Academic literature on the topic 'Bubble detectors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bubble detectors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bubble detectors"
Das, Basanta, Anurag Shyam, Rashmita Das, and Durga Rao. "The neutron production rate measurement of an indigenously developed compact D-D neutron generator." Nuclear Technology and Radiation Protection 28, no. 4 (2013): 422–26. http://dx.doi.org/10.2298/ntrp1304422d.
Full textIng, H., R. A. Noulty, and T. D. McLean. "Bubble detectors—A maturing technology." Radiation Measurements 27, no. 1 (February 1997): 1–11. http://dx.doi.org/10.1016/s1350-4487(96)00156-4.
Full textSmirnova, N., N. Semaschko, and Y. Martinuk. "Bubble Detectors in Fusion Dosimetry." Radiation Protection Dosimetry 44, no. 1-4 (November 1, 1992): 347–49. http://dx.doi.org/10.1093/rpd/44.1-4.347.
Full textSmirnova, N., N. Semaschko, and Y. Martinuk. "Bubble Detectors in Fusion Dosimetry." Radiation Protection Dosimetry 44, no. 1-4 (November 1, 1992): 347–49. http://dx.doi.org/10.1093/oxfordjournals.rpd.a081464.
Full textPollock, Robert W. "Current developments with bubble detectors." International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 15, no. 1-4 (January 1988): 483–85. http://dx.doi.org/10.1016/1359-0189(88)90185-9.
Full textTakada, M. "Measured proton sensitivities of bubble detectors." Radiation Protection Dosimetry 111, no. 2 (July 20, 2004): 181–89. http://dx.doi.org/10.1093/rpd/nch330.
Full textIng, H., and A. Mortimer. "Space radiation dosimetry using bubble detectors." Advances in Space Research 14, no. 10 (October 1994): 73–76. http://dx.doi.org/10.1016/0273-1177(94)90453-7.
Full textSchulze, J., W. Rosenstock, and H. L. Kronholz. "Measurements of Fast Neutrons by Bubble Detectors." Radiation Protection Dosimetry 44, no. 1-4 (November 1, 1992): 351–54. http://dx.doi.org/10.1093/rpd/44.1-4.351.
Full textAzuelos, G., M. Barnabé-Heider, E. Behnke, K. Clark, M. Di Marco, P. Doane, W. Feighery, et al. "Simulation of special bubble detectors for PICASSO." Radiation Protection Dosimetry 120, no. 1-4 (July 4, 2006): 499–502. http://dx.doi.org/10.1093/rpd/nci666.
Full textSchulze, J., W. Rosenstock, and H. L. Kronholz. "Measurements of Fast Neutrons by Bubble Detectors." Radiation Protection Dosimetry 44, no. 1-4 (November 1, 1992): 351–54. http://dx.doi.org/10.1093/oxfordjournals.rpd.a081465.
Full textDissertations / Theses on the topic "Bubble detectors"
Nascimento, Débora Siqueira. "Detecção de nêutrons rápidos devido a radiação espalhada em aceleradores lineares." Pós-Graduação em Física, 2018. http://ri.ufs.br/jspui/handle/riufs/8963.
