To see the other types of publications on this topic, follow the link: Buck boost converters.

Journal articles on the topic 'Buck boost converters'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Buck boost converters.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sundar, T., and S. Sankar. "Modeling and Simulation of Closed Loop Controlled Parallel Cascaded Buck Boost Converter Inverter Based Solar System." International Journal of Power Electronics and Drive Systems (IJPEDS) 6, no. 3 (September 1, 2015): 648. http://dx.doi.org/10.11591/ijpeds.v6.i3.pp648-656.

Full text
Abstract:
<p>This Work deals with design, modeling and simulation of parallel cascaded buck boost converter inverter based closed loop controlled solar system. Two buck boost converters are cascaded in parallel to reduce the ripple in DC output. The DC from the solar cell is stepped up using boost converter. The output of the boost converter is converted to 50Hz AC using single phase full bridge inverter. The simulation results of open loop and closed loop systems are compared. This paper has presented a simulink model for closed loop controlled solar system. Parallel cascaded buck boost converter is proposed for solar system.</p>
APA, Harvard, Vancouver, ISO, and other styles
2

Hwu, K. I., and T. J. Peng. "A Novel Buck–Boost Converter Combining KY and Buck Converters." IEEE Transactions on Power Electronics 27, no. 5 (May 2012): 2236–41. http://dx.doi.org/10.1109/tpel.2011.2182208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ado, Muhammad, Awang Jusoh, and Tole Sutikno. "Asymmetric quasi impedance source buck-boost converter." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 2 (April 1, 2020): 2128. http://dx.doi.org/10.11591/ijece.v10i2.pp2128-2138.

Full text
Abstract:
An impedance source buck-boost converter (BBC) prototype for renewable energy (RE) application in the transportation industry is proposed. Its functions include stabilizing the variable output voltage of the RE sources such as fuel cells and photovoltaic cells. The converter utilized a topology of DC-DC quasi-impedance source converters (q-ZSCs) to achieve the gain curve of the BBC. With BBC gain curve, the converter earned advantages over the two other classes of non-isolated DC-DC q-ZSCs. These advantages include ecient buck-boost capability at the ecient duty ratio range of 0:35-0:65 and continuous and non-zero gain at the ecient duty ratio range. The converter's q-ZSC topology implies using two capacitors and two inductors. These two capacitors and inductors formed two separate LC filters that provides second order filtering compared to the first order filtering in BBC. Its other advantages over the traditional BBC include elim-ination of dead and overlap-time, simple contol and permitting higher switching frequency operation. The converter is capable of utilizing high switching frequency and asymmetric components to achieve BBC gain by using smaller components to reduce cost, weight and size. Its simulation response and that of a correspond-ing BBC for some given specifications were compared, presented and analyzed. An experimental scaled-down prototype was also developed to confirm its opera-tion. Analysis of the converters responses comfirmed the prototype's second order filtering as against the first order filtering in traditional BBC.
APA, Harvard, Vancouver, ISO, and other styles
4

Williams, Barry W. "Transformer Isolated Buck-Boost Converters." Renewable Energy and Sustainable Development 2, no. 2 (June 30, 2016): 112–25. http://dx.doi.org/10.21622/resd.2016.02.2.112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

González-Castaño, Catalina, Carlos Restrepo, Fredy Sanz, Andrii Chub, and Roberto Giral. "DC Voltage Sensorless Predictive Control of a High-Efficiency PFC Single-Phase Rectifier Based on the Versatile Buck-Boost Converter." Sensors 21, no. 15 (July 28, 2021): 5107. http://dx.doi.org/10.3390/s21155107.

Full text
Abstract:
Many electronic power distribution systems have strong needs for highly efficient AC-DC conversion that can be satisfied by using a buck-boost converter at the core of the power factor correction (PFC) stage. These converters can regulate the input voltage in a wide range with reduced efforts compared to other solutions. As a result, buck-boost converters could potentially improve the efficiency in applications requiring DC voltages lower than the peak grid voltage. This paper compares SEPIC, noninverting, and versatile buck-boost converters as PFC single-phase rectifiers. The converters are designed for an output voltage of 200 V and an rms input voltage of 220 V at 3.2 kW. The PFC uses an inner discrete-time predictive current control loop with an output voltage regulator based on a sensorless strategy. A PLECS thermal simulation is performed to obtain the power conversion efficiency results for the buck-boost converters considered. Thermal simulations show that the versatile buck-boost (VBB) converter, currently unexplored for this application, can provide higher power conversion efficiency than SEPIC and non-inverting buck-boost converters. Finally, a hardware-in-the-loop (HIL) real-time simulation for the VBB converter is performed using a PLECS RT Box 1 device. At the same time, the proposed controller is built and then flashed to a low-cost digital signal controller (DSC), which corresponds to the Texas Instruments LAUNCHXL-F28069M evaluation board. The HIL real-time results verify the correctness of the theoretical analysis and the effectiveness of the proposed architecture to operate with high power conversion efficiency and to regulate the DC output voltage without sensing it while the sinusoidal input current is perfectly in-phase with the grid voltage.
APA, Harvard, Vancouver, ISO, and other styles
6

Rose, J. Leema, and B. Sankaragomathi. "Comparison of Buck–Boost and Ćuk Converters Based on Time Domain Response." Journal of Circuits, Systems and Computers 27, no. 14 (August 23, 2018): 1850222. http://dx.doi.org/10.1142/s0218126618502225.

Full text
Abstract:
This paper presents the design and modeling of power electronic converters such as buck–boost and Ćuk operated under continuous conduction mode (CCM). The open-loop behavior of buck–boost and Ćuk converters needs modeling and simulation using modeled equations. The closed-loop control of these converters has a propositional–integral–derivative (PID) controller. PID controller parameters are obtained from Ziegler–Nichols step response method. These converters can be analyzed using the state equation. The MATLAB/SIMULINK tool is used for simulation of those state equations. Ćuk and buck–boost converters are designed and analyzed. The mathematical model of power Converter for simulation has been carried out using SIMULINK with/without any Sim Power System Elements. The open- and closed-loop results are compared.
APA, Harvard, Vancouver, ISO, and other styles
7

Jamshidpour, Ehsan, Slavisa Jovanovic, and Philippe Poure. "Equivalent Two Switches and Single Switch Buck/Buck-Boost Circuits for Solar Energy Harvesting Systems." Energies 13, no. 3 (January 27, 2020): 583. http://dx.doi.org/10.3390/en13030583.

