To see the other types of publications on this topic, follow the link: Boundary value problems.

Journal articles on the topic 'Boundary value problems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Boundary value problems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kannan, R., and Rafael Ortega. "Superlinear elliptic boundary value problems." Czechoslovak Mathematical Journal 37, no. 3 (1987): 386–99. http://dx.doi.org/10.21136/cmj.1987.102166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Šeda, Valter. "Generalized boundary value problems with linear growth." Mathematica Bohemica 123, no. 4 (1998): 385–404. http://dx.doi.org/10.21136/mb.1998.125969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rachůnková, Irena. "Strong singularities in mixed boundary value problems." Mathematica Bohemica 131, no. 4 (2006): 393–409. http://dx.doi.org/10.21136/mb.2006.133975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aliabadi, M. H. "Boundary-value problems." Engineering Analysis with Boundary Elements 10, no. 1 (January 1992): 88. http://dx.doi.org/10.1016/0955-7997(92)90084-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mercy, A. C. "Boundary value problems." Advances in Engineering Software (1978) 7, no. 2 (April 1985): 100. http://dx.doi.org/10.1016/0141-1195(85)90012-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mercy, A. C. "Boundary value problems." Engineering Analysis 2, no. 1 (March 1985): 53. http://dx.doi.org/10.1016/0264-682x(85)90052-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Přikryl, Petr, Jiří Taufer, and Emil Vitásek. "Transfer of conditions for singular boundary value problems." Applications of Mathematics 34, no. 3 (1989): 246–58. http://dx.doi.org/10.21136/am.1989.104351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vlasov, V. I. "HARDY SPACES, APPROXIMATION ISSUES AND BOUNDARY VALUE PROBLEMS." Eurasian Mathematical Journal 9, no. 3 (2018): 85–94. http://dx.doi.org/10.32523/2077-9879-2018-9-3-85-94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Griffel, D. H., and T. A. Bick. "Elementary Boundary Value Problems." Mathematical Gazette 79, no. 484 (March 1995): 229. http://dx.doi.org/10.2307/3620108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Golden, J. M. "Viscoelastic Boundary Value Problems." Irish Mathematical Society Bulletin 0017 (1986): 12–19. http://dx.doi.org/10.33232/bims.0017.12.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

D’Ovidio, Mirko. "Fractional boundary value problems." Fractional Calculus and Applied Analysis 25, no. 1 (February 2022): 29–59. http://dx.doi.org/10.1007/s13540-021-00004-0.

Full text
Abstract:
AbstractWe study some functionals associated with a process driven by a fractional boundary value problem (FBVP for short). By FBVP we mean a Cauchy problem with boundary condition written in terms of a fractional equation, that is an equation involving time-fractional derivative in the sense of Caputo. We focus on lifetimes and additive functionals characterizing the boundary conditions. We show that the corresponding additive functionals are related to the fractional telegraph equations. Moreover, the fractional order of the derivative gives a unified condition including the elastic and the sticky cases among the others.
APA, Harvard, Vancouver, ISO, and other styles
12

Pipher, Jill. "Nonsmooth Boundary Value Problems." Notices of the American Mathematical Society 65, no. 01 (January 1, 2018): 9–10. http://dx.doi.org/10.1090/noti1620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Franco, Daniel, Gennaro Infante, and Feliz Minhós. "Nonlocal boundary value problems." Boundary Value Problems 2012, no. 1 (2012): 23. http://dx.doi.org/10.1186/1687-2770-2012-23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bobisud, L. E., D. O'Regan, and W. D. Royalty. "Singular boundary value problems." Applicable Analysis 23, no. 3 (December 1986): 233–43. http://dx.doi.org/10.1080/00036818608839643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chang, Der-Chen, Tao Qian, and Bert-Wolfgang Schulze. "Corner Boundary Value Problems." Complex Analysis and Operator Theory 9, no. 5 (November 22, 2014): 1157–210. http://dx.doi.org/10.1007/s11785-014-0424-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mahmoudi, M. Hedayat, and B. W. Schulze. "Corner boundary value problems." Asian-European Journal of Mathematics 10, no. 01 (March 2017): 1750054. http://dx.doi.org/10.1142/s1793557117500541.

