Academic literature on the topic 'Brain motion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Brain motion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Brain motion"
BRANDT, THOMAS. "MAN IN MOTION." Brain 114, no. 5 (1991): 2159–74. http://dx.doi.org/10.1093/brain/114.5.2159.
Full textSchmidt-Kassow, Maren, and Stefan Debener. "Editorial: Brain in Motion." Brain Research 1716 (August 2019): 1–2. http://dx.doi.org/10.1016/j.brainres.2019.01.027.
Full textCornette, L. "Human cerebral activity evoked by motion reversal and motion onset. A PET study." Brain 121, no. 1 (January 1, 1998): 143–57. http://dx.doi.org/10.1093/brain/121.1.143.
Full textZEKI, S. "CEREBRAL AKINETOPSIA (VISUAL MOTION BLINDNESS)." Brain 114, no. 2 (1991): 811–24. http://dx.doi.org/10.1093/brain/114.2.811.
Full textSchnider, Armin, Klemens Gutbrod, and Christian W. Hess. "Motion imagery in Parkinson's disease." Brain 118, no. 2 (1995): 485–93. http://dx.doi.org/10.1093/brain/118.2.485.
Full textDavid, Anthony S., and Carl Senior. "Implicit motion and the brain." Trends in Cognitive Sciences 4, no. 8 (August 2000): 293–95. http://dx.doi.org/10.1016/s1364-6613(00)01511-4.
Full textAzzopardi, Paul, and Alan Cowey. "Motion discrimination in cortically blind patients." Brain 124, no. 1 (January 2001): 30–46. http://dx.doi.org/10.1093/brain/124.1.30.
Full textKyme, Andre Z., Stephen Se, Steven R. Meikle, and Roger R. Fulton. "Markerless motion estimation for motion-compensated clinical brain imaging." Physics in Medicine & Biology 63, no. 10 (May 17, 2018): 105018. http://dx.doi.org/10.1088/1361-6560/aabd48.
Full textAjina, Sara, Christopher Kennard, Geraint Rees, and Holly Bridge. "Motion area V5/MT+ response to global motion in the absence of V1 resembles early visual cortex." Brain 138, no. 1 (November 27, 2014): 164–78. http://dx.doi.org/10.1093/brain/awu328.
Full textRizzo, Matthew, Mark Nawrot, and Josef Zihl. "Motion and shape perception in cerebral akinetopsia." Brain 118, no. 5 (1995): 1105–27. http://dx.doi.org/10.1093/brain/118.5.1105.
Full textDissertations / Theses on the topic "Brain motion"
Robillard, Cynthia. "Functional brain imaging of space motion sickness." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104482.
Full textLe mal des transports, bien qu'expérimenté depuis des milliers d'années, est somme toute majoritairement méconnu. Entre autre, la raison d'être de ce trouble n'est pas encore comprise ainsi que sa neuroanatomie et sa neurophysiologie sous-jacentes.Une récente théorie stipule que le mal des transports serait le résultats d'un mécanisme qui limiterait certaine activités moteurs volontaires inappropriées pouvant causer des changements involontaires de la fonction vestibulaire et donc, mener à une distorsion de la posture, des patrons moteurs et du contrôle visuel (Watt et al., 1992). À la lumière de cette théorie, le mal des transports peut probablement être mieux étudié dans des conditions de mouvements actifs plutôt que passifs. Pour cette raison, dans cette thèse, la stimulation coriolis (SC) autogénérée a été utilisée afin d'induire le mal des transports chez des sujets susceptibles. Une caractéristique importante de la SC est que pour un mouvement de tête donné, le patron de la stimulation vestibulaire dépend de la direction globale de la rotation du corps.Cette thèse consiste en trois parties. Premièrement, une méthode a dû être conçue afin de pouvoir repositionner les sujets de façon precise à l'intérieur du scannographe de tomographie par émission de positons après qu'ils aient effectué la stimulation active du mal des transports. Deuxièment, les effets de la SC furent évalués par une étude d'imagerie cérébrale fonctionnelle. La tomographie par émission de positons a été utilisé pour déterminer quelle partie du cerveau sont actives lorsqu'une personne éprouve les signes, symptômes et réactions émotionnelles du mal des transports. Troisièment, les conséquences des patrons spécifiques à la direction de la stimulation vestibulaire par la SC ont été étudiés par la détermination des effets du sens de la rotation sur l'adaptation à la SC.À la suite de ces expériences, un support pour la tête sécuritaire et efficace fut développé, quelques structures du cerveau impliquées dans le mal des transports ont été révélées et une méthode unique générant le mal des transports en laboratoire a plus amplement été caractérisée.
Weiss, Yair. "Bayesian motion estimation and segmentation." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/9354.
Full textIncludes bibliographical references (leaves 195-204).
Estimating motion in scenes containing multiple moving objects remains a difficult problem in computer vision yet is solved effortlessly by humans. In this thesis we present a computational investigation of this astonishing performance in human vision. The method we use throughout is to formulate a small number of assumptions and see the extent to which the optimal interpretation given these assumptions corresponds to the human percept. For scenes containing a single motion we show that a wide range of previously published results are predicted by a Bayesian model that finds the most probable velocity field assuming that (1) images may be noisy and (2) velocity fields are likely to be slow and smooth. The predictions agree qualitatively, and are often in remarkable agreement quantitatively. For scenes containing multiple motions we introduce the notion of "smoothness in layers". The scene is assumed to be composed of a small number of surfaces or layers, and the motion of each layer is assumed to be slow and smooth. We again formalize these assumptions in a Bayesian framework and use the statistical technique of mixture estimation to find the predicted a surprisingly wide range of previously published results that are predicted with these simple assumptions. We discuss the shortcomings of these assumptions and show how additional assumptions can be incorporated into the same framework. Taken together, the first two parts of the thesis suggest that a seemingly complex set of illusions in human motion perception may arise from a single computational strategy that is optimal under reasonable assumptions.
(cont.) The third part of the thesis presents a computer vision algorithm that is based on the same assumptions. We compare the approach to recent developments in motion segmentation and illustrate its performance on real and synthetic image sequences.
by Yair Weiss.
Ph.D.
Drumheller, Michael. "Synthesizing a motion detector from examples." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/13662.
Full textSpoerri, Anselm. "The early detection of motion boundaries." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/13857.
Full textWirestam, Ronnie. "Nuclear magnetic resonance and microcirculation the influence of pulsatile brain-tissue motion on measurements of intravoxel incoherent motion and assessment of haemodynamics using exo- and endogenous tracers /." Lund : Dept. of Radiation Physics, Lund University Hospital, 1997. http://catalog.hathitrust.org/api/volumes/oclc/39693817.html.
Full textZanni, Caroline A. A. "Topographic mapping of the brain activity of perceived motion." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=35227.
Full textTreue, Stefan. "Encoding surfaces from motion in the primate visual system." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/12930.
Full textGeesaman, Bard J. (Bard James). "The analysis of complex motion patterns in primate cortex." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/39373.
Full textMarshall, David. "Brain-computer games interfacing with motion-onset visual evoked potentials." Thesis, Ulster University, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685554.
Full textCharles, Eliot Robert. "Interactions of luminance, color and motion in the visual system." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/13099.
Full textBooks on the topic "Brain motion"
Copyright Paperback Collection (Library of Congress), ed. Beauty and the brain. New York: Kensington Pub. Corp., 2001.
Find full textBeres, Derek. Whole motion: Training your brain and body for optimal health. New York: Carrel Books, 2017.
Find full textShooting through : Australian film and the brain drain / Storry Walton. Strawberry Hills, N.S.W: Currency House, 2005.
Find full textFlash, Tamar, and Alain Berthoz, eds. Space-Time Geometries for Motion and Perception in the Brain and the Arts. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57227-3.
Full text1952-, Perry John, ed. Letters to God: From the major motion picture. Grand Rapids, Mich: Zondervan, 2010.
Find full textMind and motion: The bidirectional link between thought and action. Amsterdam: Elsevier Science, 2009.
Find full textSkelton, Kimberley, ed. Early Modern Spaces in Motion. NL Amsterdam: Amsterdam University Press, 2020. http://dx.doi.org/10.5117/9789463725811.
Full textBook chapters on the topic "Brain motion"
Chakravarthy, V. Srinivasa. "Life in Motion." In Demystifying the Brain, 245–84. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3320-0_9.
Full textHenn, Volker. "Motion Sense." In States of Brain and Mind, 59. Boston, MA: Birkhäuser Boston, 1988. http://dx.doi.org/10.1007/978-1-4899-6771-8_23.
Full textJoukes, Jeroen, and Bart Krekelberg. "Motion Detection." In Computational Models of Brain and Behavior, 171–83. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119159193.ch13.
Full textBehrend, K. "How a Fish’s Brain May Move a Fish’s Body." In Biological Motion, 239–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-51664-1_17.
Full textRupp, Rüdiger. "Brain-Computer Interfaces for Motor Rehabilitation." In Handbook of Human Motion, 1–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-30808-1_67-1.
Full textRupp, Rüdiger. "Brain-Computer Interfaces for Motor Rehabilitation." In Handbook of Human Motion, 1471–501. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-14418-4_67.
Full textWang, Wenfeng, Xiangyang Deng, Liang Ding, and Limin Zhang. "Brain-Inspired Perception, Motion and Control." In Brain-Inspired Intelligence and Visual Perception, 143–64. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3549-5_6.
Full textWerren, Sarah. "Hermeneutics of Modern Death: Science, Philosophy and the Brain Death Controversy in Orthodox Judaism." In Religion in Motion, 57–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41388-0_5.
Full textFrost, B. J. "Neural Mechanisms for Detecting Object Motion and Figure-Ground Boundaries, Contrasted with Self-Motion Detecting Systems." In Brain Mechanisms and Spatial Vision, 415–49. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5071-9_17.
Full textMasson, Guillaume S., Anna Montagnini, and Uwe J. Ilg. "When the Brain Meets the Eye: Tracking Object Motion." In Dynamics of Visual Motion Processing, 161–88. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0781-3_8.
Full textConference papers on the topic "Brain motion"
Gao, Yuanyuan, Lora Cavuoto, Pingkun Yan, Uwe Kruger, Steven Schwaitzberg, Suvranu De, and Xavier Intes. "A deep learning approach to remove motion artifacts in fNIRS data analysis." In Optics and the Brain. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/brain.2020.bm2c.7.
Full textHerzog, H., L. Tellman, R. Fulton, and U. Pietrzyk. "Motion correction in PET brain studies." In The Fourth International Workshop on Multidimensional Systems - NDS 2005. IEEE, 2005. http://dx.doi.org/10.1109/nds.2005.195350.
Full textPutnam, Cynthia, and Jinghui Cheng. "Motion-games in brain injury rehabilitation." In ASSETS '13: The 15th International ACM SIGACCESS Conference on Computers and Accessibility. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2513383.2513390.
Full textMerkle, A. C., I. D. Wing, and K. C. Carneal. "The Mechanics of Brain Motion During Free-Field Blast Loading." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80880.
Full textUpadhyay, R., P. K. Kankar, P. K. Padhy, and V. K. Gupta. "Robot motion control using Brain Computer Interface." In 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE). IEEE, 2013. http://dx.doi.org/10.1109/care.2013.6733767.
Full textZhou, Zhou, Xiaogai Li, Svein Kleiven, and Warren N. Hardy. "Brain Strain from Motion of Sparse Markers." In 63rd Stapp Car Crash Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2019-22-0001.
Full textAhad, Rosnee, K. A. A. Rahman, N. Fuad, M. K. I. Ahmad, and Mohamad Zaid Mustaffa. "Body Motion Control via Brain Signal Response." In 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE, 2018. http://dx.doi.org/10.1109/iecbes.2018.8626738.
Full textYates, Keegan, Elizabeth Fievisohn, Warren Hardy, and Costin Untaroiu. "Development and Validation of a Göttingen Miniature Pig Brain Finite Element Model." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60217.
Full textFernandez-Vargas, Jacobo, Tapio V. J. Tarvainen, Kahori Kita, and Wenwei Yu. "Hand motion reconstruction using EEG and EMG." In 2016 4th International Winter Conference on Brain-Computer Interface (BCI). IEEE, 2016. http://dx.doi.org/10.1109/iww-bci.2016.7457457.
Full textLiu, Yunshi, Febri Abdullah, Pujana Paliyawan, Ruck Thawonmas, and Tomohiro Harada. "Improving Brain Memory through Gaming Using Hand Clenching and Spreading." In MIG '19: Motion, Interaction and Games. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3359566.3364689.
Full text