Full text
Abstract:
In this paper, a comparative analysis has been presented of two equivalent circuits of non-isolated buck/buck-boost converters under synchronous control, used in a stand-alone Photovoltaic-battery-load system. The first circuit consists of two cascaded buck and buck-boost classical converters with two controllable switches. The buck converter is used to extract the maximum power of the Photovoltaic source, and the buck-boost converter is applied for the output voltage level control. The second circuit consists of a proposed converter with a single controllable switch. In both cases, the switching frequency is used to track the maximum power point and the duty ratio controls the output voltage level. Selected simulation results and experimental tests confirm that the two conversion circuits have identical behavior under synchronous control. This study shows that the single switch converter has a lower size and cost, but it is limited in the possible control strategy.
APA, Harvard, Vancouver, ISO, and other styles
8

Peter Drgona, Rastislav Stefun, Slavomir Kascak, and Jan Morgos. "Demonstration of a System Identification on Real Step-Down Power Converters." Communications - Scientific letters of the University of Zilina 22, no. 4 (October 1, 2020): 128–33. http://dx.doi.org/10.26552/com.c.2020.4.128-133.

Full text
Abstract:
System identification is a scientific field with a wide range of applications, including transport and transportation systems. Automotive industry has a growing trend of power converters implementation. In addition, intelligence of converters is developing. Thus, the power electronics and autotronics are application areas where identification can also be applied. Since buck (step-down), boost (step-up) and buck-boost are the most common topologies of the converters in automobiles, this article aims to demonstrate possibilities of using the identification procedure on the synchronous buck converter. The objective is to obtain a parametric model that could be further useful in analysis and other work with the converter.
APA, Harvard, Vancouver, ISO, and other styles
9

Palanisamy, R., K. Vijayakumar, V. Venkatachalam, R. Mano Narayanan, D. Saravanakumar, and K. Saravanan. "Simulation of various DC-DC converters for photovoltaic system." International Journal of Electrical and Computer Engineering (IJECE) 9, no. 2 (April 1, 2019): 917. http://dx.doi.org/10.11591/ijece.v9i2.pp917-925.

Full text
Abstract:
This work explains the comparison of various dc-dc converters for photovoltaic systems. In recent day insufficient energy and continues increasing in fuel cost, exploration on renewable energy system becomes more essential. For high and medium power applications, high input source from renewable systems like photovoltaic and wind energy system turn into difficult one, which leads to increase of cost for installation process. So the generated voltage from PV system is boosted with help various boost converter depends on the applications. Here the various converters are like boost converter, buck converter, buck-boost converter, cuk converter, sepic converter and zeta converter are analysed for photovoltaic system, which are verified using matlab / simulink.
APA, Harvard, Vancouver, ISO, and other styles
10

Himmelstoss, Felix A., and Karl Edelmoser. "Modified Fourth-Order Buck-Boost Converter." WSEAS TRANSACTIONS ON ELECTRONICS 11 (May 18, 2020): 33–41. http://dx.doi.org/10.37394/232017.2020.11.5.

Full text
Abstract:
Some hundred DC/DC converters have been constructed. Here a modified one is investigated. The modification consists in the position of the output capacitor. This does not change the voltage transformation ratio, but leads to constant input current compared to a pulsating one in the original topology. The function of the converter is investigated by inspection and by constructing the signals, the large and small signal model of the converter and the transfer function are derived, dimensioning hints are given and simulations are shown.
APA, Harvard, Vancouver, ISO, and other styles
11

Bonab, Hossein Ajdar Faeghi, and Mohamad Reza Banaei. "Enhanced Buck-Boost dc–dc Converter with Positive Output Voltage." Journal of Circuits, Systems and Computers 29, no. 05 (July 10, 2019): 2050072. http://dx.doi.org/10.1142/s0218126620500723.

Full text
Abstract:
In this paper, a new transformerless buck-boost converter is presented. The voltage gain of the converter is higher than the classic boost converter, classic buck-boost converter, CUK and SEPIC converters. The proposed converter advantage is buck-boost capability. The proposed converter topology is simple; therefore, the converter control is simple. The converter has one main switch. Hence, the switch with low switching and conduction losses can be used. The stress of the main switch is low; therefore, switch with low on-state resistance can be selected. The principles of the converter and mathematic analyses are presented. The validity of the accuracy of calculations is verified by the experimental results.
APA, Harvard, Vancouver, ISO, and other styles
12

Naresh, SVK, and Sankar Peddapati. "Complementary switching enabled cascaded boost‐buck‐boost (BS‐BB) and buck‐boost‐buck (BB‐BU) converters." International Journal of Circuit Theory and Applications 49, no. 9 (April 27, 2021): 2736–53. http://dx.doi.org/10.1002/cta.3034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hwu, K. I., K. W. Huang, and W. C. Tu. "Step-up converter combining KY and buck-boost converters." Electronics Letters 47, no. 12 (2011): 722. http://dx.doi.org/10.1049/el.2011.0392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Suntio, Teuvo. "Modeling and Analysis of a PCM-Controlled Boost Converter Designed to Operate in DCM." Energies 12, no. 1 (December 20, 2018): 4. http://dx.doi.org/10.3390/en12010004.

Full text
Abstract:
Peak current-mode (PCM) control has been a very popular control method in power electronic converters. The small-signal modeling of the dynamics associated with PCM control has turned out to be extremely challenging. Most of the modeling attempts have been dedicated to the converters operating in continuous conduction mode (CCM) and just a few to the converters operating in discontinuous operation mode (DCM). The DCM modeling method published in 2001 was proven recently to be very accurate when applied to a buck converter. This paper provides the small-signal models for a boost converter and analyses for the first time its real dynamic behavior in DCM. The objectives of this paper are as follows: (i) to provide the full-order dynamic models for the DCM-operated PCM-controlled boost converter; (ii) to analyze the accuracy of the full and reduced-order dynamic models; and iii) to verify the validity of the high-frequency extension applied in the DCM-operated PCM-controlled buck converter in the case of the boost converter. It is also shown that the DCM-operated boost converter can operate only in even harmonic modes, similar to all the CCM-operated PCM-controlled converters. In the case of the DCM-operated PCM-controlled buck converter, its operation in the odd harmonic modes is the consequence of an unstable pole in its open-loop power-stage dynamics.
APA, Harvard, Vancouver, ISO, and other styles
15

Yingqi Zhang and P. C. Sen. "A new soft-switching technique for buck, boost, and buck~boost converters." IEEE Transactions on Industry Applications 39, no. 6 (November 2003): 1775–82. http://dx.doi.org/10.1109/tia.2003.818964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Tseng, Sheng Yu, and Shu Yuan Fan. "Interleaved Soft-Switching Converter with L-C-D Snubber for Reflex Charger." Applied Mechanics and Materials 284-287 (January 2013): 2555–60. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.2555.