Full textLinear accelerators of high energy beams have been used to treat tumors in radiotherapy. Some questions about the protection of the patient and occupationally exposed workers have been arisen because high energy bundles generate scattered radiations that are undesirable in treatment. A possible radiation type generated due to the interaction of the beam with accelerator elements is the neutron, mainly fast neutrons. Such radiation can cause serious problems for patients besides cause damage to devices used by them. This work aims investigate the presence of fast neutrons around a mobile accelerator dedicated to intraoperative radiotherapy (IORT) using high energy electron beams. The aim is to detect the possible fast neutrons and further evaluate their distribution within phantom irradiated. For this study a mobile accelerator (LIAC), for electron beams, and a conventional accelerator (Elekta), for the photon beam, were used. Neutron measurements were made using bubble detectors (C-318) which are sensitive only to fast neutrons. In order to simulate the patient two polymethylmethacrylate (PMMA) phantoms, with a volume of 62 x 29 x 24 cm3 and 80 x 30 x 20 cm3, were used. Three detectors were positioned around the LIAC accelerator to measure the fast neutrons radiation generated by the accelerator elements. The measurements inside the phantom were made with three detectors positioned at three different depths, 5, 10 and 15 cm; 1, 5 and 10 cm. Moreover, two distances with respect to the central axis were chosen to the phantons irradiated by LIAC and Elekta: 0 and 4 cm; 0 and 30 cm, respectively. The results from the measurements around the LIAC demonstrate the abscense of fast neutrons. The results for both, LIAC and Elekta, showed that the dose of fast neutrons is mainly concentrated in the central axis and a decrease of 60% and 99%, respectively, in relation to off-axis doses. The highest values found for the different energies of 12, 10 and 8 MeV were 2.44, 1.14 and 0.59 uSv / Gy, respectively, for the LIAC. While the highest values for energies of 15, 10 and 6 MeV for Elekta were 2.98, 1.08 and 0.15 mSv/Gy, respectively. These results also showed the increasing ratio of dose to energy, both for Elekta and for LIAC. The relation between dose and depth also was discussed. It was found that in some cases the neutron attenuation increases with depth as expected while in others the ratio is not clear. The comparison between the doses established in each accelerator showed a difference around 10−3. The data presented in this work, therefore, demonstrate that the LIAC minimally generates fast neutrons within the phantom, when compared with the Elekta, and around were not detected for the LIAC. The neutrons generated by both accelerators presented similar behaviour within the phantom in relation to the energy variation, depth and central axis distance.
Aceleradores lineares de feixes de alta energia são utilizados para tratamento de tumores em radioterapia. Isso tem gerado algumas questões sobre a proteção do paciente e dos trabalhadores ocupasionalmente expostos, pois feixes de alta energia geram radiações espalhadas que são indesejáveis no tratamento. Uma das possíveis radiações geradas devido à interação do feixe com elementos do acelerador é o nêutron, principalmente nêutrons rápidos. Essa radiação pode causar sérios problemas para pacientes caso interajam com o mesmo e ainda podem causar danos a dispositivos utilizados pelo paciente. A proposta desse estudo foi investigar a presença de nêutrons rápidos ao redor de um acelerador móvel dedicado, LIAC, para radioterapia intraoperatória (RT-IO) que utiliza feixes de elétrons de alta energia. Busca-se detectar os possíveis nêutrons rápidos e ainda avaliar a sua distribuição dentro de objeto simulador irradiado. Para este estudo foram utilizados tanto um acelerador móvel (LIAC), para feixes de elétrons, quanto um acelerador convencional (Elekta), para feixe de fótons. As medidas dos nêutrons foram feitas utilizando detectores de bolhas (C-318) que são sensíveis apenas a nêutrons rápidos. Para simular o paciente foram utilizados dois phantons de polimetilmetacrilato (PMMA) com volume de 62 x 29 x 24 cm3 e 80 x 30 x 20 cm3. Em cada posição escolhida, três detectores foram posicionados ao redor do acelerador LIAC para medir a radiação de nêutrons rápidos que eram gerados pelos elementos constituintes do acelerador. As medidas dentro do phantom foram feitas com três detectores posicionados em três profundidades diferentes, 5, 10 e 15 cm; 1, 5 e 10 cm e duas distâncias em relação ao eixo central, 0 e 4 cm; 0 e 30 cm para os phantons irradiados pelo LIAC e Elekta, respectivamente. Os resultados das medidas ao redor do LIAC demonstraram a ausência de nêutrons rápidos. Os resultados tanto para o LIAC quanto para o Elekta mostraram que a dose de nêutrons rápidos é principalmente concentrada no eixo central do feixe e uma queda de 60%, a 4 cm do eixo, e 99%, a 30 cm do eixo, respectivamente. Os maiores valores encontrados para as diferentes energias de 12, 10 e 8 MeV foram 2,44, 1,14 e 0,59 uSvGy para o LIAC, respectivamente. Enquanto que os maiores valores para energias de 15, 10 e 6 MeV para o Elekta foi de 2,98, 1,08 e 0,15 mSVGy, respectivamente. Esses resultados ainda mostraram a relação crescente da dose com a energia, tanto para Elekta quando para LIAC. Outra relação que foi discutida é da dose com a profundidade, porque em alguns casos é nítida a atenuação de nêutrons com o aumento da profundidade e em outros não se demonstra tão regular. A comparação entre as doses estabelecidas em cada acelerador mostrou uma diferença em torno de 10−3. Os dados apresentados nesse trabalho, portanto, demonstram que o LIAC gera minimamente nêutrons rápidos dentro do phantom, se comparado com o Elekta, e ao redor do LIAC não foram detectados. O nêutrons gerados por ambos aceleradores apresentaram comportamento parecido dentro do phantom em relação a variação de energia, profundidade e distância do eixo central.
