Academic literature on the topic 'Bridges Bridges Concrete bridges'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bridges Bridges Concrete bridges.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bridges Bridges Concrete bridges"
Siwowski, Tomasz, and Piotr Żółtowski. "Strengthening Bridges with Prestressed CFRP Strips." Selected Scientific Papers - Journal of Civil Engineering 7, no. 1 (June 1, 2012): 79–86. http://dx.doi.org/10.2478/v10299-012-0021-2.
Full textYe, Yi, Shen Shan Pan, and Zhe Zhang. "A Method of Strengthening Concrete Suspension Bridges." Advanced Materials Research 163-167 (December 2010): 3707–12. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.3707.
Full textYu, Tong-Hua. "Concrete trussed arch bridges in China." Canadian Journal of Civil Engineering 14, no. 6 (December 1, 1987): 820–27. http://dx.doi.org/10.1139/l87-120.
Full textHelowicz, Andrzej. "Integral bridge and culvert design, Designer’s experience." Open Engineering 10, no. 1 (June 5, 2020): 499–505. http://dx.doi.org/10.1515/eng-2020-0059.
Full textChe, Xiao Jun, Xie Dong Zhang, and Chao Yang. "Remaining Pre-Stress Identification of Diseased Pre-Stressed Concrete Bridges Based on Neural Network." Advanced Materials Research 639-640 (January 2013): 1056–59. http://dx.doi.org/10.4028/www.scientific.net/amr.639-640.1056.
Full textSu, Dan, Yi-Sheng Liu, Xin-Tong Li, Xiao-Yan Chen, and Dong-Han Li. "Management Path of Concrete Beam Bridge in China from the Perspective of Sustainable Development." Sustainability 12, no. 17 (September 1, 2020): 7145. http://dx.doi.org/10.3390/su12177145.
Full textAn, Xin Zheng, Cheng Yi, and Rui Xue Du. "Performance Deterioration Behavior of Existing Reinforced Concrete Bridges." Advanced Materials Research 79-82 (August 2009): 1367–70. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.1367.
Full textAtadero, Jia, Abdallah, and Ozbek. "An Integrated Uncertainty-Based Bridge Inspection Decision Framework with Application to Concrete Bridge Decks." Infrastructures 4, no. 3 (August 8, 2019): 50. http://dx.doi.org/10.3390/infrastructures4030050.
Full textWang, Chun Sheng, Xiao Liang Zhai, Jing Wei Zhu, and Shuang Jie Zheng. "Research and Application of Composite Girder with Concrete Filled Tubular Flange." Advanced Materials Research 250-253 (May 2011): 2538–41. http://dx.doi.org/10.4028/www.scientific.net/amr.250-253.2538.
Full textSun, Limin, Yi Zhou, and Zhihua Min. "Experimental Study on the Effect of Temperature on Modal Frequencies of Bridges." International Journal of Structural Stability and Dynamics 18, no. 12 (November 9, 2018): 1850155. http://dx.doi.org/10.1142/s0219455418501559.
Full textDissertations / Theses on the topic "Bridges Bridges Concrete bridges"
Matta, Fabio. "Innovative solutions in bridge construction, rehabilitation, and structural health monitoring." Diss., Rolla, Mo. : University of Missouri-Rolla, 2007. http://scholarsmine.umr.edu/thesis/pdf/MattaPhD_Dissertation_09007dcc8038f8b1.pdf.
Full textVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 15, 2007) Includes bibliographical references.
Tullu, Kulbhushan S. (Kulbhushan Sharashchandra). "Rehabilitation of concrete bridges." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61065.
Full textSuggested guidelines for damage assessment and for selection of repair methods are presented along with some examples from the existing practice. The repair methods have been evaluated on the basis of load requirements, speed of repairs, durability, relative costs, aesthetics, materials, methods, and engineering solutions.
The thesis also deals summarily with the subject of bridge management systems, highlighting the need for effective maintenance and repair management strategies. Examples of two software packages being used currently for management purposes are presented. The case histories presented highlight the various current practices of rehabilitation and replacement.
Colldin, Ylva. "Waterproofing of concrete bridges." Licentiate thesis, Luleå, 1991. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26008.
Full textBonvalot, Eliot. "Dynamic response of bridges to near-fault, forward directivity ground motions." Online access for everyone, 2006. http://www.dissertations.wsu.edu/Thesis/Summer2006/e%5Fbonvalot%5F072606.pdf.
Full textCalloway, Benita R. "Yield line analysis of an AASHTO New Jersey concrete parapet wall." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-09052009-040731/.
Full textMenkulasi, Fatmir. "Development of a Composite Concrete Bridge System for Short-to-Medium-Span Bridges." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/50413.
Full textPh. D.
Yuen, Lik Hang. "Performance of Concrete Bridge Deck Joints." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd674.pdf.
Full textJohnson, Jeffrey Keith. "Concrete bridge deck behavior under thermal loads." Thesis, Montana State University, 2005. http://etd.lib.montana.edu/etd/2005/johnson/JohnsonJ0805.pdf.
Full textNelson, Douglas A. "Investigation of Concrete Mixtures to Reduce Differential Shrinkage Cracking in Composite Bridges." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/24425.
Full textMaster of Science
Eriksson, Viktor. "Design of Ultra High Performance Fibre Reinforced Concrete Bridges : A Comparative Study to Conventional Concrete Bridges." Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-75183.
Full textAnvändningen av ultrahögpresterande fiberbetong (UHPFRC) i anläggningsindustrin började på 1990-talet och har sedan dess använts till broar i hela världen. De mekaniska egenskaperna och den täta UHPFRC matrisen resulterar i lägre materialanvändning och bättre beständighet i jämförelse med konventionell betong, men användningen av UHPFRC har inte slagit igenom i den svenska industrin. De största förklaringarna till varför UHPFRC sällan används i Sverige är för att det inte har funnits kunskap och standarder. UHPFRC har också en hög cementhalt och cementindustrin bidrar med höga koldioxid (CO2) utsläpp till de totala CO2 utsläppen i världen. Den här masteruppsatsen skrevs för att undersöka om en UHPFRC bro är ett möjligt alternativ till en konventionell betongbro ur dimensionering- och materialanvändningssynpunkt med avseende på reduktion av CO2 utsläpp. Projektets övergripande mål är att öka kunskapen om materialet, med avseende på tillverkningen, de mekaniska egenskaperna och beteendet av UHPFRC, och dimensionering, med avseende på skillnaden i dimensionering mellan UHPFRC broar och konventionella betongbroar. I materialdelen utvecklades ett UHPFRC recept med korta raka stålfibrer. Provkroppar testades för att se hur olika fiberinnehåll påverkade de mekaniska egenskaperna och vilket fiberinnehåll som var mest gynnsamt. Tre olika fiberinnehåll testades: 1.5%, 2.0% och 2.5% av total volym av blandningen. De mekaniska egenskaperna som testades och utvärderades var bearbetbarheten, böjhållfasthet, draghållfasthet, fraktur energi, tryckhållfasthet och elasticitetsmodul. Beständigheten av UHPFRC testades aldrig men i vilken omfattning fibrerna påverkar beständigheten undersöktes i den litteraturstudie som skrevs inför testerna och tillverkningen av UHPFRC. Det konstaterades att en ökning i fiberinnehåll resulterade i en ökning av de mekaniska egenskaperna, förutom för bearbetbarheten och i vissa fall när ett fiberinnehåll av 2.5% användes. Ökningen av de mekaniska egenskaperna berodde på det ökande sprickmotståndet och bindningsstyrka mellan fibrerna och matrisen. Minskningen av de mekaniska egenskaperna, till exempel den karakteristiska drag- och tryckhållfastheten, när ett fiberinnehåll på 2.5% i cylindrar användes kan bero på ojämn fiberfördelning och större mängd luft i provkropparna vilket resulterar i lägre hållfasthet. Det konstaterades att ett fiberinnehåll på 2.0% var det mest gynnsamma. Det kunde inte konstateras i vilken omfattning fibrerna påverkar beständigheten men det kunde konstateras att nedbrytningen av fibrerna tar lång tid. I dimensioneringsdelen utformades tre slakarmerade balkbroöverbyggnader, i två fall var överbyggnaden med UHPFRC (olika tjocklekar) och i ett fall var den med konventionell betong. Fram till 2017 fanns det bara tekniska riktlinjer och rekommendationer för UHPFRC men 2017 publicerades de första godkända standarderna i världen. De franska nationella standarderna täcker material (NF P18-470, 2016) och dimensionering (NF P18-710, 2016) och användes vid dimensioneringen. Materialanvändningen med avseende på mängd armerad UHPFRC/betong och slakarmering och mängd CO2 utsläpp från produktionen av cement och stål (fibrer och slakarmering) som användes till broarna i mittenspannet och vid stöden undersöktes. Även dimensioneringsprocessen utvärderades. Det konstaterades att UHPFRC bron med optimerad tjocklek var 47% lättare än betongbron men mängden CO2 utsläpp var fortfarande högre (till exempel 23% högre från stödet). Det konstaterades att om det ska vara möjligt att fastställa att en UHPFRC bro är ett möjligt alternativ till en konventionell betongbro, med avseende på reduktion av CO2 utsläpp, måste CO2 utsläppen ses från ett bredare perspektiv än från bara produktion av cement och stål, till exempel mindre transporter och längre livslängd.
Books on the topic "Bridges Bridges Concrete bridges"
Paul, Gauvreau, ed. Prestressed concrete bridges. Basel [Switzerland]: Birkhäuser Verlag, 1990.
Find full textMenn, Christian. Prestressed Concrete Bridges. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-9131-8.
Full textManning, David G. Removing concrete from bridges. Washington, D.C: Transportation Research Board, National Research Council, 1991.
Find full textLaFraugh, Robert W. Concrete overlays for bridges. [Olympia, WA] (Highway Administration Bldg., Olympia 98504): Washington State Dept. of Transportation in cooperation with U.S. Dept. of Transportation, Federal Highway Administration, 1986.
Find full textVirmani, Yash Paul. Corrosion protection: Concrete bridges. McLean, VA: Federal Highway Administration, 1998.
Find full textIqbal, Husain. Semi-integral abutment bridges. [Toronto]: Queen's Printer for Ontario, 1999.
Find full textHess, Jeffrey A. Historic highway bridges in Wisconsin. [Madison, Wis.]: Wisconsin Dept. of Transportation, 1986.
Find full textBook chapters on the topic "Bridges Bridges Concrete bridges"
Menn, Christian. "Historical Overview." In Prestressed Concrete Bridges, 1–47. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-9131-8_1.
Full textMenn, Christian. "Economy and Aesthetics." In Prestressed Concrete Bridges, 49–64. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-9131-8_2.
Full textMenn, Christian. "Materials and Actions." In Prestressed Concrete Bridges, 65–91. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-9131-8_3.
Full textMenn, Christian. "Fundamentals of Analysis and Design." In Prestressed Concrete Bridges, 93–210. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-9131-8_4.
Full textMenn, Christian. "Analysis and Design of Bridge Superstructures." In Prestressed Concrete Bridges, 211–75. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-9131-8_5.
Full textMenn, Christian. "Accessories." In Prestressed Concrete Bridges, 277–92. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-9131-8_6.
Full textMenn, Christian. "Design and Construction of Special Bridge Types." In Prestressed Concrete Bridges, 293–438. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-9131-8_7.
Full textMenn, Christian. "Analysis and Design of Bridge Substructures." In Prestressed Concrete Bridges, 439–506. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-9131-8_8.
Full textSchacht, Gregor, Guido Bolle, and Steffen Marx. "Load Testing of Concrete Building Constructions." In Load Testing of Bridges, 109–41. Leiden : CRC Press/Balkema, [2019] | Series: Structures and infrastructures series, ISSN 1747-7735 ; volumes 12-13: CRC Press, 2019. http://dx.doi.org/10.1201/9780429265969-4.
Full textMartins, Alberto M. B., Luís M. C. Simões, and João H. J. O. Negrão. "Optimization of Extradosed Concrete Bridges." In Advances in Structural and Multidisciplinary Optimization, 1937–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67988-4_144.
Full textConference papers on the topic "Bridges Bridges Concrete bridges"
Täljsten, Björn, Thomas Blanksvärd, Gabriel Sas, Niklas Bagge, Jonny Nilimaa, Cosmin Popescu, Lennart Elfgren, Anders Carolin, and Jens Häggström. "Bridges Tested to Failure in Sweden." In IABSE Conference, Copenhagen 2018: Engineering the Past, to Meet the Needs of the Future. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/copenhagen.2018.064.
Full textHarrewijn, T. L., R. P. H. Vergoossen, and E. O. L. Lantsoght. "Reverse engineering of existing reinforced concrete slab bridges." In IABSE Congress, Christchurch 2021: Resilient technologies for sustainable infrastructure. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/christchurch.2021.0140.
Full textJohnson, Arne P., Gary J. Klein, and John S. Lawler. "Extending the Life of Historic Concrete Bridges." In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.1080.
Full textBajaj, Mayank, and Biswajit Bhattacharjee. "Residual service life estimation of bridges." In IABSE Congress, Christchurch 2021: Resilient technologies for sustainable infrastructure. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/christchurch.2021.0984.
Full textKuhlmann, Ulrike, Simon Bove, Stephanie Breunig, and Karl Drebenstedt. "Fatigue of steel bridges." In 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.7212.
Full textLin, Weiwei, Heang Lam, and Teruhiko Yoda. "Mechanical Behaviour of Steel-Concrete Twin I-Girder Bridges." In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.1077.
Full textSrinivasan, S., and Gopal Srinivasan. "Concrete Bridges Form and Function: Sungai Prai Bridge, Malaysia." In Structures Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/41016(314)124.
Full textShiravand, Mahmoud Reza, and Shima Mahboubi. "Seismic behavior of Skew RC Bridges with CFRP piers." In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.0119.
Full textGupta, Tanmay, and Manoj Kumar. "Structural Response of Skew-Curved Concrete Box-Girder Bridges under Eccentric Vehicular Loading." In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.1021.
Full textZobel, Henryk, Wojciech Karwowski, Agnieszka Golubińska, and Thakaa Al-Khafaji. "Fire of steel and composite beam bridges." In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.0724.
Full textReports on the topic "Bridges Bridges Concrete bridges"
Wang, Yao, Mirela D. Tumbeva, and Ashley P. Thrall. Evaluating Reserve Strength of Girder Bridges Due to Bridge Rail Load Shedding. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317308.
Full textHoehler, M., D. McCallen, and C. Noble. The seismic response of concrete arch bridges (with focus on the Bixby Creek bridge Carmel, California). Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/9869.
Full textVarma, Amit H., Jan Olek, Christopher S. Williams, Tzu-Chun Tseng, Dan Huang, and Tom Bradt. Post-Fire Assessment of Prestressed Concrete Bridges in Indiana. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317290.
Full textRavazdezh, Faezeh, Julio A. Ramirez, and Ghadir Haikal. Improved Live Load Distribution Factors for Use in Load Rating of Older Slab and T-Beam Reinforced Concrete Bridges. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317303.
Full textPevey, Jon M., William B. Rich, Christopher S. Williams, and Robert J. Frosch. Repair and Strengthening of Bridges in Indiana Using Fiber Reinforced Polymer Systems: Volume 1–Review of Current FRP Repair Systems and Application Methodologies. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317309.
Full textRich, William B., Robert R. Jacobs, Christopher S. Williams, and Robert J. Frosch. Repair and Strengthening of Bridges in Indiana Using Fiber Reinforced Polymer Systems: Volume 2–FRP Flexural Strengthening and End Region Repair Experimental Programs. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317310.
Full textCovino, Bernard S. Jr, Stephen D. Cramer, Sophie J. Bullard, Gordon R. Holcomb, James H. Russell, W. Keith Collins, Martin H. Laylor, and Curtis B. Cryer. Performance of Zinc Anodes for Cathodic Protection of Reinforced Concrete Bridges. Office of Scientific and Technical Information (OSTI), March 2002. http://dx.doi.org/10.2172/804079.
Full textGroeneveld, Andrew B., Stephanie G. Wood, and Edgardo Ruiz. Estimating Bridge Reliability by Using Bayesian Networks. Engineer Research and Development Center (U.S.), February 2021. http://dx.doi.org/10.21079/11681/39601.
Full textFuchs, Alan, Tathagata Acharya, Luis Cabrales, Jesse Bergkamp, and Nyakundi M. Michieka. A New Materials and Design Approach for Roads, Bridges, Pavement, and Concrete. Mineta Transportation Institute, February 2020. http://dx.doi.org/10.31979/mti.2019.1858.
Full textSeok, Seungwook, Faezeh Ravazdezh, Ghadir Haikal, and Julio A. Ramirez. Strength Assessment of Older Continuous Slab and T-Beam Reinforced Concrete Bridges. Purdue University, 2020. http://dx.doi.org/10.5703/1288284316924.
Full text