Academic literature on the topic 'Breeding objectives'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Breeding objectives.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Breeding objectives"
Dhankhar, B. S., and J. P. Mishra. "Objectives of Okra Breeding." Journal of New Seeds 6, no. 2-3 (February 15, 2005): 195–209. http://dx.doi.org/10.1300/j153v06n02_09.
Full textBorg, R. C., D. R. Notter, L. A. Kuehn, and R. W. Kott. "Breeding objectives for Targhee sheep1." Journal of Animal Science 85, no. 11 (November 1, 2007): 2815–29. http://dx.doi.org/10.2527/jas.2006-064.
Full textMcManus, C., and R. Thompson. "Breeding objectives for red deer." Animal Science 57, no. 1 (August 1993): 161–67. http://dx.doi.org/10.1017/s0003356100006735.
Full textCunningham, E. P. "Sustainable breeding objectives in developing countries." Proceedings of the British Society of Animal Science 2003 (2003): 209. http://dx.doi.org/10.1017/s1752756200013685.
Full textMirhosseini, S. Z., M. Ghanipoor, and A. Shadparvar. "Breeding objectives for commercial silkworm lines in Iran." Proceedings of the British Society of Animal Science 2005 (2005): 135. http://dx.doi.org/10.1017/s1752756200010462.
Full textTozer, P. R., and J. R. Stokes. "Producer Breeding Objectives and Optimal Sire Selection." Journal of Dairy Science 85, no. 12 (December 2002): 3518–25. http://dx.doi.org/10.3168/jds.s0022-0302(02)74441-x.
Full textPonzoni, R. W., and D. R. Gifford. "Developing breeding objectives for Australian Cashmere Goats." Journal of Animal Breeding and Genetics 107, no. 1-6 (January 12, 1990): 351–70. http://dx.doi.org/10.1111/j.1439-0388.1990.tb00044.x.
Full textSimões, Michele R. S., Joal J. B. Leal, Alessandro P. Minho, Cláudia C. Gomes, Michael D. MacNeil, Rodrigo F. Costa, Vinícius S. Junqueira, et al. "Breeding objectives of Brangus cattle in Brazil." Journal of Animal Breeding and Genetics 137, no. 2 (June 10, 2019): 177–88. http://dx.doi.org/10.1111/jbg.12415.
Full textDonnelly, J. R., M. Freer, and A. D. Moore. "Evaluating pasture breeding objectives using computer models." New Zealand Journal of Agricultural Research 37, no. 3 (September 1994): 269–75. http://dx.doi.org/10.1080/00288233.1994.9513065.
Full textAmer, P. R., G. Simm, M. G. Keane, M. G. Diskin, and B. W. Wickham. "Breeding objectives for beef cattle in Ireland." Livestock Production Science 67, no. 3 (January 2001): 223–39. http://dx.doi.org/10.1016/s0301-6226(00)00201-3.
Full textDissertations / Theses on the topic "Breeding objectives"
Borg, Randy Charles. "Developing Breeding Objectives for Targhee Sheep." Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/9973.
Full textMaster of Science
Matjuda, Lehotlo Ephraim. "Development breeding objectives for the nguni cattle breed in South Africa." Thesis, University of Limpopo (Turfloop Campus), 2012. http://hdl.handle.net/10386/862.
Full textEdwards, Anne Michelle. "Breeding objectives for niche markets in the beef industry." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ27451.pdf.
Full textStoddard, F. L. "Fertilization in Vicia faba L. in relation to breeding objectives." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.354172.
Full textJolliffe, Thomas Howard. "Genetical studies in relation to breeding objectives in sugar beet." Thesis, University of East Anglia, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.256755.
Full textAlzamora, M. Rosa Maria. "Valuing Breeding Traits for Appearance and Structural Timber in Radiata Pine." Thesis, University of Canterbury. Forestry, 2010. http://hdl.handle.net/10092/5077.
Full textVisser, Daniel Pieter. "Structuring of breeding objectives in the pork supply chain in South Africa." Thesis, Pretoria : [s.n.], 2004. http://upetd.up.ac.za/thesis/available/etd-01142005-093429.
Full textSouza, Flávia Martins. "Valores e índices bioeconômicos para um sistema de produção de bovinos nelore no bioma cerrado." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/6490.
Full textApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-11-10T17:37:57Z (GMT) No. of bitstreams: 2 Tese - Flavia Martins de Souza - 2016.pdf: 2069042 bytes, checksum: fe83d06b4777198e60836ea748ef5c2d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-11-10T17:37:57Z (GMT). No. of bitstreams: 2 Tese - Flavia Martins de Souza - 2016.pdf: 2069042 bytes, checksum: fe83d06b4777198e60836ea748ef5c2d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-10-05
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The use of selection indices as tools for animal genetic evaluation may be more efficient than other selection methods to represent the animal merit. The aim of this study was to propose indices applied to different breeding objectives for production systems of Nellore cattle raised in the Cerrado biome. This study consisted in two phases. First, traits of economic relevance in beef cattle were evaluated. Subsequently, the development of indices and different breeding objectives were considered. The production system evaluated was an operation of purebred Nellore cattle, located in the Northwest of Goiás state, Brazil, where the inputs about management, indices of productivity, income and expenses were obtained. A bio-economic model was used to calculate the economic values of the following traits: age at first calving (IPP), calving interval (IDP), stayability (STAY), earlier calving probability (3P), accumulated productivity (PAC), daily weight gain prior (GMDPre) and post weaning (GMDPos), weight at standard ages of 120 (P120), 210 (P210), 365 (P365) and 450 (P450) days, feed efficiency (EA), carcass dressing (RC), and longissimus muscle area (AOL). Economic values were obtained for a change in one unit of each trait, maintaining the remaining unchanged. Then the economic values were standardized by its standard deviation of each trait. To generate selection indices the genetic (co)variances components of the traits were estimated by Bayesian implementation via Gibbs sampling using bi-trait animal models. The covariance and variance means obtained were used to generate a new matrix (12 x 12) containing all traits. The "matrix bending" methodology was applied to obtain a positive-defined matrix. The selection index equation used was I = b1DEP1 + ... + bnDEPn, where DEP is the expected progeny differences and "b" is the index coefficient that maximize the correlation among the index and the breeding objective. The "b" coefficients were calculated as b = G11-1G12a, where G11 is the genetic (co)variance matrix of the criteria in the index, G12 is the genetic covariance matrix between the selection criteria in the index and the traits in the breeding objective, and "a" is the vector of corrected economic values. Three indices were constructed with different proposes: indices I represent an overall index, which objective is to select harmonics animals. The indices II and III were defined with the purpose to maximize the weaned calves and finished beef cattle production, respectively. Economic values of the traits varied between R$ 0.38 and R$ 68.29 per animal/year. The traits that more strongly affected the economic system were GMDPre (20.55%), IPP (15.70%), AOL (12.13%), GMDPos (11.13%) and P450 (8.98%). The greater economic gains were obtained with index I (R$ 129.12). Indices II and III represented the lowest gains for the system. Generally, the indices are very sensitive to market conditions. However, they may provide more total gains (genetic and economic) as they comprise a set of economically relevant traits to the production system. In addition, the indices may be applied to different purposes in order to attend specific market requirements.
A utilização de índices econômicos de seleção como ferramenta para avaliação genética animal é mais eficiente em representar o valor total de um animal. Por isso, objetivou-se propor índices aplicados a diferentes objetivos de seleção para sistemas de produção de Nelore no bioma Cerrado. O presente estudo consistiu em duas fases, em que na 1ª avaliou-se a relevância econômica de características em bovinos de corte e na 2ª fase desenvolveu-se índices econômicos de seleção com diferentes objetivos. O sistema de produção avaliado foi baseado em uma propriedade de criação de bovinos Nelore PO, localizada no noroeste do estado de Goiás-Brasil, na qual foram obtidas informações sobre manejo, índices zootécnicos, gestão, receitas e despesas. Utilizou-se modelo bioeconômico para o cálculo dos valores econômicos das características idade ao primeiro parto (IPP), intervalo de partos (IDP), stayability (STAY), probabilidade de parto precoce (3P), produtividade acumulada (PAC), ganho médio diário pré (GMDPre) e pós desmama (GMDPos), pesos padronizados aos 120 (P120), 210 (P210), 365 (P365) e 450 (P450) dias de idade, eficiência alimentar (EA), rendimento de carcaça (RC) e área de olho de lombo (AOL). Os valores econômicos foram calculados por meio do melhoramento em 1 unidade de cada característica, mantendo as demais constantes, e em seguida foram padronizados pelo respectivo desvio-padrão de cada característica. Para criação dos índices de seleção, estimou-se os componentes de (co)variâncias de características usualmente selecionadas em Nelore (P120, P210, P365, P450, Perímetros Escrotal aos 365 (PE365) e aos 450 dias (PE450) de idade, AOL, Acabamento (ACAB), IPP, IDP, PAC e STAY), por meio da metodologia Bayesiana via Gibbs sampling, em modelo animal bi-característico. As covariâncias e as médias das variâncias obtidas das análises bicaracterísticas foram utilizadas para formação de uma nova matriz (12 x 12) que envolveu todas as características analisadas. Para assegurar que esta matriz fosse positiva definida, foi aplicada a metodologia Matrix Bending. O índice econômico de seleção foi desenvolvido por meio da equação: I = b1DEP1 + ... + bnDEPn, em que DEP é a diferença esperada na progênie do animal e "b" é o coeficiente regressor que maximiza a correlação entre o índice e o objetivo de seleção. O "b" foi calculado por meio da seguinte equação: b= G11-1G12a, em que o G11 é a matriz de (co)variâncias genéticas entre as características do índice de seleção, o G12 é a matriz de covariâncias genéticas entre as características do índice e do objetivo de seleção e "a" é o vetor de valores genético-econômicos. Três índices foram construídos com diferentes propósitos: o I referiu-se a um índice geral, cujo objetivo foi selecionar animais harmômicos. Os índices II e III tiveram como finalidade a maximização da produção de bezerros desmamados e de animais terminados, respectivamente. Os valores econômicos das características avaliadas variaram de R$ 0,38 a R$ 68,29 /animal/ano. As características que mais impactaram economicamente o sistema foram GMDPre (20,55%), IPP (15,70%), AOL (12,13%), GMDPos (11,13%) e P450 (8,98%). O índice econômico que proporcionou maior ganho econômico para o sistema avaliado foi o I (R$ 129,12). Enquanto os índices II e III representaram menores ganhos para o sistema. Em geral, os índices são sensíveis às condições mercadológicas. No entanto, podem proporcionar maiores ganhos totais (genéticos e econômicos), por envolver um conjunto de características economicamente relevantes para o sistema de produção. Além disso, os índices podem ser aplicados a diferentes propósitos, de forma a atender às necessidades mercadológicas.
Formigoni, Ivan Borba. "Estimação de valores econômicos para características componentes de índices de seleção em bovinos de corte." Universidade de São Paulo, 2002. http://www.teses.usp.br/teses/disponiveis/74/74131/tde-03092003-133102/.
Full textThe objective of the present study was to estimate economic values for component of selection indexes in beef cattle herds during suckling phase. Analyzed productive data was simulated and representative of production systems assisted by breeding program. Values of costs and incomes were collected from companies related to the economical study of national cattle raising. Selection criteria, for which economic values was estimated, were: heifer pregnancy at 14 months (PP14), stayability (HP) and weight weaning (PD).) The methodology of Bioeconomic Model was applied to estimation of economic values (VE). This methodology estimates the impact in the profit from the alteration in performance for each trait of genetic influence, keeping constant all the others variables analyzed. The VE for PP14 was R$0.71 for percentage of heifer pregnant, evaluated for heifer, and R$1.16 for kg of calves weaned analyzed for PD. The VE of the HP, analyzed for cow, were R$1.37, R$1.87, R$2.37 and R$2.87 considering the heifer cost purchase of R$450.00, R$500.00, R$550.00 and R$600.00, respectively. The VE were standardized for the genetic-economic value, result of multiplication of additive genetic standard deviation of the trait by respective VE. Although HP, in absolute values, was the trait of larger economic importance to the analyzed productive system, it presents inferior genetic-economic value compared PP14 and PD. This inversion is due to greater heritability and genetic variability of PP14 and PD. The genetic-economic value of the PP14 and HP together, was more important than WW, showing that the traits of fertility are the most economically important for this simulated productive system, specific to the commerce of calves weaned for the market.
Cai, Xinye. "A multi-objective GP-PSO hybrid algorithm for gene regulatory network modeling." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1492.
Full textBooks on the topic "Breeding objectives"
Joliffe, Thomas Howard. Genetical studies in relation to breeding objectives in sugar beet. Norwich: University of EastAnglia, 1990.
Find full textSleper, D. A., T. C. Barker, and P. J. Bramel-Cox, eds. Plant Breeding and Sustainable Agriculture: Considerations for Objectives and Methods. Madison, WI, USA: Crop Science Society of America and American Society of Agronomy, 1991. http://dx.doi.org/10.2135/cssaspecpub18.
Full textChuntanaparb, Lert. Defining tree breeding objectives for multipurpose tree species in Asia. Bangkok, Thailand: Winrock International-F/FRED, 1989.
Find full textHargrove, T. R. Changes in rice breeding in 10 Asian countries: 1965-84 : diffusion of genetic materials, breeding objectives, and cytoplasm. Manila: International Rice Research Institute, 1985.
Find full textSleper, David A., P. J. Bramel-Cox, and T. C. Barker. Plant Breeding and Sustainable Agriculture: Considerations for Objectives and Methods. Wiley & Sons, Limited, John, 2015.
Find full textA, Sleper D., Barker Thomas C. 1954-, Bramel-Cox P. J, and Crop Science Society of America. Division C-1., eds. Plant breeding and sustainable agriculture: Considerations for objectives and methods : proceedings of a symposium. Madison, Wis., USA: Crop Science Society of America, 1991.
Find full textSleper, D. A., and T. C. Barker. Plant Breeding and Sustainable Agriculture: Considerations for Objectives and Methods (C S S a Special Publication). Crop Science Society of Amer, 1991.
Find full textNozière, Pierre. INRA feeding system for ruminants. Edited by Daniel Sauvant and Luc Delaby. Wageningen Academic Publishers, 2018. http://dx.doi.org/10.3920/978-90-8686-872-8.
Full textPLANT GENETIC RESOURCES FOR GENETIC TECHNOLOGIES: TO THE 100TH ANNIVERSARY OF PUSHKIN LABORATORIES OF VIR. N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 2022. http://dx.doi.org/10.30901/978-5-907145-84-9.
Full textBook chapters on the topic "Breeding objectives"
Brown, Jack, and Peter D. S. Caligari. "Breeding objectives." In An Introduction to Plant Breeding, 18–33. Oxford OX4 2DQ, UK: Blackwell Publishing Ltd, 2013. http://dx.doi.org/10.1002/9781118685228.ch3.
Full textCasler, Michael D., and Edzard van Santen. "Breeding Objectives in Forages." In Fodder Crops and Amenity Grasses, 115–36. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-0760-8_5.
Full textDhillon, S. S., P. R. Kumar, and Neena Gupta. "Breeding Objectives and Methodologies." In Monographs on Theoretical and Applied Genetics, 8–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-06166-4_2.
Full textDuller, Sheena, Daniel Thorogood, and Stacy A. Bonos. "Breeding Objectives in Amenity Grasses." In Fodder Crops and Amenity Grasses, 137–60. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-0760-8_6.
Full textRauf, Saeed, Dorota Sienkiewicz-Paderewska, Dariusz P. Malinowski, M. Mubashar Hussain, Imtiaz Akram Khan Niazi, and Maria Kausar. "Forages: Ecology, Breeding Objectives and Procedures." In Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits, 149–201. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22518-0_5.
Full textPriyadarshan, P. M. "Objectives, Activities and Centres of Origin." In PLANT BREEDING: Classical to Modern, 35–47. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7095-3_2.
Full textSimm, Geoff, Geoff Pollott, Raphael Mrode, Ross Houston, and Karen Marshall. "Pig breeding." In Genetic improvement of farmed animals, 393–413. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789241723.0393.
Full textFelipe, A. J. "Flower quality and fruit quality in almond: Conflicting objectives?" In Developments in Plant Breeding, 245–48. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0467-8_51.
Full textFrancis, Charles A. "Contributions of Plant Breeding to Future Cropping Systems." In Plant Breeding and Sustainable Agriculture: Considerations for Objectives and Methods, 83–93. Madison, WI, USA: Crop Science Society of America and American Society of Agronomy, 2015. http://dx.doi.org/10.2135/cssaspecpub18.c5.
Full textReddy, P. Sanjana. "Ideotype breeding for improving yield in sorghum: recent advances and future perspectives." In Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield, 498–516. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789245431.0029.
Full textConference papers on the topic "Breeding objectives"
Ferreira, Ana Paula Lüdtke. "On the problem of compensatory mating in animal breeding." In Workshop-Escola de Informática Teórica. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/weit.2021.18928.
Full textCrepis, Oleg, Dumitru Bulat, Elena Zubcov, Marin Usatii, Denis Bulat, Nicolae Saptefrati, and Aureliu Cebanu. "Dezvoltarea unui complex mobil pentru reproducerea ecologo- industrial a speciilor pelagofile de pești în condiții de fluvii și lacuri." In Simpozion "Modificări funcționale ale ecosistemelor acvatice în contextul impactului antropic și al schimbărilor climatice". Institute of Zoology, Republic of Moldova, 2021. http://dx.doi.org/10.53937/9789975151979.13.
Full textWang, Zhibo, Zachary Shea, Maria L. Russo, Chao Shen, Jianyong Li, Patrick Bewick, Bingyu Zhao, and Bo Zhang. "crispr/cas9-targeted Mutagenesis of KTI1 and KTI3 to Reduce Trypsin Inhibitors in Soybean Seeds." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/qvrf9783.
Full textCurrie, Fergus, Yi Mei, Mengjie Zhang, Maren Wellenreuther, and Linley Jesson. "An Investigation on Multi-Objective Fish Breeding Program Design." In 2021 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2021. http://dx.doi.org/10.1109/ssci50451.2021.9659936.
Full textYermenbay, Аray, Lyudmila Shagarova, Мalis Absametov, and Sergey Osipov. "PROSPECTS OF WATER SUPPLY WITH FRESH GROUNDWATER UNDER ANTHROPOGENIC IMPACT CONDITIONS." In GEOLINKS International Conference. SAIMA Consult Ltd, 2020. http://dx.doi.org/10.32008/geolinks2020/b1/v2/29.
Full textHejzlar, Pavel, Neil E. Todreas, Michael J. Driscoll, Philip E. MacDonald, Jacopo Buongiorno, and Kevan D. Weaver. "Design Strategies for Lead-Alloy-Cooled Reactors for Actinide Burning and Low-Cost Electricity Production." In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22377.
Full textElisovetcaia, Dina, Raisa Ivanova, Iachim Gumeniuc, and Vasili Zayachuk. "Influența factorilor abiotici asupra capacităților germinative a semințelor de fag (Fagus sylvatica L.)." In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.11.
Full textСалтанович, Татьяна, Людмила Анточ, and А. Дончилэ. "Оценка реакции мужского гаметофита томата на действие патогенов Alternaria Spp." In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.84.
Full textCui, Deyang, Xiangzhou Cai, Jingen Chen, and Chenggang Yu. "Analysis of Sustainable Thorium Fuel Utilization in Molten Salt Reactors Starting From Enriched Uranium." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-67177.
Full textBewick, Patrick, Eva Collakova, and Bo Zhang. "Identification of Soybean Germplasm with Higher Concentrations of Long Chain Fatty Acids." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/yetx4658.
Full textReports on the topic "Breeding objectives"
Bozek, Michael, and Tani Hubbard. Greater Yellowstone Network amphibian monitoring protocol science review: A summary of reviewers’ responses. National Park Service, June 2022. http://dx.doi.org/10.36967/nrr-2293614.
Full textDunham, Rex A., Boaz Moav, Thomas Chen, and Benzion Cavari. Expression and Inheritance of Growth Hormone Gene Constructs and Selective Breeding of Transgenic Farmed Fish. United States Department of Agriculture, August 1994. http://dx.doi.org/10.32747/1994.7568774.bard.
Full textFlaishman, Moshe, Herb Aldwinckle, Shulamit Manulis, and Mickael Malnoy. Efficient screening of antibacterial genes by juvenile phase free technology for developing resistance to fire blight in pear and apple trees. United States Department of Agriculture, December 2008. http://dx.doi.org/10.32747/2008.7613881.bard.
Full textMalkinson, Mertyn, Irit Davidson, Moshe Kotler, and Richard L. Witter. Epidemiology of Avian Leukosis Virus-subtype J Infection in Broiler Breeder Flocks of Poultry and its Eradication from Pedigree Breeding Stock. United States Department of Agriculture, March 2003. http://dx.doi.org/10.32747/2003.7586459.bard.
Full textPerl, Avichai, Bruce I. Reisch, and Ofra Lotan. Transgenic Endochitinase Producing Grapevine for the Improvement of Resistance to Powdery Mildew (Uncinula necator). United States Department of Agriculture, January 1994. http://dx.doi.org/10.32747/1994.7568766.bard.
Full textNaim, Michael, Gary R. Takeoka, Haim D. Rabinowitch, and Ron G. Buttery. Identification of Impact Aroma Compounds in Tomato: Implications to New Hybrids with Improved Acceptance through Sensory, Chemical, Breeding and Agrotechnical Techniques. United States Department of Agriculture, October 2002. http://dx.doi.org/10.32747/2002.7585204.bard.
Full textCzosnek, Henryk Hanokh, Dani Zamir, Robert L. Gilbertson, and Lucas J. William. Resistance to Tomato Yellow Leaf Curl Virus by Combining Expression of a Natural Tolerance Gene and a Dysfunctional Movement Protein in a Single Cultivar. United States Department of Agriculture, June 2000. http://dx.doi.org/10.32747/2000.7573079.bard.
Full textWeller, Joel I., Ignacy Misztal, and Micha Ron. Optimization of methodology for genomic selection of moderate and large dairy cattle populations. United States Department of Agriculture, March 2015. http://dx.doi.org/10.32747/2015.7594404.bard.
Full textJoel, Daniel M., Steven J. Knapp, and Yaakov Tadmor. Genomic Approaches for Understanding Virulence and Resistance in the Sunflower-Orobanche Host-Parasite Interaction. United States Department of Agriculture, August 2011. http://dx.doi.org/10.32747/2011.7592655.bard.
Full textSchaffer, Arthur, Jack Preiss, Marina Petreikov, and Ilan Levin. Increasing Starch Accumulation via Genetic Modification of the ADP-glucose Pyrophosphorylase. United States Department of Agriculture, October 2009. http://dx.doi.org/10.32747/2009.7591740.bard.
Full text