Dissertations / Theses on the topic 'Box counting fractal dimension'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 18 dissertations / theses for your research on the topic 'Box counting fractal dimension.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Brandão, Daniela Teresa Quaresma Santos. "Dimensões fractais e dimensão de correlação." Master's thesis, Universidade de Évora, 2008. http://hdl.handle.net/10174/17740.
Full textSimonini, Marina. "Fractal sets and their applications in medicine." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8763/.
Full textHUANG, KUAN-YU. "Fractal or Scaling Analysis of Natural Cities Extracted from Open Geographic Data Sources." Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-19386.
Full textBerlinkov, Artemi. "Dimensions in Random Constructions." Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3160/.
Full textLe, Huy. "Numerické metody měření fraktálních dimenzí a fraktálních měr." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417160.
Full textDathe, Annette. "Digitale Bildanalyse zur Messung fraktaler Eigenschaften der Bodenstruktur." Doctoral thesis, [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=965898083.
Full textLeifsson, Patrik. "Fractal sets and dimensions." Thesis, Linköping University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7320.
Full textFractal analysis is an important tool when we need to study geometrical objects less regular than ordinary ones, e.g. a set with a non-integer dimension value. It has developed intensively over the last 30 years which gives a hint to its young age as a branch within mathematics.
In this thesis we take a look at some basic measure theory needed to introduce certain definitions of fractal dimensions, which can be used to measure a set's fractal degree. Comparisons of these definitions are done and we investigate when they coincide. With these tools different fractals are studied and compared.
A key idea in this thesis has been to sum up different names and definitions referring to similar concepts.
Fraser, Jonathan M. "Dimension theory and fractal constructions based on self-affine carpets." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3869.
Full textWang, Nancy. "Fractal Sets: Dynamical, Dimensional and Topological Properties." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233147.
Full textFraktaler är ett relativt nytt ämne inom matematik som fick sitt stora genomslag först efter 60-talet. En fraktal är ett självliknande mönster med struktur i alla skalor. Några vardagliga exempel på fraktaler är spiralkaktus, romanescobroccoli, mänskliga hjärnan, blodkärlen och Sveriges fastlandskust. Bråktalsdimension är en typ av dimension där dimensionsindexet tillåts att anta alla icke-negativa reella tal. Inom fraktalgeometri kan dimensionsindexet betraktas som ett komplexitetsindex av mönstret med avseende på hur den lokala geometrin förändras beroende på vilken skala mönstret betraktas i. Under det senaste decenniet har fraktalanalysen använts alltmer flitigt inom tekniska och vetenskapliga tillämpningar. Bland annat har fraktalanalysen använts i signal- och bildkompression, dator- och videoformgivning, neurovetenskap och fraktalbaserad cancerdiagnos. Denna studie består av två huvuddelar. Den första delen fokuserar på att förstår hur en fraktal kan uppstå i ett kaotiskt dynamiskt system. För att vara mer specifik studerades den logistiska funktionen och hur denna ickelinjära avbildning genererar en oregelbunden Cantormängd på intervalet [0,1]. Vidare, för att förstå den oregelbundna Cantormängden studerades Cantormängden (eng. the Cantor Middle-Thirds set) och de generaliserade Cantormängderna, vilka alla har noll längd. För att kunna jämföra de olika Cantormängderna med avseende på storlek, leds denna studie vidare till dimensionsanalys av fraktaler som är huvudämnet i den andra delen av denna studie. Olika topologiska fraktaler presenterades, tre olika definitioner av dimension introducerades, bland annat lådräkningsdimensionen och Hausdorffdimensionen. Slutligen approximerades dimensionen av den oregelbundna Cantormängden med hjälp av Hausdorffdimensionen. Denna studie demonstrerar att Hausdorffdimensionen har större omfattning och mer flexibilitet för fraktalstudier.
Sant'anna, Douglas Azevedo. "Derivadas fracionárias, funções contínuas não diferenciáveis e dimensões." reponame:Repositório Institucional da UFABC, 2009.
Find full textNedvěd, Jiří. "Zpracování genomických signálů fraktály." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219634.
Full textFuhrmann, G., M. Gröger, and T. Jäger. "Non-smooth saddle-node bifurcations II: Dimensions of strange attractors." Cambridge University Press, 2018. https://tud.qucosa.de/id/qucosa%3A70708.
Full textGrierson, Greg Michael Jr. "Analysis of Amur honeysuckle Stem Density as a Function of Spatial Clustering, Horizontal Distance from Streams, Trails, and Elevation in Riparian Forests, Greene County, Ohio." Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1621942350540022.
Full textArcher, Kassie. "Box-counting dimension and beyond /." 2009. http://hdl.handle.net/10288/1259.
Full textLiao, Yu-Jie, and 廖昱杰. "Vessel Box Counting Dimension of Chicken Chorioallantoic Image." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/89613802283699986031.
Full text國立中興大學
資訊管理學系所
104
Cancer has been the leading first of - first ten causes of death in humans in the past ten years. Many researchers have invested in the cancer experiments in order to find the cure for cancer. Because cancer cells have to rely on oxygen and nutrients in biological vessel to survive, researchers usually need small animals for experimental sample (for example: rabbits, mouses, etc ….), put cancer cells into the small animals’ bodies to make them infected, inject the experimental drug and observe the changes in blood vessels to determine whether the experimental drug against cancer effectively. In recent years, the cost of animal samples becomes increase. Moreover, the animals must be dissected in the experiments, The processing of animal experiments is very troublesome. However, the chicken chorioallantoic membrane grows faster, the price is cheaper, and it is easy to observe the results immediately. Chicken chorioallantoic membrane which has vascular structure is suited to replace other animal samples. Due to the large quantity of samples, the researchers needs to takes a lot of time on viewing the results of the reaction to judge good or bad results. Therefore we proposed a technology to determine the results of the chicken chorioallantoic membrane. This technology can be divided into two parts: non-yolk and yolk region segmentation and vessel segmentation in yolk region. In the first part, we use R, G, B three kinds of gray scale to let the boundary between non-yolk and yolk region more obvious. Then, Local Cross Thresholding is used to segment non-yolk and yolk region. In the second part, Run-Length is used to make blood vessels in the yolk region more obvious and Local Cross Thresholding is used to segment vessels in yolk region. Because there is noise after blood vessels were segmented, we use Opening to divide them, and Thinning and Region Labeling to remove the noise. We use Box Counting Dimension (BCD) to determine the density of blood vessels. Then, BCD values of Ground Truth, propose methods and artificial blood vessels judgment method are calculated. According to the experimental results, BCD values of the proposed method are close to those of Ground Truth. The proposed method has better results.
Wang, Shih-Chieh, and 王世杰. "An Iris Recognition System Based on Fractal Analysis Using Entropy-Box-Counting Method." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/25837290551313309088.
Full text中興大學
資訊科學系所
95
In this thesis, we propose a new method of fractal analysis using entropy-box-counting (EBC) for automatic iris recognition. First, the annular iris image is normalized into a rectangular iris image and divided into forty-eight blocks. We calculate the fractal dimension values for these image blocks and then concatenate all these features together as the iris feature vector. The similarity of two irises can be measured by the spatial distance. We use the Minimum Distance Classifier (MDC) to determine whether two irises belong to the same class. Experimental results show that the recognition rate is 97.69% and the equal error rate is 11.57% for the images in CASIA database.
Wen-Chau, Wu, and 吳文超. "Limitations of box counting fractal analysis on digital images using automated computer analysis: Examples on biomedical applications." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/00484063358868564845.
Full text國立臺灣大學
電機工程學研究所
91
Morphometric analysis is important in the assistance of differential diagnoses in histopathology. However, for morphologically complicated biological structures, description of texture using conventional Euclidean geometry has been difficult because the estimation of shape parameters such as area or perimeter may vary significantly with the magnification at which the specimen examinations are performed. Examples include colorectal polyps, epithelial lesions in the oral cavity, breast cancer on mammograms, or tumor vasculature. The search for an objective means to reliably quantify complicated cell or tissue morphology is thus an active field of research development. Recently, fractal analyses seem to gain on influence in quantifying the degree of cell complexity that may have been altered during certain pathological processes. Among many existing tools for fractal analysis, the box counting algorithm is frequently used in biological science to obtain the fractal dimension, a parameter that describes the extent of the space-filling property. Previous studies have demonstrated that the box counting fractal dimension is a helpful diagnostic discriminant in various diseases. However, there lacks a theoretical essence providing the linkage between this abstract mathematical parameter and the pathological meanings. A significant number of controversies hence exist in the literature, which warrants the necessity of further investigations. The goal of this study was to explore, using examinations on illustrative objects of known geometry, the physical implications of the box counting fractal dimension. In particular, the fractal dimensions computed using box counting on single objects were compared with the results on an ensemble of the same objects. An explanation was provided for our findings in this study, and the consequent implications were addressed. Some of the inherent characteristics demanding cautions when using this method on digitized images were also discussed.
Lavoie, François. "Écoulements granulaires par avalanches : indices de fluidité, fractales et multifractales." Thèse, 2004. http://hdl.handle.net/1866/15619.
Full text