To see the other types of publications on this topic, follow the link: Bubble detectors.

Journal articles on the topic 'Bubble detectors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Bubble detectors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Das, Basanta, Anurag Shyam, Rashmita Das, and Durga Rao. "The neutron production rate measurement of an indigenously developed compact D-D neutron generator." Nuclear Technology and Radiation Protection 28, no. 4 (2013): 422–26. http://dx.doi.org/10.2298/ntrp1304422d.

Full text
Abstract:
One electrostatic accelerator based compact neutron generator was developed. The deuterium ions generated by the ion source were accelerated by one accelerating gap after the extraction from the ion source and bombarded to a target. Two different types of targets, the drive - in titanium target and the deuteriated titanium target were used. The neutron generator was operated at the ion source discharge potential at +Ve 1 kV that generates the deuterium ion current of 200 mA at the target while accelerated through a negative potential of 80 kV in the vacuum at 1.3?10-2 Pa filled with deuterium gas. A comparative study for the neutron yield with both the targets was carried out. The neutron flux measurement was done by the bubble detectors purchased from Bubble Technology Industries. The number of bubbles formed in the detector is the direct measurement of the total energy deposited in the detector. By counting the number of bubbles the total dose was estimated. With the help of the ICRP-74 neutron flux to dose equivalent rate conversion factors and the solid angle covered by the detector, the total neutron flux was calculated. In this presentation the operation of the generator, neutron detection by bubble detector and estimation of neutron flux has been discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Ing, H., R. A. Noulty, and T. D. McLean. "Bubble detectors—A maturing technology." Radiation Measurements 27, no. 1 (February 1997): 1–11. http://dx.doi.org/10.1016/s1350-4487(96)00156-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Smirnova, N., N. Semaschko, and Y. Martinuk. "Bubble Detectors in Fusion Dosimetry." Radiation Protection Dosimetry 44, no. 1-4 (November 1, 1992): 347–49. http://dx.doi.org/10.1093/rpd/44.1-4.347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smirnova, N., N. Semaschko, and Y. Martinuk. "Bubble Detectors in Fusion Dosimetry." Radiation Protection Dosimetry 44, no. 1-4 (November 1, 1992): 347–49. http://dx.doi.org/10.1093/oxfordjournals.rpd.a081464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pollock, Robert W. "Current developments with bubble detectors." International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 15, no. 1-4 (January 1988): 483–85. http://dx.doi.org/10.1016/1359-0189(88)90185-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Takada, M. "Measured proton sensitivities of bubble detectors." Radiation Protection Dosimetry 111, no. 2 (July 20, 2004): 181–89. http://dx.doi.org/10.1093/rpd/nch330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ing, H., and A. Mortimer. "Space radiation dosimetry using bubble detectors." Advances in Space Research 14, no. 10 (October 1994): 73–76. http://dx.doi.org/10.1016/0273-1177(94)90453-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schulze, J., W. Rosenstock, and H. L. Kronholz. "Measurements of Fast Neutrons by Bubble Detectors." Radiation Protection Dosimetry 44, no. 1-4 (November 1, 1992): 351–54. http://dx.doi.org/10.1093/rpd/44.1-4.351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Azuelos, G., M. Barnabé-Heider, E. Behnke, K. Clark, M. Di Marco, P. Doane, W. Feighery, et al. "Simulation of special bubble detectors for PICASSO." Radiation Protection Dosimetry 120, no. 1-4 (July 4, 2006): 499–502. http://dx.doi.org/10.1093/rpd/nci666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schulze, J., W. Rosenstock, and H. L. Kronholz. "Measurements of Fast Neutrons by Bubble Detectors." Radiation Protection Dosimetry 44, no. 1-4 (November 1, 1992): 351–54. http://dx.doi.org/10.1093/oxfordjournals.rpd.a081465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Vanhavere, F., and F. d'Errico. "Standardisation of Superheated Drop and Bubble Detectors." Radiation Protection Dosimetry 101, no. 1 (August 1, 2002): 283–87. http://dx.doi.org/10.1093/oxfordjournals.rpd.a005987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bramblevski, V. P., F. Spurn , and V. E. Dudkin. "Neutron Spectrometry with Bubble Damage Neutron Detectors." Radiation Protection Dosimetry 64, no. 4 (May 2, 1996): 309–11. http://dx.doi.org/10.1093/oxfordjournals.rpd.a031589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