São Cristóvão, SE
Delatore, Fabio. "Desenvolvimento de um sistema opto-eletronico para a aplicação da tecnologia fieldbus na detecção de bolhas em tubulações." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267134.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-04T07:22:16Z (GMT). No. of bitstreams: 1 Delatore_Fabio_M.pdf: 5286633 bytes, checksum: fbfd34a4b52a79d151598a14f43c669f (MD5) Previous issue date: 2005
Resumo: O presente trabalho descreve o desenvolvimento de um sistema óptico de detecção de bolhas em tubulações. Esta montagem foi realizado no Laboratório de Controle e Automação de processos de DESQ/FEQ/UNICAMP. As bolhas podem representar um problema em certos processos químicos, por exemplo, no caso de uma tubulação que alimenta uma bomba. Deseja-se exista somente líquido passando, pois bolhas geraria cavitação e também desgaste do rotor devido ao choque dessas bolhas de ar com o rotor e com as paredes internas da bomba, inutilizando-a em pouco tempo de uso. Um outro exemplo, em tubulações com líquidos quentes que alimentam um trocador de calor, a presença de bolhas faz com que a eficiência da troca térmica do equipamento diminua. O sistema óptico desenvolvido utilizou como emissor de luz, o laser e como receptor, um componente eletrônico chamado de fototransistor. Dois tipos de sensores ópticos foram desenvolvidos. O primeiro deles, o sensor pontual, utiliza apenas um emissor laser e um fototransistor. Já o segundo, chamado de sensor multiponto, utiliza quatro emissores laser e quatro fototransistores. Duas interfaces eletrônicas foram desenvolvidas. A interface do sensor pontual funciona com retenção do sinal de saída, ou seja, a saída não se altera até a passagem de uma nova bolha... Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital
Abstract: This work describes the development of an optical system to detect bubbles on chemical industries pipelines. The experimental apparatus was assembled in the Processes Control and Automation Laboratory of DESQ/FEQ/UNICAMP. Bubbles may represent a problem in some processes. For example, the presence of bubbles in the liquid that feeds a centrifugal pump can cause a decrease in the pump efficiency and the rotor wearing down due to the friction forces. Another example can be found in pipes with hot fluid that feeds a heat exchanger. Bubble appearance will also decrease the heat transfer efficiency. The developed optical system employs the laser pointer pen as a light source (emitter) and an electronic component, called phototransistor, as a receiver. Two optical sensors were developed. The first one was assembled using just one emitter and one-receiver devices. The second one, called multipoint sensor, was developed using four emitters and four receivers. An electronic interface was successfully developed to connect the optical sensor on the Fieldbus network. For the one-emitter-sensor, the interface uses the latch feature so that the transmitter state does no change until a new event happens. On the multipoint sensor, the interface works as an asynchronous counter: for every bubble event, the counter in the software is increased by one... Note: The complete abstract is available with the full electronic digital thesis or dissertations
Mestrado
Sistemas de Processos Quimicos e Informatica
Mestre em Engenharia Química
U, Siu Cheong, and 余兆祥. "Bubble detector." Thesis, 1997. http://ndltd.ncl.edu.tw/handle/26996865436325955359.
Full text國立清華大學
原子科學系
85
Abstract Neutron can be detected on the basis of suspension the superheated drops in polymer or gel mixture. The mechanism of radiation induced bubble nucleation has been studied. A technique of generating uniform sized superheated drops suspended in a viscous liquid has been commercially developed. Autoreader has been designed and tested to detect bubbles in the polymer. Because the bubble detector is a of detecting device, it has many characteristics which can be further studied. This experimental work not only calibrates bubble detector and studies it''s characteristics, but also makes in situ measurement in the THOR (Tsing Hua Open-pool Reactor) facility and monitor the in-flight neutron dose in aircraft. In an 21.5 hours measurement period, one can get a detection limit equivalent to a neutron dose rate of 12nSv(hr-1. Moreover, bubble detector is insensitive to gamma rayvisually readable, and has a dose equivalent response function close to the ICRP curve.
