Academic literature on the topic 'Brownian Motion model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Brownian Motion model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Brownian Motion model"
Zhu, Jubo, and Diannong Liang. "Combinatorial fractal Brownian motion model." Science in China Series E: Technological Sciences 43, no. 3 (June 2000): 254–62. http://dx.doi.org/10.1007/bf02916829.
Full textAreerak, Tidarut. "Mathematical Model of Stock Prices via a Fractional Brownian Motion Model with Adaptive Parameters." ISRN Applied Mathematics 2014 (April 7, 2014): 1–6. http://dx.doi.org/10.1155/2014/791418.
Full textChang, Ying, Yiming Wang, and Sumei Zhang. "Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility." Mathematics 9, no. 2 (January 8, 2021): 126. http://dx.doi.org/10.3390/math9020126.
Full textChang, Ying, Yiming Wang, and Sumei Zhang. "Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility." Mathematics 9, no. 2 (January 8, 2021): 126. http://dx.doi.org/10.3390/math9020126.
Full textKIM, JONG U. "MODEL FOR THE MOTILITY OF FLAGELLATED BACTERIA." Fluctuation and Noise Letters 08, no. 02 (June 2008): L197—L206. http://dx.doi.org/10.1142/s0219477508004386.
Full textBahamonde, Natalia, Soledad Torres, and Ciprian A. Tudor. "ARCH model and fractional Brownian motion." Statistics & Probability Letters 134 (March 2018): 70–78. http://dx.doi.org/10.1016/j.spl.2017.10.003.
Full textCataldo, H. M., and E. S. Hern�ndez. "Non-Markovian quantal Brownian motion model." Journal of Statistical Physics 50, no. 1-2 (January 1988): 383–403. http://dx.doi.org/10.1007/bf01023000.
Full textBocquet, L., J. P. Hansen, and J. Piasecki. "A kinetic model for Brownian motion." Il Nuovo Cimento D 16, no. 8 (August 1994): 981–91. http://dx.doi.org/10.1007/bf02458783.
Full textPandey, Akhilesh. "Brownian-motion model of discrete spectra." Chaos, Solitons & Fractals 5, no. 7 (July 1995): 1275–85. http://dx.doi.org/10.1016/0960-0779(94)e0065-w.
Full textManurung, Tohap. "Hubungan Antara Brownian Motion (The Winner Process) dan Surplus Process." JURNAL ILMIAH SAINS 12, no. 1 (April 30, 2012): 47. http://dx.doi.org/10.35799/jis.12.1.2012.401.
Full textDissertations / Theses on the topic "Brownian Motion model"
Lampo, Aniello, Soon Hoe Lim, Jan Wehr, Pietro Massignan, and Maciej Lewenstein. "Lindblad model of quantum Brownian motion." AMER PHYSICAL SOC, 2016. http://hdl.handle.net/10150/622483.
Full textMota, Pedro José dos Santos Palhinhas. "Brownian motion with drift threshold model." Doctoral thesis, FCT - UNL, 2008. http://hdl.handle.net/10362/1766.
Full textEuropean Community's Human Po-tential Programme under contract HPRN-CT-2000-00100, DYNSTOCH and by PRODEP III (medida 5 - Acção 5.3)
Betz, Volker. "Gibbs measures relative to Brownian motion and Nelson's model." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964465647.
Full textEndres, Derek. "Development and Demonstration of a General-Purpose Model for Brownian Motion." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1307459444.
Full textMbona, Innocent. "Portfolio risk measures and option pricing under a Hybrid Brownian motion model." Diss., University of Pretoria, 2017. http://hdl.handle.net/2263/64068.
Full textDissertation (MSc)--University of Pretoria, 2017.
National Research Fund (NRF), University of Pretoria Postgraduate bursary and the General Studentship bursary
Mathematics and Applied Mathematics
MSc
Unrestricted
Salopek, Donna Mary. "Tolerance to arbitrage, inclusion of fractional Brownian motion to model stock price fluctuations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22176.pdf.
Full textSalopek, Donna Mary Carleton University Dissertation Mathematics and Statistics. "Tolerance to arbitrage: inclusion of fractional Brownian motion to model stock price fluctuations." Ottawa, 1997.