d'Errico, F. "Fundamental Properties of Superheated Drop (Bubble) Detectors." Radiation Protection Dosimetry 84, no. 1 (August 1, 1999): 55–62. http://dx.doi.org/10.1093/oxfordjournals.rpd.a032796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bíró, T., A. Kelemen, and I. Pavlicsek. "Acoustic detection of neutrons by bubble detectors." International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 17, no. 4 (January 1990): 587–89. http://dx.doi.org/10.1016/1359-0189(90)90021-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lewis, B. J., S. El-Jaby, and J. Coulombe. "Characterization of bubble detectors for space application." Advances in Space Research 68, no. 6 (September 2021): 2309–19. http://dx.doi.org/10.1016/j.asr.2021.04.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Pullia, A. "Searches for Dark Matter with Superheated Liquid Techniques." Advances in High Energy Physics 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/387493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ponraju, D., C. V. Subramanian, A. S. Ramesh, Letha Sebastian, and S. Viswanathan. "Ultrasonic bubble counting technique for neutron dose measurements in bubble damage detectors." Radiation Measurements 30, no. 4 (August 1999): 471–75. http://dx.doi.org/10.1016/s1350-4487(99)00048-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Tu, C. Q., S. L. Guo, Y. L. Wang, X. H. Hao, C. M. Chen, and J. L. Su. "Study of bubble damage detectors for neutron detection." Radiation Measurements 28, no. 1-6 (January 1997): 159–62. http://dx.doi.org/10.1016/s1350-4487(97)00059-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Guo, S. L., L. Li, H. Y. Guo, C. Q. Tu, Y. L. Wang, T. Doke, T. Kato, et al. "High energy heavy ion tracks in bubble detectors." Radiation Measurements 31, no. 1-6 (June 1999): 167–72. http://dx.doi.org/10.1016/s1350-4487(99)00078-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

d'Errico, F., W. G. Alberts, G. Curzio, S. Guldbakke, H. Kluge, and M. Matzke. "Active Neutron Spectrometry with Superheated Drop (Bubble) Detectors." Radiation Protection Dosimetry 61, no. 1-3 (August 1, 1995): 159–62. http://dx.doi.org/10.1093/rpd/61.1-3.159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ing, H. "Neutron measurements using bubble detectors — terrestrial and space." Radiation Measurements 33, no. 3 (June 2001): 275–86. http://dx.doi.org/10.1016/s1350-4487(00)00154-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Guo, S. L., L. Li, T. Doke, J. Kikuchi, A. Kyan, E. Yoshihira, T. Kato, and T. Murakami. "Characteristics of heavy ion tracks in bubble detectors." Radiation Measurements 34, no. 1-6 (June 2001): 269–72. http://dx.doi.org/10.1016/s1350-4487(01)00165-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

d'Errico, F., W. G. Alberts, G. Curzio, S. Guldbakke, H. Kluge, and M. Matzke. "Active Neutron Spectrometry with Superheated Drop (Bubble) Detectors." Radiation Protection Dosimetry 61, no. 1-3 (August 1, 1995): 159–62. http://dx.doi.org/10.1093/oxfordjournals.rpd.a082774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ilonen, Jarmo, Roman Juránek, Tuomas Eerola, Lasse Lensu, Markéta Dubská, Pavel Zemčík, and Heikki Kälviäinen. "Comparison of bubble detectors and size distribution estimators." Pattern Recognition Letters 101 (January 2018): 60–66. http://dx.doi.org/10.1016/j.patrec.2017.11.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Taylor, Chris, Darius Montvila, David Flynn, Christopher Brennan, and Francesco d'Errico. "An acoustical bubble counter for superheated drop detectors." Radiation Protection Dosimetry 120, no. 1-4 (August 4, 2006): 514–17. http://dx.doi.org/10.1093/rpd/ncj016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

d'Errico, F., W. G. Alberts, E. Dietz, G. Gualdrini, J. Kurkdjian, P. Noccioni, and B. R. L. Siebert. "Neutron Ambient Dosimetry with Superheated Drop (Bubble) Detectors." Radiation Protection Dosimetry 65, no. 1 (June 1, 1996): 397–400. http://dx.doi.org/10.1093/oxfordjournals.rpd.a031670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Tam, N. C., K. Baricza, I. Alm si, and L. Lakosi. "Spent Fuel Assay with Thermally Stabilised Bubble Detectors." Radiation Protection Dosimetry 65, no. 1 (June 1, 1996): 417–20. http://dx.doi.org/10.1093/oxfordjournals.rpd.a031676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lerche, R. A., N. Izumi, R. K. Fisher, L. Disdier, J. L. Bourgade, A. Rouyer, P. A. Jaanimagi, and T. C. Sangster. "Neutron images recorded with high-resolution bubble detectors." Review of Scientific Instruments 74, no. 3 (March 2003): 1709–12. http://dx.doi.org/10.1063/1.1534393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Thayamballi, P., M. Courtoy, and J. Kelly. "Signal control in thin-film magnetoresistive bubble detectors." Journal of Magnetism and Magnetic Materials 54-57 (February 1986): 1577–79. http://dx.doi.org/10.1016/0304-8853(86)90932-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Spurný, F., and B. Vlček. "Use of bubble detectors in personal neutron dosimetry." Journal of Radioanalytical and Nuclear Chemistry Articles 209, no. 2 (October 1996): 275–78. http://dx.doi.org/10.1007/bf02040459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Felis, Ivan, Juan Martínez-Mora, and Miguel Ardid. "Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors." Sensors 16, no. 6 (June 10, 2016): 860. http://dx.doi.org/10.3390/s16060860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Guo, S. L., L. Li, B. L. Chen, T. Doke, J. Kikuchi, K. Terasawa, M. Komiyama, K. Hara, T. Fuse, and T. Murakami. "Status of bubble detectors for high-energy heavy ions." Radiation Measurements 36, no. 1-6 (June 2003): 183–87. http://dx.doi.org/10.1016/s1350-4487(03)00120-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tam, N. C., K. Baricza, and L. Lakosi. "Monitoring neutrons from spent reactor fuel by bubble detectors." Radiation Measurements 31, no. 1-6 (June 1999): 463–66. http://dx.doi.org/10.1016/s1350-4487(99)00191-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Cross, W. G. "Editorial - Superheated Drop and Bubble Detectors for Neutron Dosimetry." Radiation Protection Dosimetry 36, no. 1 (April 1, 1991): 3–4. http://dx.doi.org/10.1093/oxfordjournals.rpd.a080960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

