Thermoelasticity." gmj 5, no. 1 (1998): 25–48. http://dx.doi.org/10.1515/gmj.1998.25.
Full textAlmazmumy, Mariam, Huda Bakodah, Nawal Al-Zaid, Abdelhalim Ebaid, and Randolph Rach. "Approximate analytical solution for 1-D problems of thermoelasticity with dirichlet condition." Thermal Science 23, no. 1 (2019): 255–69. http://dx.doi.org/10.2298/tsci161217032a.
Full textGawinecki, Jerzy August. "Initial-boundary value problem in nonlinear hyperbolic thermoelasticity. Some applications in continuum mechanics." Dissertationes Mathematicae 407 (2002): 1–51. http://dx.doi.org/10.4064/dm407-0-1.
Full textKaliev, I. A., and M. F. Mugafarov. "The third boundary value problem for the system of equations of linear thermoelasticity." Journal of Applied and Industrial Mathematics 2, no. 4 (2008): 501–7. http://dx.doi.org/10.1134/s1990478908040066.
Full textAbramenko, L. E., and V. P. Shevchenko. "The boundary-value problem of thermoelasticity for a spherical shell with local heating." Journal of Mathematical Sciences 84, no. 6 (1997): 1521–24. http://dx.doi.org/10.1007/bf02398813.
Full textFil’shtinskii, Leonid, Marina Synah, and Tetiana Kirichok. "Time-harmonic boundary value problem of coupled thermoelasticity and related integral equations method." International Journal of Mechanical Sciences 115-116 (September 2016): 157–67. http://dx.doi.org/10.1016/j.ijmecsci.2016.06.017.
Full textShlyakhin, D. A., and Zh M. Dauletmuratova. "Non-stationary coupled axisymmetric thermoelasticity problem for a rigidly fixed round plate." PNRPU Mechanics Bulletin, no. 4 (December 15, 2019): 191–200. http://dx.doi.org/10.15593/perm.mech/2019.4.18.
Full textRacke, Reinhard. "Initial boundary value problems in one-dimensional non-linear thermoelasticity." Mathematical Methods in the Applied Sciences 10, no. 5 (1988): 517–29. http://dx.doi.org/10.1002/mma.1670100503.
Full textKhomasuridze, N. G. "A Class of Three-Dimensional Boundary-Value Problems of Thermoelasticity." International Applied Mechanics 41, no. 9 (2005): 1076–83. http://dx.doi.org/10.1007/s10778-006-0015-1.
Full textSvanadze, Merab. "Boundary Value Problems of the Theory of Thermoelasticity with Microtemperatures." PAMM 3, no. 1 (2003): 188–89. http://dx.doi.org/10.1002/pamm.200310368.
Full textAilawalia, Praveen, and Suman Choudhary. "One-dimensional thermal shock problem for a semi-infinite semiconducting rod with hydrostatic initial stress." Structural Integrity and Life 25, no. 1 (2025): 60–65. https://doi.org/10.69644/ivk-2025-01-0060.
Full textMarin, Marin, and Sorin Vlase. "Effect of internal state variables in thermoelasticity of microstretch bodies." Analele Universitatii "Ovidius" Constanta - Seria Matematica 24, no. 3 (2016): 241–57. http://dx.doi.org/10.1515/auom-2016-0057.
Full textDuduchava, R., D. Natroshvili, and E. Shargorodsky. "Basic Boundary Value Problems of Thermoelasticity for Anisotropic Bodies with Cuts. II." gmj 2, no. 3 (1995): 259–76. http://dx.doi.org/10.1515/gmj.1995.259.
Full textShivay, Om N., and Santwana Mukhopadhyay. "Some basic theorems on a recent model of linear thermoelasticity for a homogeneous and isotropic medium." Mathematics and Mechanics of Solids 24, no. 8 (2018): 2444–57. http://dx.doi.org/10.1177/1081286518762612.
Full textNikabadze, Mikhail U., Armine R. Ulukhanyan, Tamar Moseshvili, Ketevan Tskhakaia, Nodar Mardaleishvili, and Zurab Arkania. "On the Modeling of Five-Layer Thin Prismatic Bodies." Mathematical and Computational Applications 24, no. 3 (2019): 69. http://dx.doi.org/10.3390/mca24030069.
Full textMARIN, M., S. VLASE, I. M. FUDULU, and G. PRECUP. ""On instability in the theory of dipolar bodies with two-temperatures"." Carpathian Journal of Mathematics 38, no. 2 (2022): 459–68. http://dx.doi.org/10.37193/cjm.2022.02.15.
Full textMarin, M., A. Chirilă, L. Codarcea, and S. Vlase. "On vibrations in Green-Naghdi thermoelasticity of dipolar bodies." Analele Universitatii "Ovidius" Constanta - Seria Matematica 27, no. 1 (2019): 125–40. http://dx.doi.org/10.2478/auom-2019-0007.
Full textBitsadze, Lamara. "The Neumann Type Boundary Value Problem in the Theory of Thermoelasticity with Microtemperatures for a Plane with Circular Hole." Journal of Nature, Science & Technology 1, no. 3 (2021): 11–16. http://dx.doi.org/10.36937/janset.2021.003.003.
Full textЛевина, Любовь Владимировна, Виктор Борисович Пеньков, and Евгений Александрович Новиков. "Strict particular solutions of heat conductivity and thermoelasticity problems." Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, no. 1(51) (October 5, 2022): 115–26. http://dx.doi.org/10.37972/chgpu.2022.51.1.011.
Full textMarin, M., and E. M. Craciun. "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials." Composites Part B: Engineering 126 (October 2017): 27–37. http://dx.doi.org/10.1016/j.compositesb.2017.05.063.
Full textSeremet, Victor, Guy Bonnet, and Tatiana Speianu. "New Poisson's Type Integral Formula for Thermoelastic Half-Space." Mathematical Problems in Engineering 2009 (2009): 1–18. http://dx.doi.org/10.1155/2009/284380.
Full textNenakhov, E. V., and E. M. Kartashov. "Estimates of Temperature Stresses in Models of Dynamic Thermoelasticity." Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no. 1 (100) (February 2022): 88–106. http://dx.doi.org/10.18698/1812-3368-2022-1-88-106.
Full textSladek, Jan, Vladimir Sladek, Michael Wünsche, and Choon Lai Tan. "Fracture Mechanics Analysis of Size-Dependent Piezoelectric Solids under a Thermal Load." Key Engineering Materials 754 (September 2017): 165–68. http://dx.doi.org/10.4028/www.scientific.net/kem.754.165.
Full textMarin, M., S. Vlase, and I. M. Fudulu. "A result of instability for two-temperatures Cosserat bodies." Analele Universitatii "Ovidius" Constanta - Seria Matematica 30, no. 2 (2022): 179–92. https://doi.org/10.2478/auom-2022-0025.
Full textPodil'chuk, Yu N. "Some basic boundary value problems of thermoelasticity for a prolate spheroid." Soviet Applied Mechanics 22, no. 12 (1986): 1141–48. http://dx.doi.org/10.1007/bf01375811.
Full textBitsadze, L., and George Jaiani. "Some basic boundary value problems of the plane thermoelasticity with microtemperatures." Mathematical Methods in the Applied Sciences 36, no. 8 (2012): 956–66. http://dx.doi.org/10.1002/mma.2652.
Full textGawinecki, J. A. "Initial-boundary value problems in linear and nonlinear hyperbolic thermoelasticity theory." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 78, S3 (1998): 911–12. http://dx.doi.org/10.1002/zamm.19980781528.
Full textAlekseyeva, L. A., A. N. Dadayeva, and N. B. Zhanbyrbayev. "The method of boundary integral equations in unsteady boundary-value problems of uncoupled thermoelasticity." Journal of Applied Mathematics and Mechanics 63, no. 5 (1999): 803–8. http://dx.doi.org/10.1016/s0021-8928(99)00101-x.
Full textDuduchava, R., D. Natroshvili, and E. Shargorodsky. "Basic Boundary Value Problems of Thermoelasticity for Anisotropic Bodies with Cuts. I." gmj 2, no. 2 (1995): 123–40. http://dx.doi.org/10.1515/gmj.1995.123.
Full textKhusainov, Denys Ya, and Michael Pokojovy. "Solving the Linear 1D Thermoelasticity Equations with Pure Delay." International Journal of Mathematics and Mathematical Sciences 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/479267.
Full textKharashvili, Maia, and Ketevan Skhvitaridze. "Problem of Statics of the Linear Thermoelasticity of the Microstretch Materials with Microtemperatures for a Half-space." Works of Georgian Technical University, no. 2(520) (June 25, 2021): 202–19. http://dx.doi.org/10.36073/1512-0996-2021-2-202-219.
Full textFeng, Yongping, and Junzhi Cui. "Multi-Scale and Finite Element Analysis of the Mixed Boundary Value Problem in a Perforated Domain under Coupled Thermoelasticity." Advanced Materials Research 9 (September 2005): 153–62. http://dx.doi.org/10.4028/www.scientific.net/amr.9.153.
Full text