Full text
Abstract:
The paper develops some crucial steps in extending the first-order cone or edge calculus to higher singularity orders. We focus here on order 2, but the ideas are motivated by an iterative approach for higher singularities.
APA, Harvard, Vancouver, ISO, and other styles
17

Papageorgiou, Nikolaos S., and Nikolaos Yannakakis. "Nonlinear boundary value problems." Proceedings Mathematical Sciences 109, no. 2 (May 1999): 211–30. http://dx.doi.org/10.1007/bf02841535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

El Tawil, Magdy A. "Nonhomogeneous Boundary Value Problems." Journal of Mathematical Analysis and Applications 200, no. 1 (May 1996): 53–65. http://dx.doi.org/10.1006/jmaa.1996.0190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Graef, John R., Lingju Kong, Qingkai Kong, and Bo Yang. "Second order boundary value problems with sign-changing nonlinearities and nonhomogeneous boundary conditions." Mathematica Bohemica 136, no. 4 (2011): 337–56. http://dx.doi.org/10.21136/mb.2011.141693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bruk, V. M. "BOUNDARY VALUE PROBLEMS FOR INTEGRAL EQUATIONS WITH OPERATOR MEASURES." Issues of Analysis 24, no. 1 (June 2017): 19–40. http://dx.doi.org/10.15393/j3.art.2017.3810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Luca, Rodica. "On a class of $m$-point boundary value problems." Mathematica Bohemica 137, no. 2 (2012): 187–94. http://dx.doi.org/10.21136/mb.2012.142864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Domoshnitsky, Alexander. "Positivity of Green's matrix of nonlocal boundary value problems." Mathematica Bohemica 139, no. 4 (2014): 621–38. http://dx.doi.org/10.21136/mb.2014.144139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kufner, Alois, and Salvatore Leonardi. "Solvability of degenerate elliptic boundary value problems: another approach." Mathematica Bohemica 119, no. 3 (1994): 255–74. http://dx.doi.org/10.21136/mb.1994.126167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Drábek, Pavel. "On Fredholm alternative for certain quasilinear boundary value problems." Mathematica Bohemica 127, no. 2 (2002): 197–202. http://dx.doi.org/10.21136/mb.2002.134157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Anichini, G., and G. Conti. "Boundary-value problems with nonlinear boundary conditions." Nonlinearity 1, no. 4 (November 1, 1988): 531–40. http://dx.doi.org/10.1088/0951-7715/1/4/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Karakostas, G. L., and P. K. Palamides. "Boundary Value Problems with Compatible Boundary Conditions." Czechoslovak Mathematical Journal 55, no. 3 (September 2005): 581–92. http://dx.doi.org/10.1007/s10587-005-0047-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Denk, Robert, David Ploß, Sophia Rau, and Jörg Seiler. "Boundary value problems with rough boundary data." Journal of Differential Equations 366 (September 2023): 85–131. http://dx.doi.org/10.1016/j.jde.2023.04.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Il'yasov, Yavdat Shavkatovich, and Nurmukhamet Fuatovich Valeev. "On inverse spectral problem and generalized Sturm nodal theorem for nonlinear boundary value problems." Ufimskii Matematicheskii Zhurnal 10, no. 4 (2018): 122–28. http://dx.doi.org/10.13108/2018-10-4-122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pasic, H. "Multipoint Boundary-Value Solution of Two-Point Boundary-Value Problems." Journal of Optimization Theory and Applications 100, no. 2 (February 1999): 397–416. http://dx.doi.org/10.1023/a:1021742521630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bader, Ralf, and Nikolaos S. Papageorgiou. "Nonlinear multivalued boundary value problems." Discussiones Mathematicae. Differential Inclusions, Control and Optimization 21, no. 1 (2001): 127. http://dx.doi.org/10.7151/dmdico.1020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Santiago, R. Simanca. "Mixed elliptic boundary value problems." Communications in Partial Differential Equations 12, no. 2 (January 1987): 123–200. http://dx.doi.org/10.1080/03605308708820487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Karakas, H. I., V. B. Shakhmupov, and S. Yakubov. "Degenerate elliptic boundary value problems." Applicable Analysis 60, no. 1-2 (February 1996): 155–74. http://dx.doi.org/10.1080/00036819608840424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Belinskiy, B. P. "Boundary value contact acoustic problems." Applicable Analysis 68, no. 1-2 (February 1998): 51–73. http://dx.doi.org/10.1080/00036819808840621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lemmert, R., and W. Walter. "Singular nonlinear boundary value problems." Applicable Analysis 72, no. 1-2 (February 1999): 191–203. http://dx.doi.org/10.1080/00036819908840737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Agarwal, R. P., and D. O'regan. "Singular discrete boundary value problems." Applied Mathematics Letters 12, no. 4 (May 1999): 127–31. http://dx.doi.org/10.1016/s0893-9659(99)00047-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Agarwal, R. P., and D. O'Regan. "Discrete conjugate boundary value problems." Applied Mathematics Letters 13, no. 2 (February 2000): 97–104. http://dx.doi.org/10.1016/s0893-9659(99)00171-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Agarwal, Ravi P., and Donal O'Regan. "Nonpositone discrete boundary value problems." Nonlinear Analysis: Theory, Methods & Applications 39, no. 2 (January 2000): 207–15. http://dx.doi.org/10.1016/s0362-546x(98)00183-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Staněk, Svatoslav. "Singular nonlocal boundary value problems." Nonlinear Analysis: Theory, Methods & Applications 63, no. 5-7 (November 2005): e277-e287. http://dx.doi.org/10.1016/j.na.2004.09.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kelley, W. "Asymptotically singular boundary value problems." Mathematical and Computer Modelling 32, no. 5-6 (September 2000): 541–48. http://dx.doi.org/10.1016/s0895-7177(00)00151-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Agarwal, Ravi P., and Donal O'Regan. "Discrete focal boundary-value problems." Proceedings of the Edinburgh Mathematical Society 43, no. 1 (February 2000): 155–65. http://dx.doi.org/10.1017/s0013091500020770.