d'Errico, F., and M. Matzke. "Neutron spectrometry in mixed fields: superheated drop (bubble) detectors." Radiation Protection Dosimetry 107, no. 1-3 (November 1, 2003): 111–24. http://dx.doi.org/10.1093/oxfordjournals.rpd.a006380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Agosteo, S., M. Silari, and L. Ulrici. "Improved Response of Bubble Detectors to High Energy Neutrons." Radiation Protection Dosimetry 88, no. 2 (March 2, 2000): 149–56. http://dx.doi.org/10.1093/oxfordjournals.rpd.a033032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sawicki, J. A. "Longevity tests and background response of bubble neutron detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 336, no. 1-2 (November 1993): 215–19. http://dx.doi.org/10.1016/0168-9002(93)91100-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Spurný, F., I. Votočková, and V. P. Bamblevski. "On the energy dependence of bubble damage neutron detectors." Radiation Measurements 23, no. 1 (January 1994): 251–53. http://dx.doi.org/10.1016/1350-4487(94)90046-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhang, Guiying, Bangfa Ni, Li Li, Peng Lv, Weizhi Tian, Zhiqiang Wang, Chunbao Zhang, et al. "Study on bubble detectors used as personal neutron dosimeters." Applied Radiation and Isotopes 69, no. 10 (October 2011): 1453–58. http://dx.doi.org/10.1016/j.apradiso.2011.05.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Matiullah, K. Kudo, A. Bashir, and X. Yang. "Experience with gamma and BD-100R neutron bubble detectors." Nuclear Tracks and Radiation Measurements 22, no. 1-4 (January 1993): 691–94. http://dx.doi.org/10.1016/0969-8078(93)90158-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Smith, Phillip J., Robert C. Hendricks, and Bruce M. Steinetz. "Electrolytic co-deposition neutron production measured by bubble detectors." Journal of Electroanalytical Chemistry 882 (February 2021): 115024. http://dx.doi.org/10.1016/j.jelechem.2021.115024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Felizardo, M., M. Reis, A. C. Fernandes, A. Kling, T. Morlat, and J. G. Marques. "Acoustic analysis methods for particle identification with superheated droplet detectors." E3S Web of Conferences 88 (2019): 01001. http://dx.doi.org/10.1051/e3sconf/20198801001.

Full text
Abstract:
A superheated droplet detector (SDD) consists of a uniform dispersion of over-expanded, micrometric-sized halocarbon droplets suspended in a hydrogenated gel, each droplet of which functions as a mini-bubble chamber. Energy deposition by irradiation nucleates the phase transition of the superheated droplets, generating millimetric-sized bubbles that are recorded acoustically. A simple pulse shape validation routine was developed in which each pulse is first amplitude demodulated and the decay constant then determined through an exponential fit. Despite this, low amplitude (< 3 mV) events embedded at naked eye in the noise level are not counted for calibration purposes with neutron and alpha sources. The solution found was to filter the data with a low band-pass filter in the region that the bubbles nucleate (typically from 450 to 750 Hz). After this, a peak finding algorithm to count all the events was implemented. The performance demonstrates better than a factor 40 reduction in noise and an extra factor 10 reduction with the filtering application. The lowering of noise and discovery of low signal amplitudes by the acoustic instrumentation and acoustic analysis permits a capability of discriminating nucleation events from acoustic backgrounds and radiation sources and, having a 95% confidence level on identifying and counting events in substantial data sets like in calibrations.
APA, Harvard, Vancouver, ISO, and other styles
43

Nakamura, Yosio, Paul L. Donoho, Phillip H. Roper, and Paul M. McPherson. "Large‐offset seismic surveying using ocean‐bottom seismographs and air guns: Instrumentation and field technique." GEOPHYSICS 52, no. 12 (December 1987): 1601–11. http://dx.doi.org/10.1190/1.1442277.

Full text
Abstract:
Repeatable, closely spaced signal sources from large‐capacity air guns and detection and recording of signals using highly flexible, microprocessor‐controlled, digital ocean‐bottom seismographs allow us to acquire high‐quality, large‐offset, marine seismic refraction and reflection data. The acquired data are readily adaptable to various processing techniques originally developed for seismic reflection data. There are several requirements and problems specific to the technique. For example, bubbly signals from one or two large‐capacity air guns are often preferable to bubble‐suppressed signals from tuned arrays in identifying weak arrivals at large offset distances. Recorded water‐wave signals at near ranges provide precise locations of detectors relative to shots.
APA, Harvard, Vancouver, ISO, and other styles
44

Tsoviyanov, Aleksandr, A. Komarov, P. Gantsovskii, A. Alexeev, M. Popchenko, V. Zhuravleva, and N. Bogdanenko. "Means and Methods of Dosimetry of High-Energy Neutron Radiation on Proton Accelerators." Medical Radiology and radiation safety 66, no. 4 (September 13, 2021): 77–85. http://dx.doi.org/10.12737/1024-6177-2021-66-4-77-85.