Liu-Feng-Yen and 劉峰彥. "Feasibility study of fast screening the effective dose from IMRT via bubble detector." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/63729737612205568283.
Full text中台醫護技術學院
放射科學研究所
93
The fast screening of in-situ high energy gamma–ray effective dose, E, under the IMRT exposure was evaluated via bubble technology in this study. The bubble counter was offered by the BTI technology, Canada. The bubble detectors were used coupled with an acrylic phantom to evaluate the effective dose E on the basis of ICRP-60 report. Accordingly, thirteen organs were used to determine the equivalent dose HE of high energy x-ray, respectively. However, in inspecting precisely the nucleation energy of implanted seeds of the bubble, too low the nucleation energy of bubble seeds always causes too high the bubble counts and, eventually, overestimates the dosages in reality. Thus, the phantom and bubble detectors as applied in this proposal had to be cooled to a certain temperature to maintain the stability of bubble performance. The bubble detector was maintained at 16℃ to optimize the counting process and the evaluated effective dose. The exposure plan was assigned as chest and abdomen .The dose range was set form 3、5、7MU. for the chest plan. The effective dose for males were 3155.34±57.12、7093.14±29.16 and 8899.31±589.97μSv. The effective dose for females were 2876.25±52.25、5440.04±224.07 and 8690.23±582.02μSv. for the abdomen plan. The effective dose for males were 2475.76±73.81、4111.27±264.41 and 6252.12±253.27μSv. The effective dose for females were 2303.13±69.02、3652.14±259.46 and 4655.59±192.31μSv. In addition, the mechanism of bubble vaporized only when the deposited energy exceeded the threshold level, despite the nature of radiation. Care had to be taken in the variations among radiation fields. Some critical discussion regarding the application bubble detector was also included for the benefit of other researchers
Lafrenière, Matthieu. "Mesures d'étalonnage aux neutrons et caractérisation par étude Monte Carlo de la réponse des détecteurs à gouttelettes surchauffées conçus pour la recherche et la détection directe du neutralino (la matière sombre) menant aux résultats finaux de l'expérience PICASSO." Thèse, 2016. http://hdl.handle.net/1866/20603.
Full textBooks on the topic "Bubble detectors"
Canada, Atomic Energy of. Preliminary Measurements of Radiation From A Critical Assembly Using the Bubble Detector. S.l: s.n, 1986.
Find full textL, Rasky P. H., Greve D. W, and Langley Research Center, eds. Advanced detectors and signal processing for bubble memories. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1985.
Find full textPerks, C. A. Neutron Dosimetry Studies Using the New Chalk River Nuclear Laboratories Bubble Damage Detector. AEA Technology Plc, 1987.
Find full textBook chapters on the topic "Bubble detectors"
Strokina, Nataliya, Roman Juránek, Tuomas Eerola, Lasse Lensu, Pavel Zemčik, and Heikki Kälviäinen. "Comparison of Appearance-Based and Geometry-Based Bubble Detectors." In Computer Vision and Graphics, 610–17. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11331-9_73.
Full textKolanoski, Hermann, and Norbert Wermes. "Non-electronic detectors." In Particle Detectors, 157–70. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198858362.003.0006.
Full text"Superheated Droplet (Bubble) Detectors." In Principles of Radiation Interaction in Matter and Detection, 533–52. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812703606_0008.
Full text"Superheated Droplet (Bubble) Detectors and CDM Search." In Principles of Radiation Interaction in Matter and Detection, 1023–63. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814603195_0014.
Full text"Superheated Droplet (Bubble) Detectors and CDM Search." In Principles of Radiation Interaction in Matter and Detection, 785–825. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814360524_0010.
Full text"Superheated Droplet (Bubble) Detectors and CDM Search." In Principles of Radiation Interaction in Matter and Detection, 721–54. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812818294_0010.
Full textMagee, Patrick, and Mark Tooley. "Intravenous Pumps and Syringe Drivers." In The Physics, Clinical Measurement and Equipment of Anaesthetic Practice for the FRCA. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199595150.003.0031.
Full textConference papers on the topic "Bubble detectors"
Castillo, F., B. Leal, H. Martìnez, J. Rangel, and P. G. Reyes. "Measurements of fast neutrons by bubble detectors." In RADIATION PHYSICS: IX International Symposium on Radiation Physics. AIP, 2013. http://dx.doi.org/10.1063/1.4813457.