Full text
Abstract:
This paper presents a Reflex charger realized by N sets of interleaved soft-switching converters with L-C-D snubbers. The interleaved converters used for implementing the Reflex charging technique can be interleaved boost, interleaved buck-boost, and interleaved sepic converters. The use of the L-C-D snubber in each set of interleaved converter is to reduce turn-off switching losses, hence, to achieve higher conversion efficiencies of the interleaved converters and to extend the lifetime of rechargeable batteries. A prototype of Reflex charger with four sets of interleaved buck-boost con-verters is implemented for charging lead acid batteries of 12V. Experimental results show that the proposed circuit structure can generate the required positive/negative pulses for the Reflex charging.
APA, Harvard, Vancouver, ISO, and other styles
17

Licea, Martín Antonio Rodríguez, Francisco Javier Perez Pinal, Alejandro Israel Barranco Gutiérrez, Carlos Alonso Herrera Ramírez, and Jose Cruz Nuñez Perez. "A Reconfigurable Buck, Boost, and Buck-Boost Converter: Unified Model and Robust Controller." Mathematical Problems in Engineering 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/6251787.

Full text
Abstract:
The need for reconfigurable, high power density, and low-cost configurations of DC-DC power electronic converters (PEC) in areas such as the transport electrification and the use of renewable energy has spread out the requirement to incorporate in a single circuit several topologies, which generally result in an increment of complexity about the modeling, control, and stability analyses. In this paper, a reconfigurable topology is presented which can be applied in alterative/changing power conversion scenarios and consists of a reconfigurable Buck, Boost, and Buck-Boost DC-DC converter (RBBC). A unified averaged model of the RBBC is obtained, a robust controller is designed through a polytopic representation, and a Lyapunov based switched stability analysis of the closed-loop system is presented. The reported RBBC provides a wide range of voltage operation, theoretically from -∞ to ∞ volts with a single power source. Robust stability, even under arbitrarily fast (bounded) parameter variations and reconfiguration changes, is reported including numerical and experimental results. The main advantages of the converter and the robust controller proposed are simple design, robustness against abrupt changes in the parameters, and low cost.
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, Hailong, Yafei Chen, Sung-Jun Park, and Dong-Hee Kim. "A Family of Bidirectional DC–DC Converters for Battery Storage System with High Voltage Gain." Energies 12, no. 7 (April 3, 2019): 1289. http://dx.doi.org/10.3390/en12071289.

Full text
Abstract:
In low power energy storage systems, to match the voltage levels of the low-voltage battery side and high-voltage direct current (DC) bus, a high voltage gain converter with bidirectional operation is required. In this system, the cost effectiveness of the design is a critical factor; therefore, the system should be designed using a small number of components. This paper proposes a set of bidirectional converters with high voltage gain range based on the integration of the boost converter with a Ćuk converter, single ended primary inductor converter (Sepic), and buck-boost converter. The proposed converters consist of a small number of components with a high voltage gain ratio. Detailed comparisons are made with respect to the operating mode, number of components, voltage, and current ripple and efficiency. The efficiency of proposed converters are higher than the conventional converters in entire power range, and 6% higher efficiency can be achieved in large duty cycle by calculating loss analysis. To verify performances of the proposed converters, three 200-W prototypes of the converters are developed under the same experimental conditions. The results revealed that converter I exhibits the highest efficiency in the boost mode (92%) and buck mode (92.2%). The experimental results are shown to verify the feasibility and performances of the set of converters.
APA, Harvard, Vancouver, ISO, and other styles
19

Matalata, Hendi, and Leily W. Johar. "ANALISA BUCK CONVERTER DAN BOOST CONVERTER PADA PERUBAHAN DUTY CYCLE PWM DENGAN MEMBANDINGKAN FREKUENSI PWM 1,7 Khz DAN 3,3 Khz." Jurnal Ilmiah Universitas Batanghari Jambi 18, no. 1 (February 14, 2018): 42. http://dx.doi.org/10.33087/jiubj.v18i1.431.

Full text
Abstract:
Buck-Boost Converters are electric power supply device for raising and lowering the voltage DC (Direct Current) power supply equipment according to needs of the electrical load, this research is designed to Buck-Boost Converter and Converter on the 12 Volt power supply, the design of a Buck Converter power supply derived 5 Volt, 6Volt and 6 Volt design while the Boost Converter power supply 12 Volt offered up to 16 Volt, 19 Volt and 22 Volts in a way set the duty cycle of PWM frequency settings in 1.7 Khz and 3.3 Khz. Results research indicates the State of the differences in each frequency in the set output voltage ripple shape obtained is different, however, in the design of this research have been successfully carried out as expected.Keywords: buck converter, boost converter, change in duty cycle
APA, Harvard, Vancouver, ISO, and other styles
20

Tseng, Sheng Yu, and Yi Ren Juang. "Approach to Developing Interleaved Converter with Single-Capacitor Turn-Off Snubber." Applied Mechanics and Materials 284-287 (January 2013): 2477–84. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.2477.

Full text
Abstract:
This paper presents a systematic approach to developing turn-off snubber for an interleaving converter to smooth out switch turn-off transition. With the approach, the interleaving converter with two turn-off snubbers, which are formed by two L-C-D type snubbers, can be replaced by the one with turn-off snubber composed of a single-capacitor snubber. It can be used in the basic six interleaved converters, such as buck, boost, buck-boost, ‘cuk, zeta and sepic converters. In this research, the structure of the interleaved converter with the turn-off snubber can be conveniently simplified from the derived general configurations, reducing the complexity of circuit structure significantly. Measured results from a buck prototype converter have been verified to prove the feasibility of the derived turn-off snubber.
APA, Harvard, Vancouver, ISO, and other styles
21

Liu, Hai Lang, Rui Bin Zhang, and Ping Yang. "Generation, Analysis of Switched Mode Dc to Dc Converters by the Use of Converters Cells." Advanced Materials Research 201-203 (February 2011): 931–35. http://dx.doi.org/10.4028/www.scientific.net/amr.201-203.931.

Full text
Abstract:
The conventional PWM converter topologies limit the operation to lower switching frequencies because of the minimum ON-time of the transistor switch. The quadratic feature is interesting for application where a wide voltage range is necessary, a quadratic buck-boost converter is presented. The converter cell is showed, the quadratic buck converter with the converter cell can convert to the quadratic buck-boost converter without increasing elements.
APA, Harvard, Vancouver, ISO, and other styles
22

Babu, Samuel Rajesh. "Push-Pull Converter Fed Three-Phase Inverter for Residential and Motor Load." International Journal of Power Electronics and Drive Systems (IJPEDS) 6, no. 2 (June 1, 2015): 260. http://dx.doi.org/10.11591/ijpeds.v6.i2.pp260-267.

Full text
Abstract:
<p>The proposed paper is an new approach for power conditioning of a PV (photo-voltaic) cell array. The main objective is to investigate an approach to provide and improve the delivered electric energy by means of power conditioning structures with the use of alternative renewable resources (ARRs) for remote rural residential or industrial non-linear loads. This approach employs a series-combined connected boost and buck boost DC-DC converter for power conditioning of the dc voltage provided by a photo-voltaic array. The input voltage to the combined converters is 100 V provided from two series connected PV cells, which is converted and increased to 200 V at the dc output voltage. Series-combined connected boost and buck-boost DC-DC converters operate alternatively. This helps to reduce the input ripple current and provide the required 400 Vdc on a sinusoidal PWM three-phase inverter. Analysis of the two series-combined DC-DC converters is presented along with simulation results. Simulations of the series-combined DC-DC converters are presented with an output DC voltage of 200 V and a maximum output load of <em>Po </em>= 600 W.<em></em></p>
APA, Harvard, Vancouver, ISO, and other styles
23

W, Abitha Memala, C. Bhuvaneswari, S. M. Shyni, G. Merlin Sheeba, Modi Surya Mahendra, and V. Jaishree. "DC-DC converter based power management for go green applications." International Journal of Power Electronics and Drive Systems (IJPEDS) 10, no. 4 (December 1, 2019): 2046. http://dx.doi.org/10.11591/ijpeds.v10.i4.pp2046-2054.

Full text
Abstract:
A non-isolated tri-port converter is a fully compact and functional system by the integration of basic converters. This can be used for renewable energy applications. This converter is capable of achieving different switching patterns of power flow between the source and load, interfaced sources of various voltage and current levels with the dc grid. This tri-port converter has to be used for continuous power distribution of rechargeable battery, photovoltaic panels and load. Due to the implementation of this dc-dc converter some operations like buck, boost and buck-boost operations became easy. Use of this converter helps in easy implementation of the system. The solar PV panel implementation boosts the system to a high level and bidirectional flow became easy from source to load and vice versa
APA, Harvard, Vancouver, ISO, and other styles
24

Naz*, Farha. "Closed loop Buck & Boost Converter Mathematical Modeling, Analysis and Simulation using MATLAB." International Journal of Engineering and Advanced Technology 10, no. 4 (April 30, 2021): 263–71. http://dx.doi.org/10.35940/ijeat.d2525.0410421.

Full text
Abstract:
This article presents the converter circuit analysis, mathematical modeling followed by deriving its average state space equations. The model so obtained is simulated in MATLAB in open loop and closed loop configuration and changes in the output are observed. Specifically, Buck & Boost converters with & without its controller at steady state and study of their transient responses to the changing inputs with a controller design and its implementation on SIMULINK model is presented here. The method used to control the output of the converter is Proportional and Integral error correction that is a PI controller which is used to reduce errors and stabilize the variable input fed to the Buck or Boost converters. The tool used to design the controller parameters is PID Tuner application in in MATLAB. The analyses plots derived using the tool lets us examine the controller performance in time and frequency domain. The advantage of the tool used is, it allows user to interactively refine the performance of the controller to adjust loop bandwidth and phase margin or to favor a set-point tracking or disturbance rejection. The designed converters are analyzed in current mode control and voltage mode control to switch on/off. The long term goal is to have a sophisticated controller design for buck & boost converters for the application where variable input is fed to them, so as to allow its simulation to fully understand how the converters behave when controller is implemented. The model tested here are of the similar nature that are being used in standalone solar or wind energy generation & distribution systems. The variable nature of the input tested here with Buck & Boost converters reflects the variable nature of the output of the renewable energy sources and that broaden the scope of these converters to be implanted with such standalone energy systems
APA, Harvard, Vancouver, ISO, and other styles
25

Wang, Dian Long, and Dong Jie Shen. "A New Buck/Boost Bidirectional DC/DC Converter Base on Soft Change Current Network." Applied Mechanics and Materials 291-294 (February 2013): 2011–14. http://dx.doi.org/10.4028/www.scientific.net/amm.291-294.2011.

Full text
Abstract:
There is a problem about high current and voltage spikes in Buck and Boost converters,it will damage main power devices .Therefore, a novel Buck/Boost bidirectional DC/DC converter based on soft change current (SCC) network was given, and Buck and Boost modes ware particularly analyzed.Groups parameters of L/C/D are selected and simulated with Saber software. The optimal combination of L/C/D was ascertainned by observing groups switch waveforms. Theoretical analysis and simulation results show that the voltage and current spike of the power switches is deeply descreased by SCC network.
APA, Harvard, Vancouver, ISO, and other styles
26

Sander, Sverker. "Buck and Boost Converters With Transmission Lines." IEEE Transactions on Power Electronics 27, no. 9 (September 2012): 4013–20. http://dx.doi.org/10.1109/tpel.2012.2188044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hwu, K. I., and Y. T. Yau. "Two Types of KY Buck–Boost Converters." IEEE Transactions on Industrial Electronics 56, no. 8 (August 2009): 2970–80. http://dx.doi.org/10.1109/tie.2009.2023100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Watanabe, K., T. Hayashida, and A. Kawashima. "Buck/boost DC/DC converters using nMOSFETs." Electronics Letters 31, no. 12 (June 8, 1995): 933–34. http://dx.doi.org/10.1049/el:19950651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wook Park, Jin, Yeo Seo hyun, Ho Yun Soen, Seong Mi Park, Sung Jun Park, and Gwang Heon Kim. "Standalone solar streetlamp sharing an interactive buck-boost converter." International Journal of Engineering & Technology 7, no. 2.12 (April 3, 2018): 296. http://dx.doi.org/10.14419/ijet.v7i2.12.11309.

