Academic literature on the topic 'Box polynomial'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Box polynomial.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Box polynomial"
Alamsyah, Alamsyah. "A Novel Construction of Perfect Strict Avalanche Criterion S-box using Simple Irreducible Polynomials." Scientific Journal of Informatics 7, no. 1 (May 30, 2020): 10–22. http://dx.doi.org/10.15294/sji.v7i1.24006.
Full textGoodman, T. N. T., and S. L. Lee. "Homogeneous polynomial splines." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 117, no. 1-2 (1991): 89–102. http://dx.doi.org/10.1017/s0308210500027621.
Full textEncarnación, Mark J. "Black-box polynomial resultants." Information Processing Letters 61, no. 4 (February 1997): 201–4. http://dx.doi.org/10.1016/s0020-0190(97)00016-1.
Full textMahmood, Shahid, Shabieh Farwa, Muhammad Rafiq, Syed Muhammad Jawwad Riaz, Tariq Shah, and Sajjad Shaukat Jamal. "To Study the Effect of the Generating Polynomial on the Quality of Nonlinear Components in Block Ciphers." Security and Communication Networks 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/5823230.
Full textBarlow, Angela T. "How Can a Box Help My Students with Multiplying Polynomials?" Mathematics Teaching in the Middle School 9, no. 9 (May 2004): 512–13. http://dx.doi.org/10.5951/mtms.9.9.0512.
Full textDokken, Tor, Tom Lyche, and Kjell Fredrik Pettersen. "Polynomial splines over locally refined box-partitions." Computer Aided Geometric Design 30, no. 3 (March 2013): 331–56. http://dx.doi.org/10.1016/j.cagd.2012.12.005.
Full textZahid, Amjad, and Muhammad Arshad. "An Innovative Design of Substitution-Boxes Using Cubic Polynomial Mapping." Symmetry 11, no. 3 (March 25, 2019): 437. http://dx.doi.org/10.3390/sym11030437.
Full textSit, Atilla, Julie C. Mitchell, George N. Phillips, and Stephen J. Wright. "An Extension of 3D Zernike Moments for Shape Description and Retrieval of Maps Defined in Rectangular Solids." Computational and Mathematical Biophysics 1 (April 16, 2013): 75–89. http://dx.doi.org/10.2478/mlbmb-2013-0004.
Full textJuma, Ali, Valentine Kabanets, Charles Rackoff, and Amir Shpilka. "The Black-Box Query Complexity of Polynomial Summation." computational complexity 18, no. 1 (April 2009): 59–79. http://dx.doi.org/10.1007/s00037-009-0263-7.
Full textGalatenko, Alexei V., Stepan A. Nersisyan, and Dmitriy N. Zhuk. "NP-Hardness of the Problem of Optimal Box Positioning." Mathematics 7, no. 8 (August 6, 2019): 711. http://dx.doi.org/10.3390/math7080711.
Full textDissertations / Theses on the topic "Box polynomial"
Ahmadi, Abhari Seyed Hamed. "Quantum Algorithms for: Quantum Phase Estimation, Approximation of the Tutte Polynomial and Black-box Structures." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5096.
Full textID: 031001318; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Title from PDF title page (viewed March 27, 2013).; Thesis (Ph.D.)--University of Central Florida, 2012.; Includes bibliographical references (p. 82-86).
Ph.D.
Doctorate
Mathematics
Sciences
Mathematics
Ambrose, Sophie. "Matrix groups : theory, algorithms and applications." University of Western Australia. School of Mathematics and Statistics, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0112.
Full textHedmark, Dustin g. "The Partition Lattice in Many Guises." UKnowledge, 2017. http://uknowledge.uky.edu/math_etds/48.
Full textGustafsson, Nils. "Box Polynomials of Lattice Simplices." Thesis, KTH, Matematik (Avd.), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-228407.
Full textBoxpolynomet av ett gittersimplex är en variant av det mer kända h∗-polynomet, där den öppna fundamentala parallelepipeden används istället för den halvöppna. Boxpolynom är kopplade till h∗-polynom tack vare en sats av Betke och McMullen från 1985. Denna sats kan användas för att bevisa vissa egenskaper hos h∗-polynom, som t.ex. unimodalitet och symmetri. I denna uppsats undersöker vi boxpolynomen hos en särskild familj av simplex, de så kallade s-hörssalssimplexen. För dessa simplex är h∗-polynomen en generalisering av de Eulerska polynomen, och visades ha endast reella rötter av Savage och Visontai 2015. Vi använder en modifierad version av deras bevis för att bevisa att även boxpolynomen bara har reella rötter, och att de är en generalisering av derangemangpoly-nom. Vi använder sedan dessa resultat för att delvis besvara en förmodan av Brändén och Leander angående unimodaliteten hos h∗-polynomen av s-hörsalsordningspolytoper.
Said, Laila Refiana. "The influences of cognitive, experiential and habitual factors in online games playing." University of Western Australia. Faculty of Economics and Commerce, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0100.
Full textMaeda, Kazuki. "Theory of Discrete and Ultradiscrete Integrable Finite Lattices Associated with Orthogonal Polynomials and Its Applications." 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/188859.
Full textΝίκας, Ιωάννης. "Αριθμητική επίλυση μη γραμμικών παραμετρικών εξισώσεων και ολική βελτιστοποίηση με διαστηματική ανάλυση." Thesis, 2011. http://hdl.handle.net/10889/4919.
Full textIn this dissertation the problem of finding reliably and with certainty all the zeros a pa-rameterized equation f(x;[p]) = 0, of a continuously differentiable function f is considered, where [p] is an interval vector describing all the parameters of the Equation, which are formed with interval numbers. For this kind of problem, methods of Interval Analysis are used. The incentive to this scientific research was emerged from a classic numerical analysis problem: the numerical solution of polynomial systems of equations using interval analysis. In particular, a heuristic reordering technique of the initial polynomial systems of equations is proposed. This approach seems to improve significantly the used solver. The proposed technique, as well as the results of this publication are presented in Chapter 2 of this dissertation. In the next Chapter 3, a methodology is proposed for solving reliably and efficiently parameterized (interval) equations. Firstly, a new formulation of interval arithmetic is given and the equivalence with the classic one is proved. Then, an extension of interval Newton method is proposed and developed, based on the new formulation of interval arithmetic. The new method is able to solve not only classic non-linear equations but, non-linear parameterized (interval) equation too. In Chapter 4 a new approach on solving the Box-Constrained Global Optimization problem is proposed, based on the results of Chapter 3. In details, the Box-Constrained Global Optimization problem is reduced to a problem of solving interval equations. The solution of this reduction is attainable through the methodology developed in Chapter 3. In the last Chapter of this dissertation a new algorithmic approach is given for the problem of solving reliably and with certainty an interval polynomial equation of degree $n$. This approach consists in a generalization of the work of Hansen and Walster. Hansen and Walster proposed a method for solving only quadratic interval polynomial equations
Book chapters on the topic "Box polynomial"
Buchheim, Christoph, and Claudia D’Ambrosio. "Box-Constrained Mixed-Integer Polynomial Optimization Using Separable Underestimators." In Integer Programming and Combinatorial Optimization, 198–209. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07557-0_17.
Full textJacquet, Stéphane, and Sylvain Hallé. "Reformulation of SAT into a Polynomial Box-Constrained Optimization Problem." In Lecture Notes in Computer Science, 387–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63461-2_21.
Full textCourtois, Nicolas T. "The Inverse S-Box, Non-linear Polynomial Relations and Cryptanalysis of Block Ciphers." In Advanced Encryption Standard – AES, 170–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11506447_15.
Full textFrosini, Lucia, and Giovanni Petrecca. "Black-Box Identification of the Electromagnetic Torque of Induction Motors: Polynomial and Neural Models." In Intelligent Problem Solving. Methodologies and Approaches, 741–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45049-1_90.
Full textDinur, Itai, and Adi Shamir. "Cube Attacks on Tweakable Black Box Polynomials." In Advances in Cryptology - EUROCRYPT 2009, 278–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01001-9_16.
Full textDey, Sankhanil, and Ranjan Ghosh. "4, 8, 32, 64 Bit Substitution Box Generation Using Irreducible or Reducible Polynomials Over Galois Field GF(Pq) for Smart Applications." In Security in Smart Cities: Models, Applications, and Challenges, 279–95. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01560-2_12.
