Academic literature on the topic 'Brayton cycle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Brayton cycle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Brayton cycle"
Wu, Pan, Chuntian Gao, Yanping Huang, Dan Zhang, and Jianqiang Shan. "Supercritical CO2 Brayton Cycle Design for Small Modular Reactor with a Thermodynamic Analysis Solver." Science and Technology of Nuclear Installations 2020 (January 24, 2020): 1–16. http://dx.doi.org/10.1155/2020/5945718.
Full textChoi, Sungwook, In Woo Son, and Jeong Ik Lee. "Comparative Performance Evaluation of Gas Brayton Cycle for Micro–Nuclear Reactors." Energies 16, no. 4 (February 20, 2023): 2065. http://dx.doi.org/10.3390/en16042065.
Full textSiddiqui, Muhammad Ehtisham, and Khalid H. Almitani. "Proposal and Thermodynamic Assessment of S-CO2 Brayton Cycle Layout for Improved Heat Recovery." Entropy 22, no. 3 (March 6, 2020): 305. http://dx.doi.org/10.3390/e22030305.
Full textWoodward, John B. "Ideal Cycle Evaluation of Steam Augmented Gas Turbines." Journal of Ship Research 40, no. 01 (March 1, 1996): 79–88. http://dx.doi.org/10.5957/jsr.1996.40.1.79.
Full textLi, Kai, and Kai Sun. "Influence of Supercritical Carbon Dioxide Brayton Cycle Parameters on Intelligent Circulation System and Its Optimization Strategy." Journal of Physics: Conference Series 2066, no. 1 (November 1, 2021): 012074. http://dx.doi.org/10.1088/1742-6596/2066/1/012074.
Full textSantos, J. T. dos, T. M. Fagundes, E. D. dos Santos, L. A. Isoldi, and L. A. O. Rocha. "ANALYSIS OF A COMBINED BRAYTON/RANKINE CYCLE WITH TWO REGENERATORS IN PARALLEL." Revista de Engenharia Térmica 16, no. 2 (December 31, 2017): 10. http://dx.doi.org/10.5380/reterm.v16i2.62205.
Full textSun, Lei, Yuqi Wang, Ding Wang, and Yonghui Xie. "Parametrized Analysis and Multi-Objective Optimization of Supercritical CO2 (S-CO2) Power Cycles Coupled with Parabolic Trough Collectors." Applied Sciences 10, no. 9 (April 30, 2020): 3123. http://dx.doi.org/10.3390/app10093123.
Full textZhang, W., L. Chen, and F. Sun. "Power and efficiency optimization for combined Brayton and two parallel inverse Brayton cycles. Part 2: Performance optimization." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222, no. 3 (March 1, 2008): 405–13. http://dx.doi.org/10.1243/09544062jmes640b.
Full textShaw, John E. "Comparing Carnot, Stirling, Otto, Brayton and Diesel Cycles." Transactions of the Missouri Academy of Science 42, no. 2008 (January 1, 2008): 1–6. http://dx.doi.org/10.30956/0544-540x-42.2008.1.
Full textLuo, Lihuang, Hong Gao, Chao Liu, and Xiaoxiao Xu. "Parametric Investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat from Nuclear Closed Brayton Cycle." Science and Technology of Nuclear Installations 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/6790576.
Full textDissertations / Theses on the topic "Brayton cycle"
Pradeepkumar, K. N. "Analysis of a 115MW, 3 shaft, helium Brayton cycle." Thesis, Cranfield University, 2002. http://dspace.lib.cranfield.ac.uk/handle/1826/9219.
Full textStaudt, James E. "Design study of an MGR direct Brayton-cycle power plant." Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14864.
Full textKleut, Petar. "Recuperation of the exhaust gases energy using a Brayton cycle machine." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/76807.
Full textÚltimamente los fabricantes de automóviles se han puesto el gran reto de reducir la emisión de CO2 en la totalidad de sus flotas. Las nuevas normativas para la reducción de las emisiones contaminantes limitan los medios para lograr los objetivos deseados en la emisión de CO2 porque algunas de las soluciones que llevan a la reducción en la emisión de CO2 también dan lugar a un incremento en la emisión de otros contaminantes. La recuperación de calor residual (WHR) podría ser una buena solución para reducir las emisiones de CO2 del motor de combustión interna (ICE) sin poner en peligro la emisión de contaminantes. En la presente Tesis se analizaron diferentes estrategias de WHR y se concluyó que sería interesante estudiar más a fondo la máquina de ciclo Brayton. El Ciclo Brayton de Aire (ABC) permite recuperar una parte del calor de los gases de escape del ICE y transformar este calor en energía mecánica. La energía mecánica recuperada se devuelve al cigüeñal del ICE, reduciendo de ese modo la cantidad de energía que tiene que ser liberada por la combustión del combustible, lo cual permite reducir el consumo de combustible y las emisiones de CO2. En esta Tesis se estudia el ABC mediante un análisis del ciclo ideal con el fin de obtener el máximo teórico del sistema. El modelo se mejora con un análisis del ciclo semi-ideal donde se tienen en cuenta todas las pérdidas mediante el uso de dos coeficientes generales. Este análisis muestra que para el motor diesel la eficiencia del ciclo ABC es muy baja debido a la baja temperatura del gas de escape. Para el motor de gasolina el ciclo podría ser viable cuando el ICE está trabajando bajo condiciones estacionarias y una carga mayor. Estas condiciones se podrían cumplir cuando el vehículo está circulando en autopista. El análisis detallado de este ciclo tiene como objetivo determinar las pérdidas principales de ciclo. Las pérdidas principales se identificaron como: las pérdidas de bombeo, las pérdidas causadas por la transferencia de calor y las pérdidas mecánicas. Teniendo en cuenta estas pérdidas principales junto con otras pérdidas directas e indirectas, se concluyó que el ciclo no es viable para los tipos de máquinas WHR que fueron considerados en este estudio. Para que el ciclo sea viable se tiene que buscar alguna otra máquina existente o un nuevo tipo de máquina que reduzca las principales pérdidas y ofrezca un buen rendimiento isentrópico y mecánico para las condiciones deseadas.
Últimament els fabricants d'automòbils s'han posat el gran repte de reduir l'emissió de CO2 de la totalitat de les seues flotes. Les noves normatives de reducció de les emissions contaminants limiten els mitjans per assolir els objectius desitjats d'emissió de CO2 perquè algunes de les solucions que porten a la reducció en l'emissió de CO2 també donen lloc a un increment a l'emissió de altres contaminants. La recuperació de calor residual (WHR) podria ser una bona solució per reduir les emissions de CO2 del motor de combustió interna (ICE) sense posar en perill l'emissió de contaminants. En la present Tesi s'han analitzat diferents estratègies WHR i es va concloure que seria interessant estudiar més a fons el cicle Brayton. El Cicle Brayton d'Aire (ABC) representa una manera de recuperar una part de la calor dels gasos d'escapament de l'ICE i transformar calor a l'energia mecànica. L'energia mecànica recuperada es retorna al cigonyal de l'ICE reduint d'aquesta manera la quantitat d'energia que ha de ser alliberada per la combustió del combustible permitint la reducció del consum de combustible i les emissions de CO2. En aquesta Tesi s'ha començat estudiant un ABC amb una anàlisi del cicle ideal per tal d'obtenir el màxim teòric del sistema. Este model es millora amb una anàlisi del cicle semiideal on es tenen en compte totes les pèrdues amb tan sols dos coeficients d'eficiència. Aquesta anàlisi va mostrar que per al motor dièsel l'eficiència del cicle ABC és molt baixa a causa de la baixa temperatura del gas d'escapament. Per al motor de gasolina el cicle podria ser viable quan l'ICE està treballant sota condicions estacionàries i una càrrega més gran. Aquestes condicions es podrien complir quan el vehicle està circulant en autopista. L'anàlisi detallada del cicle va tenir com a objectiu determinar les pèrdues principals de cicle. Les pèrdues principals es van identificar com: les pèrdues de bombament, les pèrdues causades per la transferència de calor i les pèrdues mecàniques. Tenint en compte aquestes pèrdues principals juntament amb altres pèrdues directes i indirectes, es va concloure que el cicle no és viable per als tipus de màquines WHR que van ser considerats en aquest estudi. Perquè el cicle puga ser viable s'ha de buscar alguna altra màquina existent o un nou tipus de màquina que puga reduir les principals pèrdues i puga oferir un bon rendiment isentròpic i mecànic per a les condicions desitjades.
Kleut, P. (2016). Recuperation of the exhaust gases energy using a Brayton cycle machine [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/76807
TESIS
Persigehl, Bernhard [Verfasser]. "Exergetische Optimierung einfacher Gasturbinenprozesse durch den Inversen Brayton Cycle / Bernhard Persigehl." Aachen : Shaker, 2012. http://d-nb.info/1067736271/34.
Full textMoxon, Matthew. "Thermodynamic analysis of the Brayton-cycle gas turbine under equilibrium chemistry assumptions." Thesis, Cranfield University, 2011. http://dspace.lib.cranfield.ac.uk/handle/1826/9237.
Full textTrinh, Tri Q. (Tri Quang). "Dynamic response of the supercritical C0₂ Brayton recompression cycle to various system transients." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/53527.
Full textPage 208 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (p. 159-160).
The supercritical carbon dioxide (SC0₂) power conversion system has been suggested for use with many of the Generation IV nuclear reactors. The SC0₂ cycle is highly attractive because of its low operating temperatures and high efficiency associated with working near the critical point of CO2. Unfortunately, the appealing features of using C0₂ near its critical point create complications in control. The Transient SC0₂ Cycles Code (TSCYCO) has been developed as a transient simulation control design and cycle scoping code for the recompression SC0₂ Brayton cycle. It is based off of the SC0₂ Power Systems (SCPS) code, and incorporates many improvements and modifications. Written in FORTRAN 90, TSCYCO uses a lumped parameter model and a momentum integral model approach. The code uses a semi-implicit solution process and implements Gaussian elimination to solve the system of equations. Transient behavior of the printed circuit heat exchangers is determined via the previously developed code HXMOD. Turbomachinery performance is modeled using the Real Gas Radial Compressor (RGRC) code with a scaling scheme for off-design conditions. Currently, TSCYCO has the capability of modeling several transients, including: loss of external load (LOEL), power load change, and cycle low-temperature change. Simulations show that TSCYCO can be run at quasi-steady state for an indefinite period of time. In the case of a 10% LOEL, the axial turbine experiences choke as a result of shaft overspeed. Turbine choke can be avoided if one bypasses more flow during LOEL.
(cont.) Moreover, one can incorporate more accurate axial turbine performance models to account for shaft speed variation. TSCYCO experiences instabilities when operated too closely to the critical point of C0₂. This could be remedied with a more robust Runge-Kutta solution method.
by Tri Q. Trinh.
S.M.
Kloppers, Cornelius Petrus. "Thermodynamic cycle design of a Brayton–Rankine combined cycle for a pebble bed modular reactor / Cornelius Petrus Kloppers." Thesis, North-West University, 2011. http://hdl.handle.net/10394/7623.
Full textThesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2011.
Minář, Luděk. "Analýza dvouhřídelové spalovací turbiny se sériově a paralelně řazenými turbinami." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230908.
Full textVorster, Christo. "Fault diagnostic system for predictive maintenance on a Brayton cycle power plant / C. Vorster." Thesis, North-West University, 2004. http://hdl.handle.net/10394/254.
Full textThesis (M.Ing. (Electronical Engineering))--North-West University, Potchefstroom Campus, 2004.
Du, Rand Carel Petrus. "Health monitoring of a Brayton cycle-based power conversion unit / Carel P. du Rand." Thesis, North-West University, 2007. http://hdl.handle.net/10394/2883.
Full textThesis (Ph.D. (Electrical and Electronic Engineering))--North-West University, Potchefstroom Campus, 2008.
Books on the topic "Brayton cycle"
Wilson, David Gordon. High-efficiency Brayton-cycle engines for marine propulsion. Alton: Microinfo, 1985.
Find full textGarrett Turbine Engine Company. Engineering Staff and United States. National Aeronautics and Space Administration, eds. Brayton cycle solarized advanced gas turbine: Final report. [Washington, DC: National Aeronautics and Space Administration, 1986.
Find full textWilson, David Gordon. High-efficiency Brayton-cycle engines for marine propulsion. Cambridge, Mass: Massachusetts Institute of Technology, Sea Grant College Program, 1985.
Find full textWilson, David Gordon. High-efficiency Brayton-cycle engines for marine propulsion. Cambridge, Mass: Massachusetts Institute of Technology, Sea Grant College Program, 1985.
Find full textBackman, Jari. On the reversed Brayton cycle with high speed machinery / Jari Backman. Lappeenranta, Finland: Lappeenranta University of Technology, 1996.
Find full textEnglish, Robert E. Technology for Brayton-cycle space powerplants using solar and nuclear energy. Cleveland, Ohio: Lewis Research Center, 1986.
Find full textUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., ed. Technology for Brayton-cycle space powerplants using solar and nuclear energy. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Find full textMason, Lee S. A comparison of Brayton and Stirling space nuclear power systems for power levels from 1 kilowatt to 10 megawatts. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Find full textLantz, Richard Daryl. Design study of a modular gas-cooled, closed-Brayton cycle reactor for marine use. Springfield, Va: Available from the National Technical Information Service, 1989.
Find full textShaltens, Richard K. 800 hours of operational experience from a 2 kW[subscript e] solar dynamic system. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1999.
Find full textBook chapters on the topic "Brayton cycle"
Zohuri, Bahman, and Patrick McDaniel. "Open Air-Brayton Gas Power Cycle." In Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants, 175–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70551-4_8.
Full textZohuri, Bahman. "Open Air Brayton Gas Power Cycle." In Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants, 173–94. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15560-9_8.
Full textYeğiner, Yusuf, Serkan Kenç, Güven Kömürgöz, and İbrahim Özkol. "Ecological Performance Analysis of Irreversible Brayton Cycle." In Progress in Exergy, Energy, and the Environment, 741–49. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04681-5_71.
Full textKaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamics of Brayton Refrigeration Cycle." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 219–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_10.
Full textKaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamic Analysis of Brayton Cycle." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 37–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_3.
Full textZohuri, Bahman, and Patrick McDaniel. "Modeling the Nuclear Air-Brayton Recuperated Cycle." In Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants, 207–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70551-4_10.
Full textZohuri, Bahman, and Patrick McDaniel. "Modeling the Nuclear Air-Brayton Combined Cycle." In Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants, 199–206. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70551-4_9.
Full textZohuri, Bahman. "Modeling the Nuclear Air Brayton Combined Cycle." In Heat Pipe Applications in Fission Driven Nuclear Power Plants, 153–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05882-1_5.
Full textGessner, R. L., and D. B. Colyer. "Miniature Claude and Reverse Brayton Cycle Turbomachinery Refrigerators." In Advances in Cryogenic Engineering, 474–84. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-0516-4_49.
Full textKaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamic Analysis of Modified Brayton Cycle." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 57–84. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_4.
Full textConference papers on the topic "Brayton cycle"
Mitra, Sushanta K., and Achintya Mukhopadhaya. "Brayton Cycle Optimization." In ASME 1997 Turbo Asia Conference. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-aa-087.
Full textZhao, Gang, Xiaoyong Yang, Ping Ye, Jie Wang, and Wei Peng. "Comparative Study of Helium Turbine Brayton Cycle and Supercritical CO2 Brayton Cycle for HTGR." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81561.
Full textSinghal, Chirag, Sameer Hasan, and M. F. Baig. "Modified Brayton Cycle for Turbofans." In ASME 2019 Gas Turbine India Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gtindia2019-2433.
Full textMcWhirter, Jon. "Radiantly-Heated Brayton-Ericsson Cycle." In 3rd International Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-5503.
Full textCarapellucci, R., and D. Di Battista. "Combined Brayton, Inverse Brayton and Steam Cycles Power Plant." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24098.
Full textShnaid, Isaac. "Thermodynamic and Techno-Economic Analyses of a Combined Cycle Power Plant With a Simple Cycle Gas Turbine, the Bottoming Air Turbine Cycle and the Reverse Brayton Cycle." In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-066.
Full textKomerath, Narayanan, and Brendan Dessanti. "Brayton Cycle Conversion for Space Solar Power." In 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-4287.
Full textDECHER, R. "Brayton cycle engines with reciprocating work components." In 25th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-2933.
Full textStaudt, J. E., and L. M. Lidsky. "An MGR Brayton-Cycle Power Plant Design." In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9154.
Full textDecher, R. "Power Density Optimization of Brayton Cycle Engines." In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9450.
Full textReports on the topic "Brayton cycle"
Anderson, Mark, James Sienicki, Anton Moisseytsev, Gregory Nellis, and Sanford Klein. Advanced Supercritical Carbon Dioxide Brayton Cycle Development. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1226260.
Full textAnderson, Bruce. Brayton-Cycle Baseload Power Tower CSP System. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1166984.
Full textPonciroli, R., and R. B. Vilim. Recompression Closed Brayton Cycle Control Options Nuclear Science. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1483846.
Full textShimko, Martin A., and Paul M. Dunn. Combined Reverse-Brayton Joule Thompson Hydrogen Liquefaction Cycle. Office of Scientific and Technical Information (OSTI), December 2011. http://dx.doi.org/10.2172/1345523.
Full textPasch, James Jay, Thomas M. Conboy, Darryn D. Fleming, and Gary Eugene Rochau. Supercritical CO2 recompression Brayton cycle : completed assembly description. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1057248.
Full textWright, Steven Alan, Ross F. Radel, Milton E. Vernon, Paul S. Pickard, and Gary Eugene Rochau. Operation and analysis of a supercritical CO2 Brayton cycle. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/984129.
Full textWright, Steven A., Ronald J. Lipinski, Milton E. Vernon, and Travis Sanchez. Closed Brayton cycle power conversion systems for nuclear reactors :. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/1177051.
Full textMoisseytsev, A., and J. J. Sienicki. Performance improvement options for the supercritical carbon dioxide brayton cycle. Office of Scientific and Technical Information (OSTI), July 2008. http://dx.doi.org/10.2172/935094.
Full textWright, Steven Alan, Thomas M. Conboy, and Gary Eugene Rochau. High-temperature split-flow recompression Brayton cycle initial test results. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1051730.
Full textMurray, Paul, Edward Lindsay, Michael McDowell, and Megan Huang. Task Order 20: Supercritical Carbon Dioxide Brayton Cycle Energy Conversion Study. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1372347.
Full text