Full text
Abstract:
Background/Objectives: Typically, the stand-alone solar streetlight system is used independently of DC/DC converter for battery charging and for LED lighting control. Such an independent power conversion system uses a DC/DC converter with only a voltage raising or reducing function for cost reduction (power semiconductor, inductor, capacitor, etc.). However, these DC/DC converters have limitations on efficiency increase in all voltage ranges when controlling MPPT. In addition, DC/DC converters for LED lighting have limitations in the design of the lighting voltage because the LED lighting operates only at voltages lower or higher than the battery voltage. Therefore, In this paper, a new power conversion system using a DC/DC converter for battery charging and for streetlight using a bi-directional buck and boost DC/DC converter.Methods/Statistical analysis: A prototype was fabricated and tested. The used equipment was a Tektronix oscilloscope, 24V (Lead-Acid) Battery, PV Simulator (ETS 1000X10D PVF_Sorensen) and WT 3000 (YOKOGAWA).Findings: By using a shared converter, cost savings were achieved by reducing the number of power semiconductor devices and the number of inductors and capacitors. In addition, it works as an input / output step-down converter to compensate the voltage design limit.Improvements/Applications: In <30 words.
APA, Harvard, Vancouver, ISO, and other styles
30

Babaei, Ebrahim, Zahra Saadatizadeh, and Behnam Mohammadi Ivatloo. "A New Interleaved Bidirectional Zero Voltage Switching DC/DC Converter with High Conversion Ratio." Journal of Circuits, Systems and Computers 26, no. 06 (March 5, 2017): 1750105. http://dx.doi.org/10.1142/s0218126617501055.

Full text
Abstract:
In this paper, a new interleaved nonisolated bidirectional zero voltage switching (ZVS) dc–dc converter by using one three-windings coupled inductor is proposed. The proposed topology can provide high step-up and high step-down conversion ratios for boost and buck operations, respectively. Moreover, because of interleaving, the proposed converter has low input current ripple at low voltage side in both buck and boost operations. The proposed converter uses lower number of switches to have bidirectional power flow in comparison with other interleaved bidirectional converters. All used switches in the proposed converter are turned on under ZVS. The advantages of the proposed converter in comparison with the conventional interleaved converters are included in the capability of bidirectional power flow, ZVS operation for all switches and high step-up and high step-down voltage gain for boost and buck operations. In this paper, the proposed converter is analyzed completely and all equations of components are extracted as well as the ZVS conditions of all switches. Moreover, a comprehensive comparison between the proposed converter and conventional topologies is presented. To verify the accuracy performance of the proposed converter, the experimental results are given.
APA, Harvard, Vancouver, ISO, and other styles
31

Malekzadeh, Milad, Alireza Khosravi, and Mehdi Tavan. "Immersion and invariance-based filtered transformation with application to estimator design for a class of DC-DC converters." Transactions of the Institute of Measurement and Control 41, no. 5 (September 18, 2018): 1323–30. http://dx.doi.org/10.1177/0142331218777563.

Full text
Abstract:
This paper addresses the problem of state and parameter estimation for a class of uncertain DC-DC such converters as DC–DC boost, buck and buck-boost converters. Using the advantages of Immersion and Invariance technique with input-output filtered transformation, a proper immersion and auxiliary dynamic filter is constructed in the proposed estimator. Uniform global asymptotic convergence of the estimator is proven for the system with parametric uncertainties. In the presence of both output and state dynamics perturbations, the performance of the proposed estimator has been theoretically analyzed and verified by means of simulation results. In addition, the effectiveness of this scheme is validated via experimental test for DC-DC boost converter.
APA, Harvard, Vancouver, ISO, and other styles
32

Desai, Hardik P., Ranjan Maheshwari, and Shambhu N. Sharma. "MATLAB-Based Investigation of Multiphase Interleaved Buck-Boost Converter for PV System." ISRN Renewable Energy 2012 (March 1, 2012): 1–9. http://dx.doi.org/10.5402/2012/317982.

Full text
Abstract:
A photovoltaic (PV) generator exhibits nonlinear voltage-current characteristics and its maximum power point varies with solar radiation. Analytical investigations of the new family of switching converters based on a parallel connection of (=4) identical buck-boost converters employed in PV system are presented. The interleaving strategy ensures that all the converters operate at the same switching frequency. Mathematical models developed using the state-space average technique are presented in this paper. Various steady-state performance expressions are also derived. The present converter system has the advantages of reduced size of the converter, and ripple in the total inductor current. The effectiveness of the four-phase interleaved dc-dc converter combined with PV system is demonstrated through simulations carried out in MATLAB environment.
APA, Harvard, Vancouver, ISO, and other styles
33

Muhammad, Khairul Safuan, Rahimi Baharom, Siti Zaliha M. N, and Wan Noraishah Wan Abdul Munim. "Comparative performance analysis of bridgeless boost and bridgeless buck converter for UPS application." International Journal of Power Electronics and Drive Systems (IJPEDS) 11, no. 2 (June 1, 2020): 801. http://dx.doi.org/10.11591/ijpeds.v11.i2.pp801-809.