Full text
Abstract:
AbstractIn this paper we shall employ the nonlinear alternative of Leray–Schauder and known sign properties of a related Green's function to establish the existence results for the nth-order discrete focal boundary-value problem. Both the singular and non-singular cases will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
41

Schechter, Martin. "Superlinear elliptic boundary value problems." Manuscripta Mathematica 86, no. 1 (December 1995): 253–65. http://dx.doi.org/10.1007/bf02567993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Skubachevskii, A. L. "Nonclassical boundary-value problems. I." Journal of Mathematical Sciences 155, no. 2 (October 31, 2008): 199–334. http://dx.doi.org/10.1007/s10958-008-9218-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Skubachevskii, A. L. "Nonclassical boundary-value problems. II." Journal of Mathematical Sciences 166, no. 4 (April 2010): 377–561. http://dx.doi.org/10.1007/s10958-010-9873-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Boichuk, O. A., and L. M. Shehda. "Degenerate Fredholm boundary-value problems." Nonlinear Oscillations 10, no. 3 (July 2007): 306–14. http://dx.doi.org/10.1007/s11072-007-0024-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Khabibullin, I. T. "Integrable initial-boundary-value problems." Theoretical and Mathematical Physics 86, no. 1 (January 1991): 28–36. http://dx.doi.org/10.1007/bf01018494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Freiling, Gerhard. "Irregular Boundary Value Problems Revisited." Results in Mathematics 62, no. 3-4 (August 14, 2012): 265–94. http://dx.doi.org/10.1007/s00025-012-0281-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Li, Weifeng, and Jinyuan Du. "Linear conjugate boundary value problems." Wuhan University Journal of Natural Sciences 12, no. 6 (November 2007): 985–91. http://dx.doi.org/10.1007/s11859-007-0037-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Palencia, C., and I. Alonso Mallo. "Abstract initial boundary value problems." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 124, no. 5 (1994): 879–908. http://dx.doi.org/10.1017/s0308210500022393.

Full text
Abstract:
We consider abstract initial boundary value problems in a spirit similar to that of the classical theory of linear semigroups. We assume that the solution u at time t is given by u(t) = S(t) ξ + V(t)g, where ξ and g are respectively the initial and boundary data and S(t) and V(t) are linear operators. We take as a departing point the functional equations satisfied by the propagators S and V. We discuss conditions under which a pair (S, V) describes the solution of an abstract differential initial boundary value problem. Several examples are provided of parabolic and hyperbolic problems that can be accommodated within the abstract theory. We study the backward Euler's method for the time integration of the problems considered.
APA, Harvard, Vancouver, ISO, and other styles
49

Boucherif, Abdelkader. "Nonlinear multipoint boundary value problems." Nonlinear Analysis: Theory, Methods & Applications 10, no. 9 (January 1986): 957–64. http://dx.doi.org/10.1016/0362-546x(86)90081-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

de Brito, Eliana Henriques. "Nonlinear initial-boundary value problems." Nonlinear Analysis: Theory, Methods & Applications 11, no. 1 (January 1987): 125–37. http://dx.doi.org/10.1016/0362-546x(87)90031-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography