To see the other types of publications on this topic, follow the link: Box counting fractal dimension.

Dissertations / Theses on the topic 'Box counting fractal dimension'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 dissertations / theses for your research on the topic 'Box counting fractal dimension.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Brandão, Daniela Teresa Quaresma Santos. "Dimensões fractais e dimensão de correlação." Master's thesis, Universidade de Évora, 2008. http://hdl.handle.net/10174/17740.

Full text
Abstract:
O objetivo deste trabalho é o estudo da dimensão fractal, nomeadamente a dimensão de Hausdorff, dimensão de capacidade e dimensão de correlação, relacionando-as e efetuando o cálculo em alguns exemplos. Sempre que se considera indispensável, são apresentadas noções introdutórias para uma melhor compreensão dos conceitos analisados. O Capítulo 2 é dedicado ao estudo da dimensão de Hausdorff, introduzindo, previamente, uma noção de medida, de Hausdorff. No Capítulo 3 analisamos a dimensão de capacidade, suas propriedades e inconvenientes, relacionando, no final, esta dimensão com a dimensão de Hausdorff. O Capítulo 4 estuda técnicas para calcular dimensões. São estudados subconjuntos de medida. Finita, sistemas de funções iteradas, conjuntos auto-semelhantes e auto-afins e dimensões de gráficos. O Capítulo 5 é dedicado à dimensão de correlação. Estuda o expoente de correlação  Introduzido por Grassberger e Procaccia. São analisadas funções de dimensão 1 e no plano. Terminamos com o estudo de séries temporais de variável única. ABSTRACT: The aim of this work is the study of the fractal dimension, namely the Hausdorff dimension, the box-counting dimension and the correlation dimension, relating and computing them in some examples. Everytime it is necessary we introduce the basic concepts to a better understanding of the concepts analysed in this work. Chapter 2 is dedicated to the study of the Hausdorff dimension, introducing first the notion of Hausdorff measure. Chapter 3 is concerned with the box-counting dimension, its properties and problems. Then we relate this dimension With Hausdorff dimension studied in Chapter 2. Chapter 4 is dedicated to the techniques for calculating dimensions. We study subsets of finite measure, iterated function schemes, self-similar and self-affine sets and dimensions of graphs. Finally, in Chapter 5 we present the correlation dimension. We study the correlation exponent, introduced by Grassberger and Procaccia. We finish this Chapter with a study of single-variable time series.
APA, Harvard, Vancouver, ISO, and other styles
2

Simonini, Marina. "Fractal sets and their applications in medicine." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8763/.

Full text
Abstract:
La geometria euclidea risulta spesso inadeguata a descrivere le forme della natura. I Frattali, oggetti interrotti e irregolari, come indica il nome stesso, sono più adatti a rappresentare la forma frastagliata delle linee costiere o altri elementi naturali. Lo strumento necessario per studiare rigorosamente i frattali sono i teoremi riguardanti la misura di Hausdorff, con i quali possono definirsi gli s-sets, dove s è la dimensione di Hausdorff. Se s non è intero, l'insieme in gioco può riconoscersi come frattale e non presenta tangenti e densità in quasi nessun punto. I frattali più classici, come gli insiemi di Cantor, Koch e Sierpinski, presentano anche la proprietà di auto-similarità e la dimensione di similitudine viene a coincidere con quella di Hausdorff. Una tecnica basata sulla dimensione frattale, detta box-counting, interviene in applicazioni bio-mediche e risulta utile per studiare le placche senili di varie specie di mammiferi tra cui l'uomo o anche per distinguere un melanoma maligno da una diversa lesione della cute.
APA, Harvard, Vancouver, ISO, and other styles
3

HUANG, KUAN-YU. "Fractal or Scaling Analysis of Natural Cities Extracted from Open Geographic Data Sources." Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-19386.

