Contents
Academic literature on the topic 'Bruchspannung'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bruchspannung.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bruchspannung"
Rempel, Sergej, and Marcus Ricker. "Ermittlung der Materialkennwerte der Bewehrung für die Bemessung von textilbewehrten Bauteilen/Determination of the material properties of the reinforcement for textile-reinforced- concrete elements." Bauingenieur 92, no. 06 (2017): 280–88. http://dx.doi.org/10.37544/0005-6650-2017-06-76.
Full textRodwell, D. F. G. "Beziehungen zwischen bruchspannung, belastungsgeschwindigkeit und zeit bis zum bruch in überlappten buchenholz-klebfugen mit polyvinylacetat-holzkleber." International Journal of Adhesion and Adhesives 10, no. 1 (January 1990): 12. http://dx.doi.org/10.1016/0143-7496(90)90021-o.
Full textBrokmann, Christopher, Marcel Berlinger, Peer Schrader, and Stefan Kolling. "Fraktographische Bruchspannungs‐Analyse von Acrylglas." ce/papers 3, no. 1 (March 2019): 225–37. http://dx.doi.org/10.1002/cepa.1013.
Full textDissertations / Theses on the topic "Bruchspannung"
Sickert, Jan-Uwe, Katrin Schwiteilo, and Frank Jesse. "Statistische Auswertung der Bruchspannung einaxialer Zugversuche an Textilbeton - Vorschläge für Teilsicherheitsbeiwerte." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-77867.
Full textIn the framework of a comprehensive experimental program the ultimate strength of textile reinforced concrete has been determined under consideration of uniaxial tensile load. In result varying data are available which indicate a non-deterministic (uncertain) strength. The experimental results provide a moderate basis for statistical evaluations and the quantification of uncertainty. Furthermore, manual calculation in structural design requires a certain safety distance. For this task, partial safety factors have been defined and incorporated in the design codes to ensure a predefined safety level. In this context, this paper gives suggestions for the definition of partial safety factors for textile reinforced concrete with AR glass and carbon reinforcement
Scheffler, Christina. "Zur Beurteilung von AR-Glasfasern in alkalischer Umgebung." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-27035.
Full textRovings made of AR-glass are used in textile reinforced concrete. During the manufacturing process the sizing is applied on the AR-glass filaments. The chemical constitution of the sizing determines the quality of the filament-matrix-interface but also the chemical durability of the glass filaments in alkaline environment. The durability is evaluated by accelerated ageing tests in aqueous, alkaline solutions. In alkaline solutions, the reaction of hydroxyl ions with Si-O-Si-groups of the glass network leads to the formation of hydrated surfaces and dissolved silicate. The rate of this corrosion depends on the chemical constitution of the fibre and the alkaline solution as well as on time and temperature. The investigation of the ageing of glass fibres with different chemical constitutions in NaOH and cement solutions shows that the corrosion mechanism changes due to the inhibiting effect of calcium ions. The strength distributions have been evaluated using a Weibull distribution function. The mechanical behaviour strongly depends on the chemistry of the solution and determines the parameters of the Weibull distribution function in terms of either single or mixed distributions. The corrosion in NaOH solution leads to a strong dissolution of the outer layer of the glass fibres, whereas during aging in cement solution at the same pH-value a limited, local attack was revealed. The evaluation of polymer coatings is realised by the ageing of concrete composites at different temperatures and humidities to deduce adequate ageing conditions for the comparison of different coatings
Scheffler, Christina, Theresa Förster, and Edith Mäder. "Beschleunigte Alterung von Glasfasern in alkalischen Lösungen: Einflüsse auf die mechanischen Eigenschaften." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1244042771688-80994.
Full textScheffler, Christina. "Zur Beurteilung von AR-Glasfasern in alkalischer Umgebung: Evaluation of AR-glas fibres in alkaline environment." Doctoral thesis, Leibniz-Institut für Polymerforschung Dresden e.V, 2009. https://tud.qucosa.de/id/qucosa%3A25230.
Full textRovings made of AR-glass are used in textile reinforced concrete. During the manufacturing process the sizing is applied on the AR-glass filaments. The chemical constitution of the sizing determines the quality of the filament-matrix-interface but also the chemical durability of the glass filaments in alkaline environment. The durability is evaluated by accelerated ageing tests in aqueous, alkaline solutions. In alkaline solutions, the reaction of hydroxyl ions with Si-O-Si-groups of the glass network leads to the formation of hydrated surfaces and dissolved silicate. The rate of this corrosion depends on the chemical constitution of the fibre and the alkaline solution as well as on time and temperature. The investigation of the ageing of glass fibres with different chemical constitutions in NaOH and cement solutions shows that the corrosion mechanism changes due to the inhibiting effect of calcium ions. The strength distributions have been evaluated using a Weibull distribution function. The mechanical behaviour strongly depends on the chemistry of the solution and determines the parameters of the Weibull distribution function in terms of either single or mixed distributions. The corrosion in NaOH solution leads to a strong dissolution of the outer layer of the glass fibres, whereas during aging in cement solution at the same pH-value a limited, local attack was revealed. The evaluation of polymer coatings is realised by the ageing of concrete composites at different temperatures and humidities to deduce adequate ageing conditions for the comparison of different coatings.