Full text
Abstract:
In this paper, a comparative performance analysis of bridgeless boost and bridgeless buck converter for Uninterruptable Power Supply (UPS) is presented. The performance of UPS application in terms of their efficiency is compared between the conventional diode bridge converter and both bridgeless converters. The input supply power quality is also been analysed by applying open and closed loop control techniques to the converter. The results show that the efficiency and the input supply quality of the bridgeless converters are significantly improved. UPS using bridgeless boost converter has better performance in all aspect compared to bridgeless buck converter. Aligned with that, the closed loop controller for the converter has also improved the efficiency and PF more than the open loop controller in performing the UPS system. All the analytical work was performed using PSIM software.
APA, Harvard, Vancouver, ISO, and other styles
34

Dimitrov, Borislav, Khaled Hayatleh, Steve Barker, Gordana Collier, Suleiman Sharkh, and Andrew Cruden. "A Buck-Boost Transformerless DC–DC Converter Based on IGBT Modules for Fast Charge of Electric Vehicles." Electronics 9, no. 3 (February 28, 2020): 397. http://dx.doi.org/10.3390/electronics9030397.

Full text
Abstract:
A transformer-less Buck-Boost direct current–direct current (DC–DC) converter in use for the fast charge of electric vehicles, based on powerful high-voltage isolated gate bipolar transistor (IGBT) modules is analyzed, designed and experimentally verified. The main advantages of this topology are: simple structure on the converter’s power stage; a wide range of the output voltage, capable of supporting contemporary vehicles’ on-board battery packs; efficiency; and power density accepted to be high enough for such a class of hard-switched converters. A precise estimation of the loss, dissipated in the converter’s basic modes of operation Buck, Boost, and Buck-Boost is presented. The analysis shows an approach of loss minimization, based on switching frequency reduction during the Buck-Boost operation mode. Such a technique guarantees stable thermal characteristics during the entire operation, i.e., battery charge cycle. As the Buck-Boost mode takes place when Buck and Boost modes cannot support the output voltage, operating as a combination of them, it can be considered as critically dependent on the characteristics of the semiconductors. With this, the necessary duty cycle and voltage range, determined with respect to the input-output voltages and power losses, require an additional study to be conducted. Additionally, the tolerance of the applied switching frequencies for the most versatile silicon-based powerful IGBT modules is analyzed and experimentally verified. Finally, several important characteristics, such as transients during switch-on and switch-off, IGBTs’ voltage tails, critical duty cycles, etc., are depicted experimentally with oscillograms, obtained by an experimental model.
APA, Harvard, Vancouver, ISO, and other styles
35

Venkatesh, Naik, and Paulson Samuel. "A high efficiency non-inverting multi device buck-boost DC-DC converter with reduced ripple current and wide bandwidth for fuel cell low voltage applications." Serbian Journal of Electrical Engineering 15, no. 2 (2018): 165–86. http://dx.doi.org/10.2298/sjee171104002v.

Full text
Abstract:
The voltage produced by the fuel cell (FC) device is unregulated and varies from 0.4 V to 0.8 V on full load to no-load respectively. When these devices are used in low voltage applications and output voltage lies between higher and lower values of input voltage range, it is required to connect a DCDC buck-boost converter to get a fixed output voltage. In this paper, a new noninverting multi device buck boost converter (MDBBC) is proposed, in which the multi device buck and boost converters are connected in cascade and operate individually either in buck or boost operating modes. The paper also includes the steady state analysis of MDDBC based on the state space averaging technique. A prototype model of proposed converter compatible with FCS-1000 Horizon FC model with rating of 270 W, 36 V is designed and developed. The proposed converter is experimentally validated with the results obtained from the prototype model, and results show the superiority of the converter with higher efficiency and lesser ripple current observed under steady state operation of the converter.
APA, Harvard, Vancouver, ISO, and other styles
36

Loera-Palomo, Rodrigo, Jorge A. Morales-Saldaña, Michel Rivero, Carlos Álvarez-Macías, and Cesar A. Hernández-Jacobo. "Noncascading Quadratic Buck-Boost Converter for Photovoltaic Applications." Micromachines 12, no. 8 (August 19, 2021): 984. http://dx.doi.org/10.3390/mi12080984.

Full text
Abstract:
The development of switching converters to perform with the power processing of photovoltaic (PV) applications has been a topic receiving growing interest in recent years. This work presents a nonisolated buck-boost converter with a quadratic voltage conversion gain based on the I–IIA noncascading structure. The converter has a reduced component count and it is formed by a pair of L–C networks and two active switches, which are operated synchronously to achieve a wide conversion ratio and a quadratic dependence with the duty ratio. Additionally, the analysis using different sources and loads demonstrates the differences in the behavior of the converter, as well as the pertinence of including PV devices (current sources) into the analysis of new switching converter topologies for PV applications. In this work, the voltage conversion ratio, steady-state operating conditions and semiconductor stresses of the proposed converter are discussed in the context of PV applications. The operation of the converter in a PV scenario is verified by experimental results.
APA, Harvard, Vancouver, ISO, and other styles
37

Weng, Xing, Xiang Xiao, Weibin He, Yongyan Zhou, Yu Shen, Wei Zhao, and Zhengming Zhao. "Comprehensive comparison and analysis of non-inverting buck boost and conventional buck boost converters." Journal of Engineering 2019, no. 16 (March 1, 2019): 3030–34. http://dx.doi.org/10.1049/joe.2018.8373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wang, Huan, Yu Zhou, Xinke Huang, Yibo Wang, and Honghua Xu. "Topology and Control Strategy of PV MVDC Grid-Connected Converter with LVRT Capability." Applied Sciences 11, no. 6 (March 18, 2021): 2739. http://dx.doi.org/10.3390/app11062739.

Full text
Abstract:
This paper proposes an isolated buck-boost topology and control strategy for the photovoltaic (PV) medium-voltage DC (MVDC) converter with low-voltage ride through (LVRT) capability. The proposed isolated buck-boost topology operates on either boost or buck mode by only controlling the active semiconductors on the low-voltage side. Based on this topology, medium-voltage (MV) dc–dc module is able to be developed to reduce the number of modules and increase the power density in the converter, which corresponds to the first contribution. As another contribution, a LVRT method based on an LC filter for MVDC converter is proposed without additional circuit and a feedback capacitor current control method for the isolated buck-boost converter is proposed to solve the instability problem caused by the resonance spike of the LC filter. Five kV/50 kW SiC-based dc–dc modules and ±10 kV/200 kW PV MVDC converters were developed. Experiments of the converter for MVDC system in the normal and LVRT conditions are presented. The experimental results verify the effectiveness of the proposed topology and control strategy.
APA, Harvard, Vancouver, ISO, and other styles
39

Shao, Zhu Lei. "Study on Buck-Boost Integrated Type Three-Port Converter." Advanced Materials Research 960-961 (June 2014): 1304–7. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.1304.