Full text
Abstract:
The main common means and methods of neutron radiation dosimetry. Consideration of various means and methods for detecting high-energy neutron radiation: ● Activation ● Tracking ● Bubble detectors ● TEPC ● Moderator + converter
APA, Harvard, Vancouver, ISO, and other styles
45

Hashimoto, Keiji, Yasuo Kondou, Eriko Honda, Satoru Matsuo, Tetsuo Kida, Mitsuru Komizu, and Yasuyuki Ogawa. "465. Regarding intensity limit of the remcounter by bubble detectors." Japanese Journal of Radiological Technology 49, no. 8 (1993): 1486. http://dx.doi.org/10.6009/jjrt.kj00003325049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hashimoto, Keiji, Yasuo Kondo, Eriko Honda, Satoru Matsuo, Tetsuo Kida, and Yasuyuki Ogawa. "207. The characteristics of Bubble detectors-1 : about neutronsensitive type." Japanese Journal of Radiological Technology 48, no. 8 (1992): 1290. http://dx.doi.org/10.6009/jjrt.kj00003500603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Green, A. R., L. G. I. Bennett, B. J. Lewis, P. Tume, H. R. Andrews, R. A. Noulty, and H. Ing. "Characterisation of bubble detectors for aircrew and space radiation exposure." Radiation Protection Dosimetry 120, no. 1-4 (September 1, 2006): 485–90. http://dx.doi.org/10.1093/rpd/nci686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Guo, S. L., T. Doke, D. H. Zhang, L. Li, B. L. Chen, J. Kikuchi, N. Hasebe, et al. "Experimental investigation of bubble occurrence and locality distribution of bubble detectors bombarded with high-energy helium ions." Radiation Measurements 50 (March 2013): 31–37. http://dx.doi.org/10.1016/j.radmeas.2012.10.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

TITOV, MAXIM, and LESZEK ROPELEWSKI. "MICRO-PATTERN GASEOUS DETECTOR TECHNOLOGIES AND RD51 COLLABORATION." Modern Physics Letters A 28, no. 13 (April 30, 2013): 1340022. http://dx.doi.org/10.1142/s0217732313400221.

Full text
Abstract:
Discoveries in particle physics vitally depend on parallel advances in radiation-detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements — the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel Prize in Physics in 1992. This invention revolutionized particle detection which moved from optical-readout devices (cloud chamber, emulsion or bubble chambers) to the electronics era. Over the past two decades advances in photo-lithography, microelectronics and printed-circuit board (PCB) techniques triggered a major transition in the field of gas detectors from wire structures to the Micro-Pattern Gas Detector (MPGD) concepts. The excellent spatial and time resolution, high rate capability, low mass, large active areas, and radiation hardness make them an invaluable tool to confront future detector challenges at the frontiers of research. The design of the new micro-pattern devices appears suitable for industrial production. Novel devices where MPGDs are directly coupled to the CMOS pixel readout serve as an "electronic bubble chamber" allowing to record space points and tracks in 3D. In 2008, the RD51 collaboration at CERN has been established to further advance technological developments of MPGDs and associated electronic-readout systems, for applications in basic and applied research. This review provides an overview of the state-of-the-art of the MPGD technologies and summarizes ongoing activities within the framework of the RD51 collaboration.
APA, Harvard, Vancouver, ISO, and other styles
50

Rusov, V., T. Zelentsova, and S. Kosenko. "Proposal for a new class of ssntd's — magnetic bubble domain detectors." Radiation Measurements 31, no. 1-6 (June 1999): 37–44. http://dx.doi.org/10.1016/s1350-4487(99)00096-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography