Journal articles on the topic 'Brittle curve'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Brittle curve.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lee, Tae-kyung, Seokmin Hong, Jongmin Kim, Min-Chul Kim, and Jae-il Jang. "Evaluation of Transition Temperature in Reactor Pressure Vessel Steels 6using the Fracture Energy Transition Curve from a Small Punch Test." Korean Journal of Metals and Materials 58, no. 8 (August 5, 2020): 522–32. http://dx.doi.org/10.3365/kjmm.2020.58.8.522.
Full textSakai, M., S. Shimizu, and T. Ishikawa. "The Indentation Load-depth Curve of Ceramics." Journal of Materials Research 14, no. 4 (April 1999): 1471–84. http://dx.doi.org/10.1557/jmr.1999.0198.
Full textOuyang, Chengsheng, and Surendra P. Shah. "Geometry-Dependent R-Curve for Quasi-Brittle Materials." Journal of the American Ceramic Society 74, no. 11 (November 1991): 2831–36. http://dx.doi.org/10.1111/j.1151-2916.1991.tb06851.x.
Full textLambrigger, M. "Master curve for brittle cleavage fracture toughness testing." Engineering Fracture Mechanics 55, no. 4 (November 1996): 677–78. http://dx.doi.org/10.1016/0013-7944(95)00259-6.
Full textCao, L. W., S. J. Wu, and P. E. J. Flewitt. "Comparison of ductile-to-brittle transition curve fitting approaches." International Journal of Pressure Vessels and Piping 93-94 (May 2012): 12–16. http://dx.doi.org/10.1016/j.ijpvp.2012.02.001.
Full textWei, Jing Ping, Zhi Hao Ding, and Fan Chen. "Research on Brittleness and its Definition of Mudstone." Applied Mechanics and Materials 275-277 (January 2013): 379–82. http://dx.doi.org/10.4028/www.scientific.net/amm.275-277.379.
Full textWallin, Kim. "The master curve method: a new concept for brittle fracture." International Journal of Materials and Product Technology 14, no. 2/3/4 (1999): 342. http://dx.doi.org/10.1504/ijmpt.1999.036276.
Full textChai, Peng, Shujuan Li, Yan Li, Lie Liang, and Xincheng Yin. "Mechanical Behavior Investigation of 4H-SiC Single Crystal at the Micro–Nano Scale." Micromachines 11, no. 1 (January 17, 2020): 102. http://dx.doi.org/10.3390/mi11010102.
Full textBarinov, S. M., and M. Sakai. "The work-of-fracture of brittle materials: Principle, determination, and applications." Journal of Materials Research 9, no. 6 (June 1994): 1412–25. http://dx.doi.org/10.1557/jmr.1994.1412.
Full textLi, Fei, Shuang You, Hongguang Ji, and Hao Wang. "Study of Damage Constitutive Model of Brittle Rocks considering Stress Dropping Characteristics." Advances in Civil Engineering 2020 (October 26, 2020): 1–9. http://dx.doi.org/10.1155/2020/8875029.
Full textBloyer, D. R., R. O. Ritchie, and K. T. Venkateswara Rao. "Fracture toughness and R-Curve behavior of laminated brittle-matrix composites." Metallurgical and Materials Transactions A 29, no. 10 (October 1998): 2483–96. http://dx.doi.org/10.1007/s11661-998-0220-0.
Full textZhao, Yanhua, Jianmei Chang, and Hongbo Gao. "A three-parameter R-curve of concrete-like quasi-brittle materials." Construction and Building Materials 78 (March 2015): 243–49. http://dx.doi.org/10.1016/j.conbuildmat.2015.01.029.
Full textLi, Xu Yang, Rui Yuan Huang, Yong Chi Li, and Guang Fa Gao. "Experimental Research of Foamed Ceramic Composite under Dynamic Loading Using SHPB." Advanced Materials Research 718-720 (July 2013): 112–16. http://dx.doi.org/10.4028/www.scientific.net/amr.718-720.112.
Full textTOI, Yutaka, and Takanori KIYOSUE. "Two-Dimensional Mesomechanical Analysis of R-Curve Behavior in Brittle Microcracking Solids." Transactions of the Japan Society of Mechanical Engineers Series A 62, no. 598 (1996): 1488–95. http://dx.doi.org/10.1299/kikaia.62.1488.
Full textLofaj, František, Dušan Németh, Rudolf Podoba, and Michal Novák. "Cracking in Brittle Coatings during Nanoindentation." Key Engineering Materials 662 (September 2015): 103–6. http://dx.doi.org/10.4028/www.scientific.net/kem.662.103.
Full textZhang, Ya Lin, and Hu Hui. "Investigation of Mechanical Properties and Ductile-Brittle Transition Behaviors of SA738Gr.B Steel Used as Reactor Containment." Key Engineering Materials 795 (March 2019): 66–73. http://dx.doi.org/10.4028/www.scientific.net/kem.795.66.
Full textHuang, Chao Bin, Yan Zhu, Ru Yi Wu, Qing Shan Li, Mei Zhang, Yong Zhong, and Lin Li. "Research on Hot Ductility Behavior of 800 MPa Grade Ultra High Strength Weathering Steel." Advanced Materials Research 815 (October 2013): 205–11. http://dx.doi.org/10.4028/www.scientific.net/amr.815.205.
Full textCao, Guang Zhu, Yi Qiang, and Feng Li. "Real-Time Observations of Fracturing Processes of Brittle Rock in Compression by X Ray Computed Tomography." Advanced Materials Research 361-363 (October 2011): 171–78. http://dx.doi.org/10.4028/www.scientific.net/amr.361-363.171.
Full textYu, Weijian, Genshui Wu, Baifu An, and Ping Wang. "Experimental Study on the Brittle-Ductile Response of a Heterogeneous Soft Coal Rock Mass under Multifactor Coupling." Geofluids 2019 (May 2, 2019): 1–15. http://dx.doi.org/10.1155/2019/5316149.
Full textSatapathy, Sikhanda S., and Stephan J. Bless. "Cavity expansion resistance of brittle materials obeying a two-curve pressure–shear behavior." Journal of Applied Physics 88, no. 7 (2000): 4004. http://dx.doi.org/10.1063/1.1288007.
Full textBloyer, D. R., K. T. Venkateswara Rao, and R. O. Ritchie. "Resistance-curve toughening in ductile/brittle layered structures: Behavior in Nb/Nb3Al laminates." Materials Science and Engineering: A 216, no. 1-2 (October 1996): 80–90. http://dx.doi.org/10.1016/0921-5093(96)10391-9.
Full textJelitto, H., F. Hackbarth, H. Özcoban, and G. A. Schneider. "Automated Control of Stable Crack Growth for R-Curve Measurements in Brittle Materials." Experimental Mechanics 53, no. 2 (May 11, 2012): 163–70. http://dx.doi.org/10.1007/s11340-012-9622-4.
Full textLutz, Ekkehard H., Michael V. Swain, and Peter S. Cook. "Significance of specimen size for the KR-curve behavior of quasi-brittle materials." Journal of the European Ceramic Society 13, no. 6 (January 1994): 501–7. http://dx.doi.org/10.1016/0955-2219(94)90132-5.
Full textKargar, Alireza, and Reza Rahmannejad. "An analytical solution for the ground reaction curve of brittle rocks, including gravity." Arabian Journal of Geosciences 8, no. 3 (December 28, 2013): 1479–86. http://dx.doi.org/10.1007/s12517-013-1206-9.
Full textSmith, E. "Geometry dependence of crack growth resistance curve for a ligament toughened brittle material." Theoretical and Applied Fracture Mechanics 17, no. 1 (April 1992): 83–91. http://dx.doi.org/10.1016/0167-8442(92)90048-3.
Full textYoon, K. K., W. A. Van Der Sluys, and K. Hour. "Effect of Loading Rate on Fracture Toughness of Pressure Vessel Steels." Journal of Pressure Vessel Technology 122, no. 2 (March 7, 2000): 125–29. http://dx.doi.org/10.1115/1.556176.
Full textZhao, Chun Yang, Hong Zhi Zhang, Li Jun Yang, and Yang Wang. "Curve Cutting ZrO2 Ceramic and Cooling Lower Surface Cutting Silicon Wafer with Laser Induced Thermal-Crack Propagation." Applied Mechanics and Materials 711 (December 2014): 222–26. http://dx.doi.org/10.4028/www.scientific.net/amm.711.222.
Full textZhang, Mei, Xue Zhao, Yan Zhu, Chao Bin Huang, Qing Shan Li, Yong Zhong, and Lin Li. "Hot Ductility of Low Carbon Nb-Microalloyed Weathering Steel." Advanced Materials Research 887-888 (February 2014): 200–206. http://dx.doi.org/10.4028/www.scientific.net/amr.887-888.200.
Full textWang, Fang, Lu Cai Wang, and Jian Guo Wu. "Tensile Behavior of Foamed Aluminum with Closed-Cell." Key Engineering Materials 480-481 (June 2011): 117–19. http://dx.doi.org/10.4028/www.scientific.net/kem.480-481.117.
Full textWu, Yong Shou, and Yong Jun Liu. "Study on Ductile Brittle Transition Temperature of Q345C Steel MAG Welded Joints." Key Engineering Materials 703 (August 2016): 155–59. http://dx.doi.org/10.4028/www.scientific.net/kem.703.155.
Full textHojjati-Talemi, Reza, Steven Cooreman, and Dennis Van Hoecke. "Finite element simulation of dynamic brittle fracture in pipeline steel: A XFEM-based cohesive zone approach." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 232, no. 5 (January 13, 2016): 357–70. http://dx.doi.org/10.1177/1464420715627379.
Full textMcGwire, Kenneth C., Kendrick C. Taylor, John R. Banta, and Joseph R. McConnell. "Identifying annual peaks in dielectric profiles with a selection curve." Journal of Glaciology 57, no. 204 (2011): 763–69. http://dx.doi.org/10.3189/002214311797409721.
Full textSHIN, HYUNG-SEOP, JONG-SEO PARK, and HAE-MOO LEE. "CURVE FITTING IN THE TRANSITION REGION OF CHARPY IMPACT DATA." International Journal of Modern Physics B 22, no. 09n11 (April 30, 2008): 1496–503. http://dx.doi.org/10.1142/s0217979208046980.
Full textZhao, Zhenwei, Bo Wu, Xin Yang, Zhenya Zhang, and Zhantao Li. "An Improved Statistical Damage Constitutive Model for Granite under Impact Loading." Advances in Civil Engineering 2019 (August 14, 2019): 1–7. http://dx.doi.org/10.1155/2019/7831656.
Full textEbisu, T., and S. Horibe. "Analysis of the indentation size effect in brittle materials from nanoindentation load–displacement curve." Journal of the European Ceramic Society 30, no. 12 (September 2010): 2419–26. http://dx.doi.org/10.1016/j.jeurceramsoc.2010.05.006.
Full textXu, Luo-Yu. "Some techniques to establish the characteristic curve for microcrack growth in brittle laminated materials." Engineering Fracture Mechanics 56, no. 6 (April 1997): 827–37. http://dx.doi.org/10.1016/s0013-7944(96)00018-5.
Full textCarcreff, H., A. Alberman, L. Barbot, F. Rozenblum, D. Beretz, and YK Lee. "Dosimetry Requirements for Pressure Vessel Steels Toughness Curve in the Ductile to Brittle Range." Journal of ASTM International 3, no. 3 (2006): 13455. http://dx.doi.org/10.1520/jai13455.
Full textLezcano, R., C. Rodríguez, I. Peñuelas, C. Betegón, and F. J. Belzunce. "Effect of mechanical mismatching on the ductile-to-brittle transition curve of welded joints." Engineering Failure Analysis 16, no. 8 (December 2009): 2576–85. http://dx.doi.org/10.1016/j.engfailanal.2009.04.030.
Full textKumar, Shailendra, and Rajendra Kumar Choubey. "Further observations on the three-parameter R-curve of concrete-like quasi-brittle materials." Construction and Building Materials 93 (September 2015): 857–68. http://dx.doi.org/10.1016/j.conbuildmat.2015.05.079.
Full textMaimí, Pere, Ahmed Wagih, Adrián Ortega, José Xavier, Norbert Blanco, and Pedro Ponces Camanho. "On the experimental determination of the $$\mathcal {J}$$-curve of quasi-brittle composite materials." International Journal of Fracture 224, no. 2 (June 22, 2020): 199–215. http://dx.doi.org/10.1007/s10704-020-00456-0.
Full textKusch, Andrea, Simone Salamina, Daniele Crivelli, and Filippo Berto. "Strain Energy Density as Failure Criterion for Quasi-Static Uni-axial Tensile Loading." Frattura ed Integrità Strutturale 15, no. 57 (June 22, 2021): 331–49. http://dx.doi.org/10.3221/igf-esis.57.24.
Full textZhuo, Xiao, Jang Kim, and Hyeon Beom. "R-curve Evaluation of Copper and Nickel Single Crystals Using Atomistic Simulations." Crystals 8, no. 12 (November 26, 2018): 441. http://dx.doi.org/10.3390/cryst8120441.
Full textZhang, Ya Lin, Hu Hui, Jun Bao Zhang, Zhong Qiang Zhou, Xindan Hu, and Xiangchun Cong. "Prediction of fracture toughness of SA738Gr.B steel in the ductile-brittle transition using master curve method and bimodal master curve method." International Journal of Pressure Vessels and Piping 182 (May 2020): 104033. http://dx.doi.org/10.1016/j.ijpvp.2019.104033.
Full textSpätig, Philippe, V. Mazánová, S. Suman, and Hans Peter Seifert. "Evaluation of Quasi-Static and Dynamic Fracture Toughness on the Low-Alloy Reactor Pressure Vessel Steel JRQ in the Transition Region." Key Engineering Materials 827 (December 2019): 294–99. http://dx.doi.org/10.4028/www.scientific.net/kem.827.294.
Full textKawata, Hiroyuki, and Osamu Umezawa. "Middle Shelf During Ductile to Brittle Transition on Ferrite + Pearlite Structure Steel Sheet." Materials Science Forum 941 (December 2018): 453–57. http://dx.doi.org/10.4028/www.scientific.net/msf.941.453.
Full textHytönen, Noora, Zai-qing Que, Pentti Arffman, Jari Lydman, Pekka Nevasmaa, Ulla Ehrnstén, and Pål Efsing. "Effect of weld microstructure on brittle fracture initiation in the thermally-aged boiling water reactor pressure vessel head weld metal." International Journal of Minerals, Metallurgy and Materials 28, no. 5 (May 2021): 867–76. http://dx.doi.org/10.1007/s12613-020-2226-6.
Full textHsuan, Y. Grace, and Jingyu Zhang. "Stress Crack Resistance of Corrugated High-Density Polyethylene Pipes in Different Test Environments and Temperatures." Transportation Research Record: Journal of the Transportation Research Board 1928, no. 1 (January 2005): 220–25. http://dx.doi.org/10.1177/0361198105192800123.
Full textDève, H. E., and S. Schmauder. "Role of interface properties on the toughness of brittle matrix composites reinforced with ductile fibers." Journal of Materials Research 7, no. 11 (November 1992): 3132–38. http://dx.doi.org/10.1557/jmr.1992.3132.
Full textAkatsu, Takashi, Yasuhiro Tanabe, and Eiichi Yasuda. "Crack-bridging Processes and Fracture Resistance of a Discontinuous Fiber-reinforced Brittle Matrix Composite." Journal of Materials Research 14, no. 4 (April 1999): 1316–24. http://dx.doi.org/10.1557/jmr.1999.0179.
Full textRourke, K., M. Ebrahim, Q. Luo, and E. A. Wilson. "Hump on upper shelf of ductile—brittle transition temperature curve of a plain carbon steel." Materials Science and Technology 27, no. 3 (March 2011): 693–95. http://dx.doi.org/10.1179/026708310x12688283410208.
Full text