Full text
Abstract:
Aiming at simplifying the structure of power supply system of new energy, a buck-boost integrated type three-port converter is designed in this paper. The three-port converter can replace three separate converters, which makes the system structure is simplified and manufacturing cost is reduced. The three-port converter realizes the current expansion and ripple suppression by adopting inductor interleaved parallel bridge arm structure. The topology and control strategy of the three-port converter are analyzed in this paper. From the experimental results, the inductor current ripple and realization of soft switch meet the design requirement. The buck-boost integrated type three-port converter is applicable to the new energy power supply system.
APA, Harvard, Vancouver, ISO, and other styles
40

Herrera-Pérez, Jhon Jairo, and Alejandro Garcés-Ruiz. "Análisis de estabilidad de convertidores de segundo orden con la metodología de optimización de suma de polinomios cuadráticos." Transactions on Energy Systems and Engineering Applications 1, no. 1 (December 17, 2020): 49–58. http://dx.doi.org/10.32397/tesea.vol1.n1.4.

Full text
Abstract:
This paper presents a non-linear method based on sum-of-squares (SOS), to determine the stability of equilibrium points for the Buck, Boost, Buck-Boost and non-inverter Buck-Boost converters. These converters share a similar structure with a PI controller to regulate the output voltage. A quadratic Lyapunov function is proposed in all cases, and the conditions for stability are evaluated using convex optimization based on SOS models. The methodology is useful for academic purposes but also in practical applications like DC microgrids. Simulation results shows the advantages of the proposed method.
APA, Harvard, Vancouver, ISO, and other styles
41

Uma Maheswari, S., and K. V. Kandasamy. "Development of Zeta Converter for Permanent Magnet Brushless Direct Current Motor." Applied Mechanics and Materials 573 (June 2014): 102–7. http://dx.doi.org/10.4028/www.scientific.net/amm.573.102.

Full text
Abstract:
Converter plays a vital role in modern transferable electronic devices and systems. In the battery operated transferable devices, the battery supplies an input voltage to the converter which in turn converts into the desired voltage. Buck-boost, Cuk, SEPIC and Zeta converter are meeting the operational requirements of DC-DC converters. The DC-DC converters are used in both buck function as well as boost function. But the advantage of Zeta converter is that, it does not suffer the polarity reversal problem. The aim of the proposed work is to design a Zeta converter which can be used to drive the Permanent Magnet Brushless Direct Current Motor. The proposed Zeta converter is suggested to control the speed of the Permanent Magnet Brushless Direct Current Motor, according to the generated switching sequence. The proposed work is generally used for low power applications and occasionally used for medium power applications.
APA, Harvard, Vancouver, ISO, and other styles
42

Naik, Jeevan. "Design and Control for the Buck-Boost Converter Combining 1-Plus-D Converter and Synchronous Rectified Buck Converters." International Journal of Power Electronics and Drive Systems (IJPEDS) 6, no. 2 (June 1, 2015): 305. http://dx.doi.org/10.11591/ijpeds.v6.i2.pp305-317.

Full text
Abstract:
<span>In this paper, a design and control for the buck-boost converter, i.e., 1-plus-D converter with a positive output voltage, is presented, which combines the 1-plus-D converter and the synchronous rectified (SR) buck converter. By doing so, the problem in voltage bucking of the 1-plus-D converter can be solved, thereby increasing the application capability of the 1-plus-D converter. Since such a converter operates in continuous conduction mode inherently, it possesses the nonpulsating output current, thereby not only decreasing the current stress on the output capacitor but also reducing the output voltage ripple. Above all, both the 1-plus-D converter and the SR buck converter, combined into a buck–boost converter with no right-half plane zero, use the same power switches, thereby causing the required circuit to be compact and the corresponding cost to be down. Furthermore, during the magnetization period, the input voltage of the 1-plus-D converter comes from the input voltage source, whereas during the demagnetization period, the input voltage of the 1-plus-D converter comes from the output voltage of the SR buck converter.</span>
APA, Harvard, Vancouver, ISO, and other styles
43

Tiwary, Aditya. "Advanced and Innovative Optimization Techniques in Controllers: A Comprehensive Review." International Journal on Recent and Innovation Trends in Computing and Communication 9, no. 3 (March 31, 2021): 23–27. http://dx.doi.org/10.17762/ijritcc.v9i3.5469.

Full text
Abstract:
New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented.
APA, Harvard, Vancouver, ISO, and other styles
44

Lee, Young-Joo, Alireza Khaligh, Arindam Chakraborty, and Ali Emadi. "Digital Combination of Buck and Boost Converters to Control a Positive Buck–Boost Converter and Improve the Output Transients." IEEE Transactions on Power Electronics 24, no. 5 (May 2009): 1267–79. http://dx.doi.org/10.1109/tpel.2009.2014066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Babenko, V. P., and V. K. Bityukov. "Energy and noise characteristics of a SEPIC buck-boost converter with unipolar and bipolar output." Russian Technological Journal 9, no. 4 (August 26, 2021): 9–19. http://dx.doi.org/10.32362/2500-316x-2021-9-4-9-19.

Full text
Abstract:
Some advantages of the SEPIC buck-boost converter makes it stand out from other configurations. It makes possible to obtain from a unipolar input voltage both unipolar and bipolar output voltage with a good symmetry between positive and negative output voltages. It also provides efficient performance as well as circuit simplicity in unipolar and bipolar topology owing to the use of a single switch which can be operated by available integrated controllers of boost converters. The article considers the topologies of a SEPIC buck-boost converter built according to the traditional scheme (with two inductors) and according to the scheme on magnetically coupled chokes. To analyze the processes and factors affecting the converter operation efficiency, a circuit simulation has been done using the Electronics Workbench. The results of the investigation of a pulsed DC converter of input voltage to unipolar or bipolar output voltage using SEPIC buck-boost topology are presented. The circuit simulation enables to specify the switching process characteristics, to estimate the ripple level of the input current and its spectral characteristics, and to develop recommendations concerning the choice of parameters of converters elements and generation of control signals. Based on the simulation results, the load, control, and noise characteristics of the converter are obtained. The level of symmetry of positive and negative output voltage is investigated for the converter on discrete and magnetically coupled chokes. The assessment of the effect of leakage inductance on converters with magnetic coupling of inductive elements is given. Examples of practical implementation of converters built according to the SEPIC topology are shown. It is found that the resistance of the choke windings, which is less than 0.5 Ohm, has practically no effect on the efficiency of the converter, retaining the factor of about 0.9 in a wide range of load currents, while the main source of conversion losses is a passive diode switch. Synchronous converter circuits of a number of manufacturers are more efficient, but require more complex controllers for active switches with elements for protection against through currents.
APA, Harvard, Vancouver, ISO, and other styles
46

Ribes-Mallada, U., R. Leyva, and P. Garcés. "Optimization of DC-DC Converters via Geometric Programming." Mathematical Problems in Engineering 2011 (2011): 1–19. http://dx.doi.org/10.1155/2011/458083.

