Journal articles on the topic 'Brain tumor segmentation dataset'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Brain tumor segmentation dataset.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jwaid, Wasan M., Zainab Shaker Matar Al-Husseini, and Ahmad H. Sabry. "Development of brain tumor segmentation of magnetic resonance imaging (MRI) using U-Net deep learning." Eastern-European Journal of Enterprise Technologies 4, no. 9(112) (2021): 23–31. http://dx.doi.org/10.15587/1729-4061.2021.238957.
Full textWasan, M. Jwaid, Shaker Matar Al-Husseini Zainab, and H. Sabry Ahmad. "Development of brain tumor segmentation of magnetic resonance imaging (MRI) using U-Net deep learning." Eastern-European Journal of Enterprise Technologies 4, no. 9 (112) (2021): 23–31. https://doi.org/10.15587/1729-4061.2021.238957.
Full textZhang, Rong, Hongliang Luo, Weijie Chen, and Yongqiang Bai. "Review of deep learning-driven MRI brain tumor detection and segmentation methods." Advances in Computer, Signals and Systems 7, no. 8 (2023): 17–28. http://dx.doi.org/10.23977/acss.2023.070803.
Full textJyoti, Kataria Supriya P. Panda. "HybridCSF model for magnetic resonance image based brain tumor segmentation." Indonesian Journal of Electrical Engineering and Computer Science 35, no. 3 (2024): 1845–52. https://doi.org/10.11591/ijeecs.v35.i3.pp1845-1852.
Full textAlshomrani, Faisal. "A Unified Pipeline for Simultaneous Brain Tumor Classification and Segmentation Using Fine-Tuned CNN and Residual UNet Architecture." Life 14, no. 9 (2024): 1143. http://dx.doi.org/10.3390/life14091143.
Full textHuang, Jacky, Powell Molleti, Michael Iv, Richard Lee, and Haruka Itakura. "Deep learning-based brain tumor segmentation on limited sequences of magnetic resonance imaging." Journal of Clinical Oncology 40, no. 16_suppl (2022): 2054. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.2054.
Full textHuang, Jacky, Powell Molleti, Michael Iv, Richard Lee, and Haruka Itakura. "Deep learning-based brain tumor segmentation on limited sequences of magnetic resonance imaging." Journal of Clinical Oncology 40, no. 16_suppl (2022): 2054. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.2054.
Full textKataria, Jyoti, and Supriya P. Panda. "HybridCSF model for magnetic resonance image based brain tumor segmentation." Indonesian Journal of Electrical Engineering and Computer Science 35, no. 3 (2024): 1845. http://dx.doi.org/10.11591/ijeecs.v35.i3.pp1845-1852.
Full textPutta., Rama Krishna Veni, and Aruna Bala C. "The Multi Stage U-net Design for Brain Tumor Segmentation using Deep Learning Architecture." International Journal of Recent Technology and Engineering (IJRTE) 9, no. 3 (2020): 454–60. https://doi.org/10.5281/zenodo.5843656.
Full textVinod, Manvika. "Detection of Brain Tumor." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 07, no. 10 (2023): 1–11. http://dx.doi.org/10.55041/ijsrem26485.
Full textHaq, Ejaz Ul, Huang Jianjun, Xu Huarong, Kang Li, and Lifen Weng. "A Hybrid Approach Based on Deep CNN and Machine Learning Classifiers for the Tumor Segmentation and Classification in Brain MRI." Computational and Mathematical Methods in Medicine 2022 (August 8, 2022): 1–18. http://dx.doi.org/10.1155/2022/6446680.
Full textQu, Guangcan, Beichen Lu, Jialin Shi, et al. "Motion-artifact-augmented pseudo-label network for semi-supervised brain tumor segmentation." Physics in Medicine & Biology 69, no. 5 (2024): 055023. http://dx.doi.org/10.1088/1361-6560/ad2634.
Full textXing, Shuli, Zhenwei Lai, Junxiong Zhu, Wenwu He, and Guojun Mao. "Semantic Segmentation of Brain Tumors Using a Local–Global Attention Model." Applied Sciences 15, no. 11 (2025): 5981. https://doi.org/10.3390/app15115981.
Full textLyu, Yu, and Xiaolin Tian. "MWG-UNet: Hybrid Transformer U-Net Model for Brain Tumor Segmentation in MRI Scans++." Bioengineering 12, no. 2 (2025): 140. https://doi.org/10.3390/bioengineering12020140.
Full textTakahashi, Satoshi, Masamichi Takahashi, Manabu Kinoshita, et al. "NIMG-29. DEVELOPING AUTOMATIC SEGMENTATION METHOD FOR BRAIN TUMOR MR IMAGES THAT CAN BE USED AT MULTIPLE FACILITIES." Neuro-Oncology 22, Supplement_2 (2020): ii153—ii154. http://dx.doi.org/10.1093/neuonc/noaa215.642.
Full textChippalakatti, Shilpa, Renu Madhavi Chodavarapu, and Andhe Pallavi. "Identification and segmentation of tumor using deep learning and image segmentation algorithms." Indonesian Journal of Electrical Engineering and Computer Science 38, no. 3 (2025): 1782. https://doi.org/10.11591/ijeecs.v38.i3.pp1782-1792.
Full textSrivaishnavi, K. R., T. Pramananda Perumal, and P. Anishiya. "Brain Tumor Prediction and Segmentation with Morphological Region-based Active Contour Model and Refinement using Boltzmann Monte Carlo Method in MRI Images." Indian Journal Of Science And Technology 17, no. 20 (2024): 2088–100. http://dx.doi.org/10.17485/ijst/v17i20.1231.
Full textPidishetti, Rohit Viswakarma, Maaz Amjad, and Victor S. Sheng. "Advanced Brain Tumor Segmentation Using SAM2-UNet." Applied Sciences 15, no. 6 (2025): 3267. https://doi.org/10.3390/app15063267.
Full textHu, He-Xuan, Wen-Jie Mao, Zhen-Zhou Lin, Qiang Hu, and Ye Zhang. "Multimodal Brain Tumor Segmentation Based on an Intelligent UNET-LSTM Algorithm in Smart Hospitals." ACM Transactions on Internet Technology 21, no. 3 (2021): 1–14. http://dx.doi.org/10.1145/3450519.
Full textLiu, Dongwei, Ning Sheng, Tao He, Wei Wang, Jianxia Zhang, and Jianxin Zhang. "SGEResU-Net for brain tumor segmentation." Mathematical Biosciences and Engineering 19, no. 6 (2022): 5576–90. http://dx.doi.org/10.3934/mbe.2022261.
Full textFaisal Hafeez, Zobia Suhail, and Reyer Zwiggelaar. "Morphological and Marker-based Watershed Method for Detection and Segmentation of Brain Tumor Regions." NUST Journal of Engineering Sciences 16, no. 2 (2023): 108–13. http://dx.doi.org/10.24949/njes.v16i2.759.
Full textZhang, Fuchun, Liang Wu, Yuwen Wang, et al. "A Multi-Scale Brain Tumor Segmentation Method based on U-Net Network." Journal of Physics: Conference Series 2289, no. 1 (2022): 012028. http://dx.doi.org/10.1088/1742-6596/2289/1/012028.
Full textSyeda, Ateeq Fatima, and Asra Sarwath Prof. "Brain Tumor Detection Using Deep Learning." Journal of Scientific Research and Technology (JSRT) 1, no. 6 (2023): 256–64. https://doi.org/10.5281/zenodo.8373469.
Full textWu, Wentao, Daning Li, Jiaoyang Du, et al. "An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm." Computational and Mathematical Methods in Medicine 2020 (July 14, 2020): 1–10. http://dx.doi.org/10.1155/2020/6789306.
Full textNasrudin, Muhammad. "MRI-Based Brain Tumor Instance Segmentation Using Mask R-CNN." Computer Engineering and Applications Journal 13, no. 03 (2024): 1–9. http://dx.doi.org/10.18495/comengapp.v13i03.490.
Full textIratni, Maya, Amira Abdullah, Mariam Aldhaheri, et al. "Transformers for Neuroimage Segmentation: Scoping Review." Journal of Medical Internet Research 27 (January 29, 2025): e57723. https://doi.org/10.2196/57723.
Full textKazerooni, Anahita Fathi. "IMG-12. CBTN BRAIN TUMOR SEGMENTATION INITIATIVE: UPDATES ON MODEL RELEASE, HGG SEGMENTATION, AND SURVIVAL ANALYSIS." Neuro-Oncology 26, Supplement_4 (2024): 0. http://dx.doi.org/10.1093/neuonc/noae064.349.
Full textGani, Timothy Abe, and Uten Emmoh Philemon. "A Deep Learning Hybridized Model for Segmentation of Medical Brain Tumors." International Journal of Novel Research in Computer Science and Software Engineering 11, no. 2 (2024): 25–44. https://doi.org/10.5281/zenodo.11574304.
Full textWu, Mingliang, Hai-Li Ye, Yun Wu, and Jianmin Li. "Brain Tumor Image Segmentation Based on Grouped Convolution." Journal of Physics: Conference Series 2278, no. 1 (2022): 012042. http://dx.doi.org/10.1088/1742-6596/2278/1/012042.
Full textBhavani, Mrs R., and Dr K. Vasanth. "Classification of brain tumor using a multistage approach based on RELM and MLBP." EAI Endorsed Transactions on Pervasive Health and Technology 8, no. 4 (2023): e4. http://dx.doi.org/10.4108/eetpht.v8i4.3082.
Full textWu, Wangxin, and Jian Zheng. "Research on Brain MRI Image Segmentation Based on Improved Unet." Advances in Engineering Technology Research 12, no. 1 (2024): 381. https://doi.org/10.56028/aetr.12.1.381.2024.
Full textK, R. Srivaishnavi, Pramananda Perumal T, and Anishiya P. "Brain Tumor Prediction and Segmentation with Morphological Region-based Active Contour Model and Refinement using Boltzmann Monte Carlo Method in MRI Images." Indian Journal of Science and Technology 17, no. 20 (2024): 2088–100. https://doi.org/10.17485/IJST/v17i20.1231.
Full textDeng, Yuchuan. "Head Tumor Segmentation and Detection Based on Resunet." Applied and Computational Engineering 99, no. 1 (2024): 89–94. http://dx.doi.org/10.54254/2755-2721/99/20251810.
Full textZhang, Ruifeng, Shasha Jia, Mohammed Jajere Adamuand, Weizhi Nie, Qiang Li, and Ting Wu. "HMNet: Hierarchical Multi-Scale Brain Tumor Segmentation Network." Journal of Clinical Medicine 12, no. 2 (2023): 538. http://dx.doi.org/10.3390/jcm12020538.
Full textMukkapati, Naveen, and M. S. Anbarasi. "Brain Tumor Classification Based on Enhanced CNN Model." Revue d'Intelligence Artificielle 36, no. 1 (2022): 125–30. http://dx.doi.org/10.18280/ria.360114.
Full textSivamurugan, V., N. Radha, and R. Swathika. "Detection and segmentation of meningioma tumors using improved cloud empowered visual geometry group (cloud-ivgg) deep learning structure." Data and Metadata 4 (January 1, 2025): 478. https://doi.org/10.56294/dm2025478.
Full textPurohit, Nisha, and Chandi Prasad Bhatt. "Overview of Deep Learning Algorithms and Optimizers for Brain Tumor Segmentation." Journal of Medical Physics 50, no. 2 (2025): 185–97. https://doi.org/10.4103/jmp.jmp_12_25.
Full textChakravarthy R, Dr Arun. "Optimized Brain Tumor Detection Using Python Based Image Processing." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 05 (2025): 1–9. https://doi.org/10.55041/ijsrem47854.
Full textLi, Haiyang, Xiaozhi Qi, Ying Hu, and Jianwei Zhang. "Arouse-Net: Enhancing Glioblastoma Segmentation in Multi-Parametric MRI with a Custom 3D Convolutional Neural Network and Attention Mechanism." Mathematics 13, no. 1 (2025): 160. https://doi.org/10.3390/math13010160.
Full textSørensen, Peter Jagd, Claes Nøhr Ladefoged, Vibeke Andrée Larsen, et al. "Repurposing the Public BraTS Dataset for Postoperative Brain Tumour Treatment Response Monitoring." Tomography 10, no. 9 (2024): 1397–410. http://dx.doi.org/10.3390/tomography10090105.
Full textBonato, Beatrice, Loris Nanni, and Alessandra Bertoldo. "Advancing Precision: A Comprehensive Review of MRI Segmentation Datasets from BraTS Challenges (2012–2025)." Sensors 25, no. 6 (2025): 1838. https://doi.org/10.3390/s25061838.
Full textAtiyah, Assalah, and Khawla Ali. "Brain MRI Images Segmentation Based on U-Net Architecture." Iraqi Journal for Electrical and Electronic Engineering 18, no. 1 (2021): 21–27. http://dx.doi.org/10.37917/ijeee.18.1.3.
Full textTahon, Nourel hoda, Nader Ashraf, Ahmed Moawad, et al. "DSAI-05 THE BRAIN TUMOR SEGMENTATION (BRATS-METS) CHALLENGE 2023: BRAIN METASTASIS SEGMENTATION ON PRE-TREATMENT MRI." Neuro-Oncology Advances 6, Supplement_1 (2024): i12. http://dx.doi.org/10.1093/noajnl/vdae090.037.
Full textGull, Sahar, Shahzad Akbar, and Habib Ullah Khan. "Automated Detection of Brain Tumor through Magnetic Resonance Images Using Convolutional Neural Network." BioMed Research International 2021 (November 30, 2021): 1–14. http://dx.doi.org/10.1155/2021/3365043.
Full textRehman, Azka, Muhammad Usman, Abdullah Shahid, Siddique Latif, and Junaid Qadir. "Selective Deeply Supervised Multi-Scale Attention Network for Brain Tumor Segmentation." Sensors 23, no. 4 (2023): 2346. http://dx.doi.org/10.3390/s23042346.
Full textVinoth Kumar, V., and B. Paulchamy. "Tumor Categorization Model (TCM) Using Soft Computing Techniques for Providing Efficient Medical Support in Brain Tumor Treatments." Journal of Medical Imaging and Health Informatics 11, no. 11 (2021): 2806–13. http://dx.doi.org/10.1166/jmihi.2021.3872.
Full textSagiroglu, Seref, Ramazan Terzi, Emrah Celtikci, et al. "A novel brain tumor magnetic resonance imaging dataset (Gazi Brains 2020): initial benchmark results and comprehensive analysis." PeerJ Computer Science 11 (June 10, 2025): e2920. https://doi.org/10.7717/peerj-cs.2920.
Full textAggarwal, Mukul, Amod Kumar Tiwari, and M. Partha Sarathi. "Comparative Analysis of Deep Learning Models on Brain Tumor Segmentation Datasets: BraTS 2015-2020 Datasets." Revue d'Intelligence Artificielle 36, no. 6 (2022): 863–71. http://dx.doi.org/10.18280/ria.360606.
Full textDalal, Surjeet, Umesh Kumar Lilhore, Poongodi Manoharan, et al. "An Efficient Brain Tumor Segmentation Method Based on Adaptive Moving Self-Organizing Map and Fuzzy K-Mean Clustering." Sensors 23, no. 18 (2023): 7816. http://dx.doi.org/10.3390/s23187816.
Full textDuman, Abdulkerim, Oktay Karakuş, Xianfang Sun, Solly Thomas, James Powell, and Emiliano Spezi. "RFS+: A Clinically Adaptable and Computationally Efficient Strategy for Enhanced Brain Tumor Segmentation." Cancers 15, no. 23 (2023): 5620. http://dx.doi.org/10.3390/cancers15235620.
Full text