Academic literature on the topic 'Brainstem hypoglossal motoneurons'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Brainstem hypoglossal motoneurons.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Brainstem hypoglossal motoneurons"

1

Cifra, Alessandra, Francesca Nani, Elina Sharifullina, and Andrea Nistri. "A repertoire of rhythmic bursting produced by hypoglossal motoneurons in physiological and pathological conditions." Philosophical Transactions of the Royal Society B: Biological Sciences 364, no. 1529 (2009): 2493–500. http://dx.doi.org/10.1098/rstb.2009.0071.

Full text
Abstract:
The brainstem nucleus hypoglossus contains motoneurons that provide the exclusive motor nerve supply to the tongue. In addition to voluntary tongue movements, tongue muscles rhythmically contract during a wide range of physiological activities, such as respiration, swallowing, chewing and sucking. Hypoglossal motoneurons are destroyed early in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease often associated with a deficit in the transport system of the neurotransmitter glutamate. The present study shows how periodic electrical discharges of motoneurons are mainly produce
APA, Harvard, Vancouver, ISO, and other styles
2

Silva-Hucha, Silvia, Angel M. Pastor, and Sara Morcuende. "Neuroprotective Effect of Vascular Endothelial Growth Factor on Motoneurons of the Oculomotor System." International Journal of Molecular Sciences 22, no. 2 (2021): 814. http://dx.doi.org/10.3390/ijms22020814.

Full text
Abstract:
Vascular endothelial growth factor (VEGF) was initially characterized as a potent angiogenic factor based on its activity on the vascular system. However, it is now well established that VEGF also plays a crucial role as a neuroprotective factor in the nervous system. A deficit of VEGF has been related to motoneuronal degeneration, such as that occurring in amyotrophic lateral sclerosis (ALS). Strikingly, motoneurons of the oculomotor system show lesser vulnerability to neurodegeneration in ALS compared to other motoneurons. These motoneurons presented higher amounts of VEGF and its receptor F
APA, Harvard, Vancouver, ISO, and other styles
3

Robinson, David W., and William E. Cameron. "Time-Dependent Changes in Input Resistance of Rat Hypoglossal Motoneurons Associated with Whole-Cell Recording." Journal of Neurophysiology 83, no. 5 (2000): 3160–64. http://dx.doi.org/10.1152/jn.2000.83.5.3160.

Full text
Abstract:
The effect of cellular dialysis associated with whole-cell recording was studied in 24 developing hypoglossal motoneurons in a rat brainstem slice preparation. In all cases, establishing whole-cell continuity with the electrode solution resulted in an increase in the input resistance measured in current clamp. The mean magnitude of this increase was 39.7% and the time course of the maximum effect was quite variable. There was no correlation found between the time to maximum effect and the magnitude of the increase in resistance. These data indicate that the passive membrane properties are not
APA, Harvard, Vancouver, ISO, and other styles
4

Sawczuk, A., and K. M. Mosier. "Neural Control of Tongue Movement With Respect To Respiration and Swallowing." Critical Reviews in Oral Biology & Medicine 12, no. 1 (2001): 18–37. http://dx.doi.org/10.1177/10454411010120010101.

Full text
Abstract:
The tongue must move with remarkable speed and precision between multiple orofacial motor behaviors that are executed virtually simultaneously. Our present understanding of these highly integrated relationships has been limited by their complexity. Recent research indicates that the tongue's contribution to complex orofacial movements is much greater than previously thought. The purpose of this paper is to review the neural control of tongue movement and relate it to complex orofacial behaviors. Particular attention will be given to the interaction of tongue movement with respiration and swall
APA, Harvard, Vancouver, ISO, and other styles
5

Powell, Gregory L., Richard B. Levine, Amanda M. Frazier, and Ralph F. Fregosi. "Influence of developmental nicotine exposure on spike-timing precision and reliability in hypoglossal motoneurons." Journal of Neurophysiology 113, no. 6 (2015): 1862–72. http://dx.doi.org/10.1152/jn.00838.2014.

Full text
Abstract:
Smoothly graded muscle contractions depend in part on the precision and reliability of motoneuron action potential generation. Whether or not a motoneuron generates spikes precisely and reliably depends on both its intrinsic membrane properties and the nature of the synaptic input that it receives. Factors that perturb neuronal intrinsic properties and/or synaptic drive may compromise the temporal precision and the reliability of action potential generation. We have previously shown that developmental nicotine exposure (DNE) alters intrinsic properties and synaptic transmission in hypoglossal
APA, Harvard, Vancouver, ISO, and other styles
6

Allain, Anne-Emilie, Hervé Le Corronc, Alain Delpy, et al. "Maturation of the GABAergic Transmission in Normal and Pathologic Motoneurons." Neural Plasticity 2011 (2011): 1–13. http://dx.doi.org/10.1155/2011/905624.

Full text
Abstract:
γ-aminobutyric acid (GABA) acting on Cl−-permeable ionotropic type A (GABAA) receptors (GABAAR) is the major inhibitory neurotransmitter in the adult central nervous system of vertebrates. In immature brain structures, GABA exerts depolarizing effects mostly contributing to the expression of spontaneous activities that are instructive for the construction of neural networks but GABA also acts as a potent trophic factor. In the present paper, we concentrate on brainstem and spinal motoneurons that are largely targeted by GABAergic interneurons, and we bring together data on the switch from exci
APA, Harvard, Vancouver, ISO, and other styles
7

Nakajima, Misuzu. "Brainstem Segmental Arrangement of Sucking Rhythm Generators for Trigeminal, Facial and Hypoglossal Motoneurons." JOURNAL OF THE STOMATOLOGICAL SOCIETY,JAPAN 66, no. 1 (1999): 88–97. http://dx.doi.org/10.5357/koubyou.66.88.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fietkiewicz, Christopher, Kenneth A. Loparo, and Christopher G. Wilson. "Drive latencies in hypoglossal motoneurons indicate developmental change in the brainstem respiratory network." Journal of Neural Engineering 8, no. 6 (2011): 065011. http://dx.doi.org/10.1088/1741-2560/8/6/065011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Komarov, M., M. Naji, G. Krishnan, et al. "0139 COMPUTATIONAL MODEL OF BRAINSTEM CIRCUIT FOR STATE-DEPENDENT CONTROL OF HYPOGLOSSAL MOTONEURONS." Sleep 40, suppl_1 (2017): A52. http://dx.doi.org/10.1093/sleepj/zsx050.138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lape, Remigijus, and Andrea Nistri. "Characteristics of fast Na+current of hypoglossal motoneurons in a rat brainstem slice preparation." European Journal of Neuroscience 13, no. 4 (2001): 763–72. http://dx.doi.org/10.1046/j.0953-816x.2000.01433.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!