Full text
Abstract:
A city consists of many elements such as humans, buildings, and roads. The complexity of cities is difficult to measure using Euclidean geometry. In this study, we use fractal geometry (scaling analysis) to measure the complexity of urban areas. We observe urban development from different perspectives using the bottom-up approach. In a bottom-up approach, we observe an urban region from a basic to higher level from our daily life perspective to an overall view. Furthermore, an urban environment is not constant, but it is complex; cities with greater complexity are more prosperous. There are many disciplines that analyze changes in the Earth’s surface, such as urban planning, detection of melting ice, and deforestation management. Moreover, these disciplines can take advantage of remote sensing for research. This study not only uses satellite imaging to analyze urban areas but also uses check-in and points of interest (POI) data. It uses straightforward means to observe an urban environment using the bottom-up approach and measure its complexity using fractal geometry.   Web 2.0, which has many volunteers who share their information on different platforms, was one of the most important tools in this study. We can easily obtain rough data from various platforms such as the Stanford Large Network Dataset Collection (SLNDC), the Earth Observation Group (EOG), and CloudMade. The check-in data in this thesis were downloaded from SLNDC, the POI data were obtained from CloudMade, and the nighttime lights imaging data were collected from EOG. In this study, we used these three types of data to derive natural cities representing city regions using a bottom-up approach. Natural cities were derived from open geographic data without human manipulation. After refining data, we used rough data to derive natural cities. This study used a triangulated irregular network to derive natural cities from check-in and POI data.   In this study, we focus on the four largest US natural cities regions: Chicago, New York, San Francisco, and Los Angeles. The result is that the New York City region is the most complex area in the United States. Box-counting fractal dimension, lacunarity, and ht-index (head/tail breaks index) can be used to explain this. Box-counting fractal dimension is used to represent the New York City region as the most prosperous of the four city regions. Lacunarity indicates the New York City region as the most compact area in the United States. Ht-index shows the New York City region having the highest hierarchy of the four city regions. This conforms to central place theory: higher-level cities have better service than lower-level cities. In addition, ht-index cannot represent hierarchy clearly when data distribution does not fit a long-tail distribution exactly. However, the ht-index is the only method that can analyze the complexity of natural cities without using images.
APA, Harvard, Vancouver, ISO, and other styles
4

Berlinkov, Artemi. "Dimensions in Random Constructions." Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3160/.

Full text
Abstract:
We consider random fractals generated by random recursive constructions, prove zero-one laws concerning their dimensions and find their packing and Minkowski dimensions. Also we investigate the packing measure in corresponding dimension. For a class of random distribution functions we prove that their packing and Hausdorff dimensions coincide.
APA, Harvard, Vancouver, ISO, and other styles
5

Le, Huy. "Numerické metody měření fraktálních dimenzí a fraktálních měr." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417160.

Full text
Abstract:
Tato diplomová práce se zabývá teorií fraktálů a popisuje patričné potíže při zavedení pojmu fraktál. Dále se v práci navrhuje několik metod, které se použijí na aproximaci fraktálních dimenzí různých množin zobrazených na zařízeních s konečným rozlišením. Tyto metody se otestují na takových množinách, jejichž dimenze známe, a na závěr se výsledky porovnávají.
APA, Harvard, Vancouver, ISO, and other styles
6

Dathe, Annette. "Digitale Bildanalyse zur Messung fraktaler Eigenschaften der Bodenstruktur." Doctoral thesis, [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=965898083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Leifsson, Patrik. "Fractal sets and dimensions." Thesis, Linköping University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7320.

Full text
Abstract:

Fractal analysis is an important tool when we need to study geometrical objects less regular than ordinary ones, e.g. a set with a non-integer dimension value. It has developed intensively over the last 30 years which gives a hint to its young age as a branch within mathematics.

In this thesis we take a look at some basic measure theory needed to introduce certain definitions of fractal dimensions, which can be used to measure a set's fractal degree. Comparisons of these definitions are done and we investigate when they coincide. With these tools different fractals are studied and compared.

A key idea in this thesis has been to sum up different names and definitions referring to similar concepts.

APA, Harvard, Vancouver, ISO, and other styles
8

Fraser, Jonathan M. "Dimension theory and fractal constructions based on self-affine carpets." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3869.