Full text"Group Models of Artificial Polynomial and Trigonometric Higher Order Neural Networks." In Emerging Capabilities and Applications of Artificial Higher Order Neural Networks, 137–72. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3563-9.ch003.
Full textZhang, Ming. "Artificial Polynomial and Trigonometric Higher Order Neural Network Group Models." In Artificial Higher Order Neural Networks for Modeling and Simulation, 78–102. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-2175-6.ch005.
Full textZhang, Ming. "Cosine and Sigmoid Higher Order Neural Networks for Data Simulations." In Advances in Computational Intelligence and Robotics, 237–52. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0063-6.ch010.
Full text"Data Simulations Using Cosine and Sigmoid Higher Order Neural Networks." In Emerging Capabilities and Applications of Artificial Higher Order Neural Networks, 346–74. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3563-9.ch008.
Full textConference papers on the topic "Box polynomial"
Kadhim, Alaa F., and Zainab Ali Kamal. "Dynamic S-BOX base on primitive polynomial and chaos theory." In 2018 International Conference on Engineering Technology and their Applications (IICETA). IEEE, 2018. http://dx.doi.org/10.1109/iiceta.2018.8458093.
Full textDas, Indrajit, Subhrapratim Nath, Sanjoy Roy, and Subhash Mondal. "Random S-Box generation in AES by changing irreducible polynomial." In 2012 International Conference on Communications, Devices and Intelligent Systems (CODIS). IEEE, 2012. http://dx.doi.org/10.1109/codis.2012.6422263.
Full textDumas, Jean-Guillaume, Clément Pernet, and B. David Saunders. "On finding multiplicities of characteristic polynomial factors of black-box matrices." In the 2009 international symposium. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1576702.1576723.
Full textElloumi, Sourour, Amelie Lambert, and Arnaud Lazare. "Semidefinite programming relaxations through quadratic reformulation for box-constrained polynomial optimization problems." In 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2019. http://dx.doi.org/10.1109/codit.2019.8820690.
Full textAlamsyah, Agus Bejo, and Teguh Bharata Adji. "AES S-box construction using different irreducible polynomial and constant 8-bit vector." In 2017 IEEE Conference on Dependable and Secure Computing. IEEE, 2017. http://dx.doi.org/10.1109/desec.2017.8073857.
Full textAlamsyah. "Improving the Quality of AES S-box by Modifications Irreducible Polynomial and Affine Matrix." In 2020 Fifth International Conference on Informatics and Computing (ICIC). IEEE, 2020. http://dx.doi.org/10.1109/icic50835.2020.9288567.
Full textKarnin, Zohar S., and Amir Shpilka. "Black Box Polynomial Identity Testing of Generalized Depth-3 Arithmetic Circuits with Bounded Top Fan-In." In 2008 23rd Annual IEEE Conference on Computational Complexity. IEEE, 2008. http://dx.doi.org/10.1109/ccc.2008.15.
Full textAl-Janabi, Samaher, and Esraa Alwan. "Soft Mathematical System to Solve Black Box Problem through Development the FARB Based on Hyperbolic and Polynomial Functions." In 2017 10th International Conference on Developments in eSystems Engineering (DeSE). IEEE, 2017. http://dx.doi.org/10.1109/dese.2017.23.
Full textCarvalho de Castro, Henrique, and Bruno Henrique Groenner Barbosa. "Multi-gene Genetic Programming for Structure Selection of Polynomial NARMAX models." In Congresso Brasileiro de Automática - 2020. sbabra, 2020. http://dx.doi.org/10.48011/asba.v2i1.1384.
Full textLee, Sang Hoon, and Wei Chen. "A Comparative Study of Uncertainty Propagation Methods for Black-Box Type Functions." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35533.
Full textReports on the topic "Box polynomial"
De Boor, Carl, Nira Dyn, and Amos Ron. On Two Polynomial Spaces Associated with a Box Spline. Fort Belvoir, VA: Defense Technical Information Center, April 1989. http://dx.doi.org/10.21236/ada210559.
Full text