Full textSpurny, Frantisek. "Individual neutron dosimetry with bubble (superheated) detectors." In Fifth International Conference on Applications of Nuclear Techniques: Neutrons in Research and Industry, edited by George Vourvopoulos. SPIE, 1997. http://dx.doi.org/10.1117/12.267869.
Full textBARNABÉ-HEIDER, M., M. DI MARCO, P. DOANE, M.-H. GENEST, R. GORNEA, C. LEROY, L. LESSARD, et al. "CHARACTERIZATION OF THE RESPONSE OF SUPERHEATED DROPLET (BUBBLE) DETECTORS." In Proceedings of the 8th Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702708_0085.
Full textda Costa and Machado. "Basic Considerations Of Ultrasonic Air-bubble Detectors For Blood Extracorporeal Circulation." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.595605.
Full textda Costa, Luiz Eduardo G., and Joao C. Machado. "Basic considerations of ultrasonic air-bubble detectors for blood extracorporeal circulation." In 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.5761021.
Full textBou-Cabo, M., I. Felis, M. Ardid, and COUPP Collaboration. "Acoustic studies for alpha background rejection in dark matter bubble chamber detectors." In LOW RADIOACTIVITY TECHNIQUES 2013 (LRT 2013): Proceedings of the IV International Workshop in Low Radioactivity Techniques. AIP, 2013. http://dx.doi.org/10.1063/1.4818095.
Full textMoghaddam, Saeed, and Kenneth T. Kiger. "Pool Boiling Mechanism of HFE-7100." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56145.
Full textBigham, Sajjad, and Saeed Moghaddam. "A Microscale Study of the Impact of Bubble Growth Dynamics on Surface Heat Flux in Microchannel Flow Boiling Process." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53049.
Full textFelis, Ivan, Miguel Ardid, Manuel Bou, and Juan Antonio Martínez. "R&D studies for the development of acoustic sensors for dark matter bubble chamber detectors." In 2nd International Electronic Conference on Sensors and Applications. Basel, Switzerland: MDPI, 2015. http://dx.doi.org/10.3390/ecsa-2-e013.
Full textWang, Jing, Brian Archambault, Yiban Xu, and Rusi P. Taleyarkhan. "Numerical Simulation and Experimental Study on Resonant Acoustic Chambers: For Novel, High-Efficiency Nuclear Particle Detectors." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75744.
Full textReports on the topic "Bubble detectors"
Willis, William J. Novel Electron-Bubble Tracking Detectors. Office of Scientific and Technical Information (OSTI), August 2008. http://dx.doi.org/10.2172/962396.
Full textFISHER, RK. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEWTRON DETECTORS. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/814009.
Full textFISHER, RK. HIGH SPATIAL RESOLUTION NEUTRON IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE DETECTORS. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/814025.
Full textDahl, Carl Eric. Advances in large, liquid-based nuclear recoil detectors — Final Technincal Report for “A Scintillating Xenon Bubble Chamber for Dark Matter Detection”. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1644294.
Full textFISHER, RK. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS, Final Report for the Period November 1, 1999 - February 28, 2001. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/814007.
Full textFISHER, RK. HIGH SPATIAL RESOLUTION NEUTRON IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE DETECTORS. NLUF Program Progress Summary Report for period November 1, 2002 - July 31, 2003. Office of Scientific and Technical Information (OSTI), August 2003. http://dx.doi.org/10.2172/814032.
Full textBuckner, M. A. Improving neutron dosimetry using bubble detector technology. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/10152596.
Full textBuckner, M. A. Improving neutron dosimetry using bubble detector technology. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/6525620.
Full textIpe, N. E., and D. D. Busick. BD-100: THE CHALK RIVER NUCLEAR LABORATORIES' NEUTRON BUBBLE DETECTOR. Office of Scientific and Technical Information (OSTI), August 1987. http://dx.doi.org/10.2172/1448399.
Full textCollar, J. I., M. Crisler, J. Hall, D. Holmgren, D. Nakazawa, K. O. O'Sullivan, R. Plunkett, et al. COUPP, a Heavy-Liquid Bubble Chamber for WIMP Detection: First Tests in the MINOS Near-Detector Gallery. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/993555.
Full text