Full text
Abstract:
The aim of this thesis is to develop the dimension theory of self-affine carpets in several directions. Self-affine carpets are an important class of planar self-affine sets which have received a great deal of attention in the literature on fractal geometry over the last 30 years. These constructions are important for several reasons. In particular, they provide a bridge between the relatively well-understood world of self-similar sets and the far from understood world of general self-affine sets. These carpets are designed in such a way as to facilitate the computation of their dimensions, and they display many interesting and surprising features which the simpler self-similar constructions do not have. For example, they can have distinct Hausdorff and packing dimensions and the Hausdorff and packing measures are typically infinite in the critical dimensions. Furthermore, they often provide exceptions to the seminal result of Falconer from 1988 which gives the `generic' dimensions of self-affine sets in a natural setting. The work in this thesis will be based on five research papers I wrote during my time as a PhD student. The first contribution of this thesis will be to introduce a new class of self-affine carpets, which we call box-like self-affine sets, and compute their box and packing dimensions via a modified singular value function. This not only generalises current results on self-affine carpets, but also helps to reconcile the `exceptional constructions' with Falconer's singular value function approach in the generic case. This will appear in Chapter 2 and is based on a paper which appeared in 'Nonlinearity' in 2012. In Chapter 3 we continue studying the dimension theory of self-affine sets by computing the Assouad and lower dimensions of certain classes. The Assouad and lower dimensions have not received much attention in the literature on fractals to date and their importance has been more related to quasi-conformal maps and embeddability problems. This appears to be changing, however, and so our results constitute a timely and important contribution to a growing body of literature on the subject. The material in this Chapter will be based on a paper which has been accepted for publication in 'Transactions of the American Mathematical Society'. In Chapters 4-6 we move away from the classical setting of iterated function systems to consider two more exotic constructions, namely, inhomogeneous attractors and random 1-variable attractors, with the aim of developing the dimension theory of self-affine carpets in these directions. In order to put our work into context, in Chapter 4 we consider inhomogeneous self-similar sets and significantly generalise the results on box dimensions obtained by Olsen and Snigireva, answering several questions posed in the literature in the process. We then move to the self-affine setting and, in Chapter 5, investigate the dimensions of inhomogeneous self-affine carpets and prove that new phenomena can occur in this setting which do not occur in the setting of self-similar sets. The material in Chapter 4 will be based on a paper which appeared in 'Studia Mathematica' in 2012, and the material in Chapter 5 is based on a paper, which is in preparation. Finally, in Chapter 6 we consider random self-affine sets. The traditional approach to random iterated function systems is probabilistic, but here we allow the randomness in the construction to be provided by the topological structure of the sample space, employing ideas from Baire category. We are able to obtain very general results in this setting, relaxing the conditions on the maps from `affine' to `bi-Lipschitz'. In order to get precise results on the Hausdorff and packing measures of typical attractors, we need to specialise to the setting of random self-similar sets and we show again that several interesting and new phenomena can occur when we relax to the setting of random self-affine carpets. The material in this Chapter will be based on a paper which has been accepted for publication by 'Ergodic Theory and Dynamical Systems'.
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Nancy. "Fractal Sets: Dynamical, Dimensional and Topological Properties." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233147.

Full text
Abstract:
Fractals is a relatively new mathematical topic which received thorough treatment only starting with 1960's. Fractals can be observed everywhere in nature and in day-to-day life. To give a few examples, common fractals are the spiral cactus, the romanesco broccoli, human brain and the outline of the Swedish map. Fractal dimension is a dimension which need not take integer values. In fractal geometry, a fractal dimension is a ratio providing an index of the complexity of fractal pattern with regard to how the local geometry changes with the scale at which it is measured. In recent years, fractal analysis is used increasingly in many areas of engineering and technology. Among others, fractal analysis is used in signal and image compression, computer and video design, neuroscience and fractal based cancer modelling and diagnosing.   This study consists of two main parts. The first part of the study aims to understand the appearance of an irregular Cantor set generated by the chaotic dynamical system generated by the logistic function on the unit interval [0,1]. In order to understand this irregular Cantor set, we studied the topological properties of the Cantor Middle-thirds set and the generalised Cantor sets, all of which have zero length. The necessity to compare these sets with regard to their size led us to the second part of this paper, namely the dimension studies of fractals. More complex fractals were presented in the second part, three definitions of dimension were introduced. The fractal dimension of the irregular Cantor set generated by the logistic mapping was estimated and we found that the Hausdorff dimension has the widest scope and greatest flexibility in the fractal studies.
Fraktaler är ett relativt nytt ämne inom matematik som fick sitt stora genomslag först efter 60-talet.  En fraktal är ett självliknande mönster med struktur i alla skalor. Några vardagliga exempel på fraktaler är spiralkaktus, romanescobroccoli, mänskliga hjärnan, blodkärlen och Sveriges fastlandskust. Bråktalsdimension är en typ av dimension där dimensionsindexet tillåts att anta alla icke-negativa reella tal. Inom fraktalgeometri kan dimensionsindexet betraktas som ett komplexitetsindex av mönstret med avseende på hur den lokala geometrin förändras beroende på vilken skala mönstret betraktas i. Under det senaste decenniet har fraktalanalysen använts alltmer flitigt inom tekniska och vetenskapliga tillämpningar. Bland annat har fraktalanalysen använts i signal- och bildkompression, dator- och videoformgivning, neurovetenskap och fraktalbaserad cancerdiagnos.   Denna studie består av två huvuddelar. Den första delen fokuserar på att förstår hur en fraktal kan uppstå i ett kaotiskt dynamiskt system. För att vara mer specifik studerades den logistiska funktionen och hur denna ickelinjära avbildning genererar en oregelbunden Cantormängd på intervalet [0,1]. Vidare, för att förstå den oregelbundna Cantormängden studerades Cantormängden (eng. the Cantor Middle-Thirds set) och de generaliserade Cantormängderna, vilka alla har noll längd. För att kunna jämföra de olika Cantormängderna med avseende på storlek, leds denna studie vidare till dimensionsanalys av fraktaler som är huvudämnet i den andra delen av denna studie. Olika topologiska fraktaler presenterades, tre olika definitioner av dimension introducerades, bland annat lådräkningsdimensionen och Hausdorffdimensionen. Slutligen approximerades dimensionen av den oregelbundna Cantormängden med hjälp av Hausdorffdimensionen. Denna studie demonstrerar att Hausdorffdimensionen har större omfattning och mer flexibilitet för fraktalstudier.
APA, Harvard, Vancouver, ISO, and other styles
10

Sant'anna, Douglas Azevedo. "Derivadas fracionárias, funções contínuas não diferenciáveis e dimensões." reponame:Repositório Institucional da UFABC, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Nedvěd, Jiří. "Zpracování genomických signálů fraktály." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219634.

Full text
Abstract:
This diploma project is showen possibilities in classification of genomic sequences with CGR and FCGR methods in pictures. From this picture is computed classificator with BCM. Next here is written about the programme and its opportunities for classification. In the end is compared many of sequences computed in different options of programme.
APA, Harvard, Vancouver, ISO, and other styles
12

Fuhrmann, G., M. Gröger, and T. Jäger. "Non-smooth saddle-node bifurcations II: Dimensions of strange attractors." Cambridge University Press, 2018. https://tud.qucosa.de/id/qucosa%3A70708.

Full text
Abstract:
We study the geometric and topological properties of strange non-chaotic attractors created in non-smooth saddle-node bifurcations of quasiperiodically forced interval maps. By interpreting the attractors as limit objects of the iterates of a continuous curve and controlling the geometry of the latter, we determine their Hausdorff and box-counting dimension and show that these take distinct values. Moreover, the same approach allows us to describe the topological structure of the attractors and to prove their minimality.
APA, Harvard, Vancouver, ISO, and other styles
13

Grierson, Greg Michael Jr. "Analysis of Amur honeysuckle Stem Density as a Function of Spatial Clustering, Horizontal Distance from Streams, Trails, and Elevation in Riparian Forests, Greene County, Ohio." Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1621942350540022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Archer, Kassie. "Box-counting dimension and beyond /." 2009. http://hdl.handle.net/10288/1259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Liao, Yu-Jie, and 廖昱杰. "Vessel Box Counting Dimension of Chicken Chorioallantoic Image." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/89613802283699986031.

Full text
Abstract:
碩士
國立中興大學
資訊管理學系所
104
Cancer has been the leading first of - first ten causes of death in humans in the past ten years. Many researchers have invested in the cancer experiments in order to find the cure for cancer. Because cancer cells have to rely on oxygen and nutrients in biological vessel to survive, researchers usually need small animals for experimental sample (for example: rabbits, mouses, etc ….), put cancer cells into the small animals’ bodies to make them infected, inject the experimental drug and observe the changes in blood vessels to determine whether the experimental drug against cancer effectively. In recent years, the cost of animal samples becomes increase. Moreover, the animals must be dissected in the experiments, The processing of animal experiments is very troublesome. However, the chicken chorioallantoic membrane grows faster, the price is cheaper, and it is easy to observe the results immediately. Chicken chorioallantoic membrane which has vascular structure is suited to replace other animal samples. Due to the large quantity of samples, the researchers needs to takes a lot of time on viewing the results of the reaction to judge good or bad results. Therefore we proposed a technology to determine the results of the chicken chorioallantoic membrane. This technology can be divided into two parts: non-yolk and yolk region segmentation and vessel segmentation in yolk region. In the first part, we use R, G, B three kinds of gray scale to let the boundary between non-yolk and yolk region more obvious. Then, Local Cross Thresholding is used to segment non-yolk and yolk region. In the second part, Run-Length is used to make blood vessels in the yolk region more obvious and Local Cross Thresholding is used to segment vessels in yolk region. Because there is noise after blood vessels were segmented, we use Opening to divide them, and Thinning and Region Labeling to remove the noise. We use Box Counting Dimension (BCD) to determine the density of blood vessels. Then, BCD values of Ground Truth, propose methods and artificial blood vessels judgment method are calculated. According to the experimental results, BCD values of the proposed method are close to those of Ground Truth. The proposed method has better results.
APA, Harvard, Vancouver, ISO, and other styles
16

Wang, Shih-Chieh, and 王世杰. "An Iris Recognition System Based on Fractal Analysis Using Entropy-Box-Counting Method." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/25837290551313309088.

Full text
Abstract:
碩士
中興大學
資訊科學系所
95
In this thesis, we propose a new method of fractal analysis using entropy-box-counting (EBC) for automatic iris recognition. First, the annular iris image is normalized into a rectangular iris image and divided into forty-eight blocks. We calculate the fractal dimension values for these image blocks and then concatenate all these features together as the iris feature vector. The similarity of two irises can be measured by the spatial distance. We use the Minimum Distance Classifier (MDC) to determine whether two irises belong to the same class. Experimental results show that the recognition rate is 97.69% and the equal error rate is 11.57% for the images in CASIA database.
APA, Harvard, Vancouver, ISO, and other styles
17

Wen-Chau, Wu, and 吳文超. "Limitations of box counting fractal analysis on digital images using automated computer analysis: Examples on biomedical applications." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/00484063358868564845.

Full text
Abstract:
博士
國立臺灣大學
電機工程學研究所
91
Morphometric analysis is important in the assistance of differential diagnoses in histopathology. However, for morphologically complicated biological structures, description of texture using conventional Euclidean geometry has been difficult because the estimation of shape parameters such as area or perimeter may vary significantly with the magnification at which the specimen examinations are performed. Examples include colorectal polyps, epithelial lesions in the oral cavity, breast cancer on mammograms, or tumor vasculature. The search for an objective means to reliably quantify complicated cell or tissue morphology is thus an active field of research development. Recently, fractal analyses seem to gain on influence in quantifying the degree of cell complexity that may have been altered during certain pathological processes. Among many existing tools for fractal analysis, the box counting algorithm is frequently used in biological science to obtain the fractal dimension, a parameter that describes the extent of the space-filling property. Previous studies have demonstrated that the box counting fractal dimension is a helpful diagnostic discriminant in various diseases. However, there lacks a theoretical essence providing the linkage between this abstract mathematical parameter and the pathological meanings. A significant number of controversies hence exist in the literature, which warrants the necessity of further investigations. The goal of this study was to explore, using examinations on illustrative objects of known geometry, the physical implications of the box counting fractal dimension. In particular, the fractal dimensions computed using box counting on single objects were compared with the results on an ensemble of the same objects. An explanation was provided for our findings in this study, and the consequent implications were addressed. Some of the inherent characteristics demanding cautions when using this method on digitized images were also discussed.
APA, Harvard, Vancouver, ISO, and other styles
18

Lavoie, François. "Écoulements granulaires par avalanches : indices de fluidité, fractales et multifractales." Thèse, 2004. http://hdl.handle.net/1866/15619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography