Journal articles on the topic 'Brittleness. Materials science'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Brittleness. Materials science.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hao, Xianjie, Quansheng Xu, Dequan Yang, Shaohua Wang, and Yingnan Wei. "Effect of Bedding Angle and Confining Pressure on the Brittleness of Geomaterials: A Case Study on Slate." Advances in Materials Science and Engineering 2019 (March 25, 2019): 1–17. http://dx.doi.org/10.1155/2019/1650170.
Full textSehgal, J., Y. Nakao, H. Takahashi, and S. Ito. "Brittleness of glasses by indentation." Journal of Materials Science Letters 14, no. 3 (1995): 167–69. http://dx.doi.org/10.1007/bf00318244.
Full textStudart, André R. "Turning brittleness into toughness." Nature Materials 13, no. 5 (2014): 433–35. http://dx.doi.org/10.1038/nmat3955.
Full textSealy, Cordelia. "Bulk metallic glasses overcome brittleness." Materials Today 10, no. 5 (2007): 13. http://dx.doi.org/10.1016/s1369-7021(07)70065-2.
Full textWang, Chao, Qing Ping Cao, Xiao Dong Wang, et al. "Intermediate Temperature Brittleness in Metallic Glasses." Advanced Materials 29, no. 14 (2017): 1605537. http://dx.doi.org/10.1002/adma.201605537.
Full textZhou, X. P., J. Bi, R. S. Deng, and B. Li. "Effects of Brittleness on Crack Behaviors in Rock-Like Materials." Journal of Testing and Evaluation 48, no. 4 (2018): 20170595. http://dx.doi.org/10.1520/jte20170595.
Full textBhaduri, S. B. "Brittleness estimation of ceramic particulate composites." Materials Letters 4, no. 4 (1986): 211–13. http://dx.doi.org/10.1016/0167-577x(86)90099-6.
Full textIzumi, Osamu, and Takayuki Takasugi. "Mechanisms of ductility improvement in L12 compounds." Journal of Materials Research 3, no. 3 (1988): 426–40. http://dx.doi.org/10.1557/jmr.1988.0426.
Full textCosta, Henrique W. Dalla, Rodrigo Coldebella, Fernanda R. Andrade, et al. "Brittleness increase in Eucalyptus wood after thermal treatment." International Wood Products Journal 11, no. 1 (2020): 38–42. http://dx.doi.org/10.1080/20426445.2020.1719298.
Full textPirouz, P., M. Zhang, J.-L. Demenet, and H. M. Hobgood. "Transition from brittleness to ductility in SiC." Journal of Physics: Condensed Matter 14, no. 48 (2002): 12929–45. http://dx.doi.org/10.1088/0953-8984/14/48/335.
Full textZhou, Ruihe, Hua Cheng, Mingjing Li, Liangliang Zhang, and Rongbao Hong. "Energy Evolution Analysis and Brittleness Evaluation of High-Strength Concrete Considering the Whole Failure Process." Crystals 10, no. 12 (2020): 1099. http://dx.doi.org/10.3390/cryst10121099.
Full textNishi, Yoshitake, Nobuyuki Ninomiya, Shuji Moriya, Fumiyuki Kanai, and Kyoji Tachikawa. "Brittleness of liquid-quenched high-T c BiSrCaCu2O x." Journal of Materials Science Letters 8, no. 5 (1989): 507–8. http://dx.doi.org/10.1007/bf00720278.
Full textDe Belie, N., E. Gruyaert, K. Van Tittelboom, et al. "Capsules with evolving brittleness to resist the preparation of self-healing concrete." Materiales de Construcción 66, no. 323 (2016): e092. http://dx.doi.org/10.3989/mc.2016.07115.
Full textPerepelkin, K. E., N. V. Klyuchnikova, and N. A. Kulikova. "Experimental evaluation of man-made fibre brittleness." Fibre Chemistry 21, no. 2 (1989): 145–48. http://dx.doi.org/10.1007/bf00545381.
Full textMei, Jun Peng, Hai Nan Li, and Zhi Dong Xu. "Effect of Styrene-Acrylic Emulsion on Crack Resistance of Cement-Based Materials." Materials Science Forum 1036 (June 29, 2021): 288–300. http://dx.doi.org/10.4028/www.scientific.net/msf.1036.288.
Full textSun, Dong Sheng, Toshimi Yamane, and Keilchi Hirao. "Intermediate-temperature brittleness of a ferritic 17Cr stainless steel." Journal of Materials Science 26, no. 3 (1991): 689–94. http://dx.doi.org/10.1007/bf00588305.
Full textChung, Hee-Jeong, Joo-Youl Huh, and Woo-Sang Jung. "Intermediate temperature brittleness of Ni based superalloy Nimonic263." Materials Characterization 140 (June 2018): 9–14. http://dx.doi.org/10.1016/j.matchar.2018.03.013.
Full textTan, Yunliang, Dongmei Huang, and Ze Zhang. "Rock Mechanical Property Influenced by Inhomogeneity." Advances in Materials Science and Engineering 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/418729.
Full textNishi, Yoshitake, Fumiyuki Kanai, Nobuyuki Ninomiya, Satoshi Uchida, Kazuya Oguri, and Shuji Moriya. "Cooling condition dependence of brittleness of liquid-quenched Bi2Sr2Ca2Cu3O x glass." Journal of Materials Science Letters 8, no. 12 (1989): 1395–96. http://dx.doi.org/10.1007/bf00720199.
Full textBhaduri, S. B. "An alternate method for determination of brittleness of ceramics and polymers." Bulletin of Materials Science 13, no. 5 (1990): 329–32. http://dx.doi.org/10.1007/bf02745036.
Full textMakimura, Shunsuke, Hiroaki Kurishita, Koichi Niikura, et al. "Development of Toughened, Fine Grained, Recrystallized W-1.1%TiC." Materials Science Forum 1024 (March 2021): 103–9. http://dx.doi.org/10.4028/www.scientific.net/msf.1024.103.
Full textLiu, Wei-Dong, Hai-Hui Ruan, and Liang-Chi Zhang. "Understanding the brittleness of metallic glasses through dynamic clusters." Journal of Materials Research 29, no. 4 (2014): 561–68. http://dx.doi.org/10.1557/jmr.2014.11.
Full textPlatonov, P. A., A. D. Amaev, V. A. Nikolaev, I. E. Tursunov, E. A. Krasikov, and V. I. Levit. "Hydrogen embrittlement of peaelitic steels prone to temper brittleness." Soviet Materials Science 24, no. 2 (1988): 153–57. http://dx.doi.org/10.1007/bf00736355.
Full textKarzov, G. P., V. I. Smirnov, and B. T. Timofeev. "Determination of critical brittleness temperatures in crack resistance testing." Soviet Materials Science 25, no. 5 (1990): 489–93. http://dx.doi.org/10.1007/bf00731939.
Full textSmirnov, V. I., and A. Sh Deich. "Determination of the critical brittleness temperature in impact binding." Soviet Materials Science 27, no. 2 (1992): 165–68. http://dx.doi.org/10.1007/bf00722990.
Full textLi, Qing, Guangxu Cheng, Mu Qin, Yafei Wang, and Zaoxiao Zhang. "Research on Carbide Characteristics and Their Influence on the Properties of Welding Joints for 2.25Cr1Mo0.25V Steel." Materials 14, no. 4 (2021): 891. http://dx.doi.org/10.3390/ma14040891.
Full textShmulsky, R., L. M. Spinelli Correa, R. J. Ross, and B. Farber. "Ductility and Brittleness in small clear notched S-P-F beams." Wood and Fiber Science 52, no. 2 (2020): 230–36. http://dx.doi.org/10.22382/wfs-2020-020.
Full textTacikowski, M., G. A. Osinkolu, and A. Kobylanski. "Segregation-induced intergranular brittleness of ultrahigh-purity Fe–S alloys." Materials Science and Technology 2, no. 2 (1986): 154–58. http://dx.doi.org/10.1179/mst.1986.2.2.154.
Full textZhang, Yun, Richen Lai, Qiang Chen, et al. "The Correlation Analysis of Microstructure and Tribological Characteristics of In Situ VCp Reinforced Iron-Based Composite." Materials 14, no. 15 (2021): 4343. http://dx.doi.org/10.3390/ma14154343.
Full textPanin, V. E., L. S. Derevyagina, N. M. Lemeshev, A. V. Korznikov, A. V. Panin, and M. S. Kazachenok. "On the nature of low-temperature brittleness of BCC steels." Physical Mesomechanics 17, no. 2 (2014): 89–96. http://dx.doi.org/10.1134/s1029959914020015.
Full textAdamiec, Janusz. "Weldability of the MSRB Magnesium Alloy." Solid State Phenomena 176 (June 2011): 107–18. http://dx.doi.org/10.4028/www.scientific.net/ssp.176.107.
Full textBrostow, Witold. "Reliability and prediction of long-term performance of polymer-based materials." Pure and Applied Chemistry 81, no. 3 (2009): 417–32. http://dx.doi.org/10.1351/pac-con-08-08-03.
Full textZheng, L., X. Sharon Huo, and Y. Yuan. "Strength, Modulus of Elasticity, and Brittleness Index of Rubberized Concrete." Journal of Materials in Civil Engineering 20, no. 11 (2008): 692–99. http://dx.doi.org/10.1061/(asce)0899-1561(2008)20:11(692).
Full textCui, Shouxin, Wenxia Feng, Haiquan Hu, Zhenbao Feng, and Hong Liu. "Hexagonal Ti2SC with high hardness and brittleness: a first-principles study." Scripta Materialia 61, no. 6 (2009): 576–79. http://dx.doi.org/10.1016/j.scriptamat.2009.05.026.
Full textFURUYA, Yoshiyuki, and Hiroshi NOGUCHI. "Molecular Dynamics Study for Low Temperature Brittleness in a Tungsten Single Crystal." Transactions of the Japan Society of Mechanical Engineers Series A 66, no. 648 (2000): 1620–26. http://dx.doi.org/10.1299/kikaia.66.1620.
Full textLei, Weisheng, Xiangqiao Yan, and Mei Yao. "Determination of characteristic transition temperature of low-temperature brittleness in mild steel." Engineering Fracture Mechanics 46, no. 4 (1993): 571–81. http://dx.doi.org/10.1016/0013-7944(93)90163-m.
Full textWeisheng, Lei, and Yao Mei. "The generalized characteristic transition temperature of brittleness—I. Concept and phenomenological interpretation." Engineering Fracture Mechanics 49, no. 4 (1994): 509–16. http://dx.doi.org/10.1016/0013-7944(94)90045-0.
Full textTanimura, Hirotaka, Masaki Tahara, Tomonari Inamura, and Hideki Hosoda. "Compressive Fracture Behavior of Bi-added Ni50Mn28Ga22 Ferromagnetic Shape Memory Alloys." MRS Proceedings 1516 (2013): 139–44. http://dx.doi.org/10.1557/opl.2013.141.
Full textSzachogłuchowicz, Ireneusz, Bartosz Fikus, Krzysztof Grzelak, Janusz Kluczyński, Janusz Torzewski, and Jakub Łuszczek. "Selective Laser Melted M300 Maraging Steel—Material Behaviour during Ballistic Testing." Materials 14, no. 10 (2021): 2681. http://dx.doi.org/10.3390/ma14102681.
Full textLao, Jonathan, Xavier Dieudonné, Franck Fayon, Valérie Montouillout, and Edouard Jallot. "Bioactive glass–gelatin hybrids: building scaffolds with enhanced calcium incorporation and controlled porosity for bone regeneration." Journal of Materials Chemistry B 4, no. 14 (2016): 2486–97. http://dx.doi.org/10.1039/c5tb02345a.
Full textDuan, P., P. Zhang, J. Li, et al. "Intermediate temperature brittleness in a directionally solidified nickel-based superalloy M4706." Materials Science and Engineering: A 759 (June 2019): 530–36. http://dx.doi.org/10.1016/j.msea.2019.05.037.
Full textKong, Byeong Seo, Ji Ho Shin, Changheui Jang, and Hyoung Chan Kim. "Measurement of Fracture Toughness of Pure Tungsten Using a Small-Sized Compact Tension Specimen." Materials 13, no. 1 (2020): 244. http://dx.doi.org/10.3390/ma13010244.
Full textGavriljuk, V. G. "Influence of interstitial carbon, nitrogen, and hydrogen on the plasticity and brittleness of steel." Steel in Translation 45, no. 10 (2015): 747–53. http://dx.doi.org/10.3103/s0967091215100046.
Full textBoccaccini, A. R. "Assessment of brittleness in glass-ceramics and particulate glass matrix composites by indentation data." Journal of Materials Science Letters 15, no. 13 (1996): 1119–21. http://dx.doi.org/10.1007/bf00539954.
Full textBaino, Francesco, and Elisa Fiume. "3D Printing of Hierarchical Scaffolds Based on Mesoporous Bioactive Glasses (MBGs)—Fundamentals and Applications." Materials 13, no. 7 (2020): 1688. http://dx.doi.org/10.3390/ma13071688.
Full textImran, Md Al, Sivakumar Gowthaman, Kazunori Nakashima, and Satoru Kawasaki. "The Influence of the Addition of Plant-Based Natural Fibers (Jute) on Biocemented Sand Using MICP Method." Materials 13, no. 18 (2020): 4198. http://dx.doi.org/10.3390/ma13184198.
Full textFarkas, Diana. "Fracture toughness from atomistic simulations: brittleness induced by emission of sessile dislocations." Scripta Materialia 39, no. 4-5 (1998): 533–36. http://dx.doi.org/10.1016/s1359-6462(98)00193-6.
Full textZhang, Binsheng, Nenad Bicanic, Christopher J. Pearce, and David V. Phillips. "Relationship between brittleness and moisture loss of concrete exposed to high temperatures." Cement and Concrete Research 32, no. 3 (2002): 363–71. http://dx.doi.org/10.1016/s0008-8846(01)00684-6.
Full textZhang, Qingsheng, Wei Zhang, and Akihisa Inoue. "Transition from Plasticity to Brittleness in Cu-Zr-Based Bulk Metallic Glasses." MATERIALS TRANSACTIONS 48, no. 6 (2007): 1272–75. http://dx.doi.org/10.2320/matertrans.mf200620.
Full textBertolino, G., G. Meyer, and J. Perez Ipiña. "Mechanical Properties Degradation at Room Temperature in ZRY-4 by Hydrogen Brittleness." Materials Research 5, no. 2 (2002): 125–29. http://dx.doi.org/10.1590/s1516-14392002000200007.
Full text