Find full textWalljee, Raabia. "The Levy-LIBOR model with default risk." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96957.
Full textENGLISH ABSTRACT : In recent years, the use of Lévy processes as a modelling tool has come to be viewed more favourably than the use of the classical Brownian motion setup. The reason for this is that these processes provide more flexibility and also capture more of the ’real world’ dynamics of the model. Hence the use of Lévy processes for financial modelling is a motivating factor behind this research presentation. As a starting point a framework for the LIBOR market model with dynamics driven by a Lévy process instead of the classical Brownian motion setup is presented. When modelling LIBOR rates the use of a more realistic driving process is important since these rates are the most realistic interest rates used in the market of financial trading on a daily basis. Since the financial crisis there has been an increasing demand and need for efficient modelling and management of risk within the market. This has further led to the motivation of the use of Lévy based models for the modelling of credit risky financial instruments. The motivation stems from the basic properties of stationary and independent increments of Lévy processes. With these properties, the model is able to better account for any unexpected behaviour within the market, usually referred to as "jumps". Taking both of these factors into account, there is much motivation for the construction of a model driven by Lévy processes which is able to model credit risk and credit risky instruments. The model for LIBOR rates driven by these processes was first introduced by Eberlein and Özkan (2005) and is known as the Lévy-LIBOR model. In order to account for the credit risk in the market, the Lévy-LIBOR model with default risk was constructed. This was initially done by Kluge (2005) and then formally introduced in the paper by Eberlein et al. (2006). This thesis aims to present the theoretical construction of the model as done in the above mentioned references. The construction includes the consideration of recovery rates associated to the default event as well as a pricing formula for some popular credit derivatives.
AFRIKAANSE OPSOMMING : In onlangse jare, is die gebruik van Lévy-prosesse as ’n modellerings instrument baie meer gunstig gevind as die gebruik van die klassieke Brownse bewegingsproses opstel. Die rede hiervoor is dat hierdie prosesse meer buigsaamheid verskaf en die dinamiek van die model wat die praktyk beskryf, beter hierin vervat word. Dus is die gebruik van Lévy-prosesse vir finansiële modellering ’n motiverende faktor vir hierdie navorsingsaanbieding. As beginput word ’n raamwerk vir die LIBOR mark model met dinamika, gedryf deur ’n Lévy-proses in plaas van die klassieke Brownse bewegings opstel, aangebied. Wanneer LIBOR-koerse gemodelleer word is die gebruik van ’n meer realistiese proses belangriker aangesien hierdie koerse die mees realistiese koerse is wat in die finansiële mark op ’n daaglikse basis gebruik word. Sedert die finansiële krisis was daar ’n toenemende aanvraag en behoefte aan doeltreffende modellering en die bestaan van risiko binne die mark. Dit het verder gelei tot die motivering van Lévy-gebaseerde modelle vir die modellering van finansiële instrumente wat in die besonder aan kridietrisiko onderhewig is. Die motivering spruit uit die basiese eienskappe van stasionêre en onafhanklike inkremente van Lévy-prosesse. Met hierdie eienskappe is die model in staat om enige onverwagte gedrag (bekend as spronge) vas te vang. Deur hierdie faktore in ag te neem, is daar genoeg motivering vir die bou van ’n model gedryf deur Lévy-prosesse wat in staat is om kredietrisiko en instrumente onderhewig hieraan te modelleer. Die model vir LIBOR-koerse gedryf deur hierdie prosesse was oorspronklik bekendgestel deur Eberlein and Özkan (2005) en staan beken as die Lévy-LIBOR model. Om die kredietrisiko in die mark te akkommodeer word die Lévy-LIBOR model met "default risk" gekonstrueer. Dit was aanvanklik deur Kluge (2005) gedoen en formeel in die artikel bekendgestel deur Eberlein et al. (2006). Die doel van hierdie tesis is om die teoretiese konstruksie van die model aan te bied soos gedoen in die bogenoemde verwysings. Die konstruksie sluit ondermeer in die terugkrygingskoers wat met die wanbetaling geassosieer word, sowel as ’n prysingsformule vir ’n paar bekende krediet afgeleide instrumente.
Froemel, Anneliese [Verfasser], and Detlef [Akademischer Betreuer] Dürr. "A semi-realistic model for Brownian motion in one dimension / Anneliese Froemel ; Betreuer: Detlef Dürr." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2020. http://d-nb.info/1220631914/34.
Full textKelekele, Liloo Didier Joel. "Mathematical model of performance measurement of defined contribution pension funds." University of the Western Cape, 2015. http://hdl.handle.net/11394/4367.
Full textThe industry of pension funds has become one of the drivers of today’s economic activity by its important volume of contribution in the financial market and by creating wealth. The increasing importance that pension funds have acquired in today’s economy and financial market, raises special attention from investors, financial actors and pundits in the sector. Regarding this economic weight of pension funds, a thorough analysis of the performance of different pension funds plans in order to optimise benefits need to be undertaken. The research explores criteria and invariants that make it possible to compare the performance of different pension fund products. Pension fund companies currently do measure their performances with those of others. Likewise, the individual investing in a pension plan compares different products available in the market. There exist different ways of measuring the performance of a pension fund according to their different schemes. Generally, there exist two main pension funds plans. The defined benefit (DB) pension funds plan which is mostly preferred by pension members due to his ability to hold the risk to the pension fund manager. The defined contributions (DC) pension fund plan on the other hand, is more popularly preferred by the pension fund managers due to its ability to transfer the risk to the pension fund members. One of the reasons that motivate pension fund members’ choices of entering into a certain programme is that their expectations of maintaining their living lifestyle after retirement are met by the pension fund strategies. This dissertation investigates the various properties and characteristics of the defined contribution pension fund plan with a minimum guarantee and benchmark in order to mitigate the risk that pension fund members are subject to. For the pension fund manager the aim is to find the optimal asset allocation strategy which optimises its retribution which is in fact a part of the surplus (the difference between the pension fund value and the guarantee) (2004) [19] and to analyse the effect of sharing between the contributor and the pension fund. From the pension fund members’ perspective it is to define a optimal guarantee as a solution to the contributor’s optimisation programme. In particular, we consider a case of a pension fund company which invests in a bond, stocks and a money market account. The uncertainty in the financial market is driven by Brownian motions. Numerical simulations were performed to compare the different models.
Books on the topic "Brownian Motion model"
Wiersema, Ubbo F. Brownian Motion Calculus. New York: John Wiley & Sons, Ltd., 2008.
Find full textStochastic calculus for fractional Brownian motion and related processes. Berlin: Springer-Verlag, 2008.
Find full textNourdin, Ivan. Selected Aspects of Fractional Brownian Motion. Milano: Springer Milan, 2012.
Find full textJean, Bertoin, Martinelli F, Peres Y, Bernard P. 1944-, Bertoin Jean, Martinelli F, and Peres Y, eds. Lectures on probability theory and statistics: Ecole d'été de probabilités de Saint-Flour XXVII, 1997. Berlin: Springer, 2000.
Find full textEcole d'été de probabilités de Saint-Flour (27th 1997). Lectures on probability theory and statistics: Ecole d'eté de probabilités de Saint-Flour XXVII, 1997. Edited by Bertoin Jean, Martinelli F, Peres Y, and Bernard P. 1944-. Berlin: Springer, 1999.
Find full textQuantization in astrophysics, Brownian motion and supersymmetry: Including articles never before published. Chennai, Tamil Nadu: MathTiger, 2007.
Find full textWeilin, Xiao, ed. Fen shu Bulang yun dong xia gu ben quan zheng ding jia yan jiu: Mo xing yu can shu gu ji. Beijing: Ke xue chu ban she, 2013.
Find full textFroot, Kenneth. Stochastic process switching: Some simple solutions. Cambridge, MA: National Bureau of Economic Research, 1989.
Find full textBook chapters on the topic "Brownian Motion model"
Lin, Jennifer Shu-Jen. "Inventory Model with Fractional Brownian Motion Demand." In Computational Collective Intelligence. Technologies and Applications, 252–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16693-8_27.
Full textPetters, Arlie O., and Xiaoying Dong. "Stochastic Calculus and Geometric Brownian Motion Model." In An Introduction to Mathematical Finance with Applications, 253–327. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3783-7_6.
Full textLampo, Aniello, Miguel Ángel García March, and Maciej Lewenstein. "A Lindblad Model for Quantum Brownian Motion." In SpringerBriefs in Physics, 57–72. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16804-9_5.
Full textAzizi, Seyed Mohammad Esmaeil Pour Mohamma, and Abdolsadeh Neisy. "A New Approach in Geometric Brownian Motion Model." In Advances in Intelligent Systems and Computing, 336–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66514-6_34.
Full textHolley, Richard. "The One Dimensional Stochastic X-Y Model." In Random Walks, Brownian Motion, and Interacting Particle Systems, 295–307. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0459-6_16.
Full textAl-Kadi, Omar S., Allen Lu, Albert J. Sinusas, and James S. Duncan. "Stochastic Model-Based Left Ventricle Segmentation in 3D Echocardiography Using Fractional Brownian Motion." In Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges, 77–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12029-0_9.
Full textShiryaev, Albert N. "Multi-stage Quickest Detection of Breakdown of a Stationary Regime. Model with Brownian Motion." In Stochastic Disorder Problems, 217–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01526-8_7.
Full textOrd, G. N. "Obtaining the Schrödinger and Dirac Equations from the Einstein/KAC Model of Brownian Motion by Projection." In The Present Status of the Quantum Theory of Light, 169–80. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5682-0_18.
Full textTucker, Susan C. "Reaction rates in condensed phases. Perspective on “Brownian motion in a field of force and the diffusion model of chemical reactions”." In Theoretical Chemistry Accounts, 209–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-10421-7_12.
Full textFelderhof, B. U., and R. B. Jones. "Orientational Relaxation and Brownian Motion." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 31–38. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_3.
Full textConference papers on the topic "Brownian Motion model"
Ioannidis, S., and P. Marbach. "A Brownian Motion Model for Last Encounter Routing." In Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications. IEEE, 2006. http://dx.doi.org/10.1109/infocom.2006.301.
Full textChing, Soo Huei, and Pooi Ah Hin. "Brownian motion model with stochastic parameters for asset prices." In INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013): Proceedings of the International Conference on Mathematical Sciences and Statistics 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4823962.
Full textMÖLLER, P., and J. RANDRUP. "FISSION-FRAGMENT CHARGE YIELDS IN A BROWNIAN SHAPE-MOTION MODEL." In Proceedings of the Fifth International Conference on ICFN5. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814525435_0075.
Full textZhao, Wei. "Research on Fractional Option Pricing Model Under Real Brownian Motion Environment." In 2009 First International Conference on Information Science and Engineering. IEEE, 2009. http://dx.doi.org/10.1109/icise.2009.954.
Full textJiang, Aiping, Xiangxue Zhang, Luping Jiang, and Jingquan Wang. "A Wavelet Domain Watermarking Algorithm Based on Fractional Brownian Motion Model." In 2012 5th International Workshop on Chaos-Fractals Theories and Applications (IWCFTA). IEEE, 2012. http://dx.doi.org/10.1109/iwcfta.2012.68.
Full textSu, Gang, Yingzhuang Liu, and Hao Chen. "An adaptive channel prediction algorithm based on fractal Brownian motion model." In International Conference on Space information Technology, edited by Cheng Wang, Shan Zhong, and Xiulin Hu. SPIE, 2005. http://dx.doi.org/10.1117/12.657301.
Full textPrasher, Ravi. "Brownian-Motion-Based Convective-Conductive Model for the Thermal Conductivity of Nanofluids." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72048.
Full textZhang Qimin and Li Xining. "Asymptotic stability of stochastic delay Lotka-Volterra model with fractional Brownian motion." In 2010 8th World Congress on Intelligent Control and Automation (WCICA 2010). IEEE, 2010. http://dx.doi.org/10.1109/wcica.2010.5554981.
Full textAitken, George J. M., Delphine Rossille, and Donald R. McGaughey. "Filtered fractional Brownian motion as a model for atmospherically induced wavefront distortions." In Optical Science, Engineering and Instrumentation '97, edited by Luc R. Bissonnette and Christopher Dainty. SPIE, 1997. http://dx.doi.org/10.1117/12.279028.
Full textZachevsky, Ido, and Yehoshua Y. Zeevi. "Denoising of natural stochastic colored-textures based on fractional brownian motion model." In 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7350963.
Full text