Full text
Abstract:
The paper presents a new methodology for optimizing the design of DC-DC converters. The magnitudes that we take into account are efficiency, ripples, bandwidth, and RHP zero placement. We apply a geometric programming approach, because the variables are positives and the constraints can be expressed in a posynomial form. This approach has all the advantages of convex optimization. We apply the proposed methodology to a boost converter. The paper also describes the optimum designs of a buck converter and a synchronous buck converter, and the method can be easily extended to other converters. The last example allows us to compare the efficiency and bandwidth between these optimal-designed topologies.
APA, Harvard, Vancouver, ISO, and other styles
47

Labidi, Z. R., H. Schulte, and A. Mami. "A Model-Based Approach of DC-DC Converters Dedicated to Controller Design Applications for Photovoltaic Generators." Engineering, Technology & Applied Science Research 9, no. 4 (August 10, 2019): 4371–76. http://dx.doi.org/10.48084/etasr.2829.

Full text
Abstract:
In this paper, a model-based approach of DC-DC converters dedicated to controller design applications for photovoltaic generators is introduced. The paper provides a mathematic averaging model, based on the state space method for DC-DC converters that is used as an adaptation level in photovoltaic generators. This modeling allows the dynamics of the system to be described by presenting a reliable model to be used for oriented controller design. The two most needed topologies of DC-DC converters are proposed, buck and buck-boost, and an overview of integral state feedback controller design using a model-based approach for a boost converter connected to a photovoltaic generator described in our previous published work is provided. The model-based conception of both converter types is analyzed for optimal use in control-oriented design. The validation of each model is demonstrated by comparative curves represented by a detailed plant model using simscape devices available and implemented in Simulink/Matlab.
APA, Harvard, Vancouver, ISO, and other styles
48

Cendoya, Marcelo G., and Graciela M. Toccaceli. "Application of Statecharts in Buck-Boost DC-DC Converter Simulation." WSEAS TRANSACTIONS ON ELECTRONICS 12 (August 4, 2021): 81–88. http://dx.doi.org/10.37394/232017.2021.12.11.

Full text
Abstract:
A very attractive and relatively simple option to simulate a DC-DC converter is to use a hybrid model. In this case, the need to use very small simulation steps (as those necessary to simulate models carried out at the physical level) is avoided. Furthermore, unlike the averaged state-space models, it has the advantage that the model is valid throughout the entire working range of the converter and for both conduction modes (continuous and discontinuous). By simulating several renewable energy conversion systems incorporating DC-DC converters, the authors have discovered the true potential of this modeling method. Despite its inherent advantages, this approach to DC-DC converters simulation is not as widely adopted as it should be. This work tries to encourage the reader of its use in certain typical situations. In this article the implementation of the hybrid model of the DC-DC Buck-Boost converter, using Statechart techniques, is performed. This model was written in the Stateflow language, a tool from the MATLAB®/Simulink environment, and allowed the creation of a building block formed by the described converter model with adequate interfaces to the SimPowerSystem and Simulink environments. The block is validated by comparing simulation results, realized under different operating conditions, with calculations done employing well-known and proven formulas. As an example of the use of the presented block, a buck-boost DC-DC converter with voltage and current control loops is simulated, corroborating its correct performance
APA, Harvard, Vancouver, ISO, and other styles
49

Pratomo, L. Heru, F. Danang Wijaya, and Eka Firmansyah. "Impedance Matching Method in Two-Stage Converters for Single Phase PV-Grid System." International Journal of Electrical and Computer Engineering (IJECE) 5, no. 4 (August 1, 2015): 626. http://dx.doi.org/10.11591/ijece.v5i4.pp626-635.

Full text
Abstract:
This paper presents the study on the impedance matching method in two-stage converters for single phase PV-grid system. The use of PV systems was to obtain the electrical power from the sunlight energy. The system consisted of a Buck-Boost DC-DC converter and a five-level inverter. A Buck-Boost DC-DC converter was used as a means of impedance matching to obtain the maximum power that, in this case, through a method by using the incremental conductance current control algorithm. Meanwhile a five-level inverter was used as an interface to the utilities. By using this technique, the system came to be simple. The impedance of the power grid, a Buck-Boost DC-DC converter, and a five-level inverter were seen by PV mostly in the area of R<sub>MPP</sub>, enabling the maximum power produced by the PV to be delivered to the grid. To demonstrate the effectiveness of the design, the analysis and simulation results, furthermore, were provided
APA, Harvard, Vancouver, ISO, and other styles
50

Soo, J. A., N. A. Rahman, and J. H. Leong. "A Single-Stage Square Wave Buck-Boost Inverter." Applied Mechanics and Materials 793 (September 2015): 280–85. http://dx.doi.org/10.4028/www.scientific.net/amm.793.280.

Full text
Abstract:
This paper proposed a novel single-stage square wave buck-boost inverter (SWBBI). The proposed inverter is designed by using dual buck-boost converters. The input DC voltage of the proposed inverter can be either stepped-down or stepped-up in square output voltage waveform depending on the duty-cycle applied for each buck-boost converter. This characteristic is not found in conventional voltage source inverter where the output voltage is always lower than the input DC voltage. The proposed inverter is analyzed by a series of simulations using MATLAB/Simulink as well as experiments by using different values of duty-cycle. A conclusion about the feasibility of the proposed inverter is given by comparing the simulation and experimental results.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography