Academic literature on the topic 'Buck converter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Buck converter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Buck converter"
Sundar, T., and S. Sankar. "Modeling and Simulation of Closed Loop Controlled Parallel Cascaded Buck Boost Converter Inverter Based Solar System." International Journal of Power Electronics and Drive Systems (IJPEDS) 6, no. 3 (September 1, 2015): 648. http://dx.doi.org/10.11591/ijpeds.v6.i3.pp648-656.
Full textSreedhar, Jadapalli, and B. Basavaraja. "Plan and analysis of synchronous buck converter for UPS application." International Journal of Engineering & Technology 7, no. 1.1 (December 21, 2017): 679. http://dx.doi.org/10.14419/ijet.v7i1.1.10827.
Full textMonteiro, Joaquim, V. Fernão Pires, Daniel Foito, Armando Cordeiro, J. Fernando Silva, and Sónia Pinto. "A Buck-Boost Converter with Extended Duty-Cycle Range in the Buck Voltage Region for Renewable Energy Sources." Electronics 12, no. 3 (January 24, 2023): 584. http://dx.doi.org/10.3390/electronics12030584.
Full textCan, Erol. "A Common Capacitor Hybrid Buck-Boost Converter." Jordan Journal of Electrical Engineering 9, no. 1 (2023): 71. http://dx.doi.org/10.5455/jjee.204-1666615450.
Full textZomorodi, Hossein, and Erfan Nazari. "Design and Simulation of Synchronous Buck Converter in Comparison with Regular Buck Converter." International Journal of Robotics and Control Systems 2, no. 1 (February 1, 2022): 79–86. http://dx.doi.org/10.31763/ijrcs.v2i1.538.
Full textMishra, Debani Prasad, Rudranarayan Senapati, and Surender Reddy Salkuti. "Comparison of DC-DC converters for solar power conversion system." Indonesian Journal of Electrical Engineering and Computer Science 26, no. 2 (May 1, 2022): 648. http://dx.doi.org/10.11591/ijeecs.v26.i2.pp648-655.
Full textHwu, K. I., and T. J. Peng. "A Novel Buck–Boost Converter Combining KY and Buck Converters." IEEE Transactions on Power Electronics 27, no. 5 (May 2012): 2236–41. http://dx.doi.org/10.1109/tpel.2011.2182208.
Full textBegum, Shaik Gousia, Syed Sarfaraz Nawaz, and G. Sai Anjaneyulu. "Implementation of Fuzzy Logic Controller for DC–DC step Down Converter." Regular issue 10, no. 8 (June 30, 2021): 109–12. http://dx.doi.org/10.35940/ijitee.h9251.0610821.
Full textUpendar, Jalla, Sangem Ravi Kumar, Sapavath Sreenu, and Bogimi Sirisha. "Implementation and study of fuzzy based KY boost converter for electric vehicle charging." International Journal of Applied Power Engineering (IJAPE) 11, no. 1 (March 1, 2022): 98. http://dx.doi.org/10.11591/ijape.v11.i1.pp98-108.
Full textCho, Younghoon, and Paul Jang. "Analysis and Design for Output Voltage Regulation in Constant-on-Time-Controlled Fly-Buck Converter." Electronics 10, no. 16 (August 6, 2021): 1886. http://dx.doi.org/10.3390/electronics10161886.
Full textDissertations / Theses on the topic "Buck converter"
Rahman, Muhammad Saad. "Buck Converter Design Issues." Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-9713.
Full textSwitch Mode Power Supplies are very important components in present day electronics and have continued to thrive and grow over the past 25 years. This thesis looks inside how the SMPS have evolved over the passage of years with special emphasis to the Synchronous Buck Converter. It also discusses why there is a strong potential to further the study related to designs based around a Synchronous Buck Converter for portable applications. The main objective of the thesis is to look into the controller design for minimizing size, enhancing efficiency and reliability of power converters in portable electronic equipment such as mobile phones and PDAs. The thesis aims to achieve this using a 90 nm process with an input voltage of 1.55V and an output of 1V with a power dissipation of 200mW.
Olivar, Gerard. "Chaos in the buck converter." Doctoral thesis, Universitat Politècnica de Catalunya, 1997. http://hdl.handle.net/10803/5841.
Full textEl capítulo 2 resume la información básica sobre convertidores conmutados de corriente contínua, y también sobre qué tipo de comportamiento cabe esperar de un sistema dinámico no lineal. Se discuten las referencias más relevantes sobre circuitos no lineales, y en concreto, las que atañen a circuitos caóticos en electrónica de potencia.
Los sistemas de ecuaciones diferenciales lineales a trozos con dos topologías se introducen en el capítulo 3. Como caso particular, se dan las ecuaciones que rigen la dinámica del convertidor buck con control PWM, y se establecen algunas propiedades básicas de las soluciones. La técnica general para obtener órbitas periódicas se particulariza para las soluciones T-periódicas y 2T-periódicas, y se establecen resultados para algunos tipos específicos de las nT-periódicas.
En el capítulo 4 se detalla el análisis de la aplicación estroboscópica. Este capítulo está orientado geométricamente, aunque el cálculo numérico es también imprescindible para obtener resultados específicos. Se halla también una región de atrapamiento para el sistema, en la cual se encuentra una aplicación de tipo horseshoe. La herramienta principal de este capítulo es la continuidad de la aplicación de Poincaré asociada, que permite deducir analíticamente como se transforman las diferentes regiones del espacio de fases.
El capítulo 5 está dedicado a las bifurcaciones secundarias halladas conjuntamente con el atractor principal. En este capítulo, el cálculo numérico es esencial para hallar los diagramas de bifurcaciones, las variedades invariantes y las cuencas de atracción. Como las soluciones son conocidas analíticamente a trozos, los algoritmos se benefician de ello en rapidez y sencillez. Se encuentran bifurcaciones suaves y no suaves. Se dan también expresiones exactas para los multiplicadores característicos, lo cual representa una gran ventaja cuando se calculan las bifurcaciones.
El capítulo 6 se aparta ligeramente del espíritu general de la tesis. En lugar de describir el comportamiento caótico del sistema, se sugieren algunos métodos de control de caos y se simulan éstos para comprobar si producen los efectos deseados. En concreto, se dan tres opciones: primero, se concreta el método OGY para las ecuaciones del convertidor buck ; segundo, se sugieren varios esquemas de control de realimentación con retardos, y tercero, se propone un método de control de lazo abierto. El control del comportamiento caótico en este circuito es importante, puesto que reduce el rizado de salida y por tanto, amplia el rango operacional del convertidor.
Algunas sugerencias para seguir el estudio de estos sistemas dinámicos se dan en el capítulo 7. Algunas simulaciones se han hecho con una versión suavizada del sistema de ecuaciones diferenciales con el software standard AUTO. También se proponen aproximaciones de la aplicación de Poincaré, que pueden proporcionar un tratamiento más analítico y simulaciones más rápidas.
Cazzell, Gregory A. "Output Impedance in PWM Buck Converter." Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1247006982.
Full textChadha, Ankit. "Tapped-Inductor Buck DC-DC Converter." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1578488939749599.
Full textBarbagallo, Mariano. "HV Interleaved Multiphase DcDc Buck-Boost Converter." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textYang, Shun. "Modelling and control of a Buck converter." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2207.
Full text+46-762795822
DI, LORENZO ROBERTO. "DC-DC Buck Converter For Automotive Applications." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/301996.
Full textThe advent of the power MOSFET ranks as one of the most significant developments in power electronics in recent years. While the vertical devices which appeared in the late seventies looked set to find an important place in the market, particularly in the area of high-frequency power conversion, the overall dominance of the power bipolar transistor did not seem seriously threatened. However, when the more easily manufacturable vertical DMOS devices appeared in volume in 1978, the scene was set for a revolution. The power MOSFET rapidly achieved a reputation for being forgiving and easy to design with, but universal acceptance was delayed by its relatively high cost. The automotive electronics operating from car battery experiences transient voltages such as cold-cranking and load dump which can range from 4.5V to >30V. In addition, the new technologies such as start-stop, increase the frequency of such transients and operational requirements of electronic devices. This requires o-battery power ICs to withstand harsh operating conditions and reliably provide power to the whole vehicle. As an example, the air condition, front/back car lights are supposed to keep their functionality during start-stop induced cranking conditions. This requirement can be efficiently and reliably fulfilled from DC-DC converters. The automotive industry is rapidly switching from filament lamps to new systems (LED) for front/back lighting as they perform better in terms of energy efficiency than the conventional ones. However, due to the electrical characteristics of these systems present in a car cannot be powered directly from the automotive battery. They require specialized driving circuits which can respond to the changing needs of the loads as their electrical properties change while maintaining the uniform current. DC-DC converters other the easiest way to power such the load with a constant current. As result Buck, Boost, Buck-Boost DC-DC converters for automotive applications are of great interest for the automotive industry. In particular, not addressed so far are monolithic solutions in Smart Power technologies. Smart Power technologies allow integrating power transistor, control logic and diagnostic on a single chip (SOC – System On Chip). Because high yield requirements they involve only highly mature, well-experienced processing steps. Because of low-cost requirements, a reduced mask sequence is used, leading normally to two interconnecting levels (polysilicon and metal). In this thesis, it has been designed a DC-DC converter for automotive applications. The first chapter of this document is aimed to serve as an introduction to the reader for all the work descriptions along with the report. We need a high voltage technology to design an integrated DC-DC converter. Here, I will use smart power technology, this technology permits to create high side power switch with low resistance.
Pierleoni, Enrico. "Analisi e progetto del Z-Source Buck Converter." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16305/.
Full textKilic, Umit Erdem. "Design Of Buck Converter For Educational Test Bench." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12608153/index.pdf.
Full textWhitney, Jonas Alan. "Alternative topologies for the low-voltage buck converter." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119559.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 145-146).
In this thesis, investigative work on and development of alternative topologies for the buck converter for low voltage dc dc conversion was performed. The three level buck, Resonant Switch Capacitor (ResSC), and Cuk-Buck2 were selected to be studied further based on the fact that they contain few components and were discovered in this work to have the possibility of operating at fixed frequency while smoothly regulating output voltage over the entire conversion ratio of 0 to 1. All three use a capacitive storage element in addition to a small inductance/s, so it was believed this may allow for efficiency or density improvements due to the excellent energy storage capability of MLCCs. New control methods were developed in order to operate the ResSC and Cuk-Buck2 at fixed frequency over the entire output range. New work was done to in order to achieve flying capacitor balancing in the ResSC and Cuk-Buck2, practical for future implementation in a monolithic converter. Simulated efficiency and other characteristics of the three converters are compared. Prototypes were built and used to confirm functionality of the new control schemes and balancing methods..
by Jonas Alan Whitney.
M. Eng.
Books on the topic "Buck converter"
Biswajit, Ray, and United States. National Aeronautics and Space Administration., eds. Low-temperature operation of a Buck DC/DC converter. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textBiswajit, Ray, and United States. National Aeronautics and Space Administration., eds. Low-temperature operation of a Buck DC/DC converter. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textBiswajit, Ray, and United States. National Aeronautics and Space Administration., eds. Low-temperature operation of a Buck DC/DC converter. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textMoore, Jonathan E. Frequency-based load sharing in current-mode-controlled buck converters. Monterey, Calif: Naval Postgraduate School, 1999.
Find full textK, Kokula Krishna Hari, ed. Variable Frequency Digital PWM Control for Low-Power Buck Converters. Chennai, India: Association of Scientists, Developers and Faculties, 2016.
Find full textLee, Jade. Buck Converter Using the PIC16F753 Analog Features. Microchip Technology Incorporated, 2015.
Find full textHuang, Apple. TB3103 - Buck Converter Using the PIC16F753 Analog Features. Microchip Technology Incorporated, 2015.
Find full textTakenaka, Norio. TB3103 - Buck Converter Using the PIC16F753 Analog Features. Microchip Technology Incorporated, 2015.
Find full textTakenaka, Norio. TB3097 - Buck Converter Using the PIC12F1501 NCO Peripheral. Microchip Technology Incorporated, 2015.
Find full textNatarajan, Shantha. MIC2204 - High-Efficiency 2 MHz Synchronous Buck Converter. Microchip Technology Incorporated, 2020.
Find full textBook chapters on the topic "Buck converter"
Severns, Rudolf P., and Gordon Ed Bloom. "The Buck Converter." In Modern DC-to-DC Switchmode Power Converter Circuits, 11–50. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-011-8085-6_2.
Full textPatil, Mahesh, and Pankaj Rodey. "Buck Converter in Open Loop." In Control Systems for Power Electronics, 21–27. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2328-3_4.
Full textPatil, Mahesh, and Pankaj Rodey. "Buck Converter in Closed Loop." In Control Systems for Power Electronics, 29–37. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2328-3_5.
Full textSeverns, Rudolf P., and Gordon Ed Bloom. "Buck-Derived Circuits." In Modern DC-to-DC Switchmode Power Converter Circuits, 112–35. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-011-8085-6_5.
Full textBrahim, Lagssiyer, Aziz Abdelhak, and Mohamed El Hafyani. "Interleaved Positive Buck-Boost Converter (I.P.B.B)." In Lecture Notes in Electrical Engineering, 461–69. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1405-6_55.
Full textVillar Piqué, Gerard, and Eduard Alarcón. "3-Level Buck Converter Microelectronic Implementation." In CMOS Integrated Switching Power Converters, 197–255. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8843-0_7.
Full textAsadi, Farzin, Sawai Pongswatd, Kei Eguchi, and Ngo Lam Trung. "Modeling Uncertainties for a Buck Converter." In Modeling Uncertainties in DC-DC Converters, 1–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-031-02020-9_1.
Full textWens, Mike, and Michiel Steyaert. "A Mathematical Model: Boost and Buck Converter." In Design and Implementation of Fully-Integrated Inductive DC-DC Converters in Standard CMOS, 123–68. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1436-6_4.
Full textKarthikeyan, P., and V. Siva Chidambaranathan. "Bidirectional Buck–Boost Converter-Fed DC Drive." In Advances in Intelligent Systems and Computing, 1195–203. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2656-7_109.
Full textRodríguez Vilamitjana, Enric, Abdelali El Aroudi, and Eduard Alarcón. "Complex Behavior of VMC Buck Converter: Characterization." In Chaos in Switching Converters for Power Management, 25–38. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2128-3_2.
Full textConference papers on the topic "Buck converter"
Scheidl, Rudolf, Philipp Zagar, and Helmut Kogler. "A Hydraulically Controlled Multiple Buck Converter System." In BATH/ASME 2022 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fpmc2022-88957.
Full textJose, Jim Harley, and K. Pramelakumari. "A positive output buck boost converter combining KY and SR-buck converters." In 2015 International Conference on Power, Instrumentation, Control and Computing (PICC). IEEE, 2015. http://dx.doi.org/10.1109/picc.2015.7455775.
Full textVeerachary, Mummadi, and Shrikanth Mohan Misal. "Drooping gain buck converter." In 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE). IEEE, 2016. http://dx.doi.org/10.1109/pestse.2016.7516434.
Full textde Sa, Francieli L., Caio V. B. Eiterer, Domingo Ruiz-Caballero, and Samir A. Mussa. "Double Quadratic Buck Converter." In 2013 Brazilian Power Electronics Conference (COBEP 2013). IEEE, 2013. http://dx.doi.org/10.1109/cobep.2013.6785092.
Full textGhavaminejad, Mahdi, Ebrahim Afjei, and Masoud Meghdadi. "Integrated Buck-Zeta Converter." In 2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC). IEEE, 2022. http://dx.doi.org/10.1109/pedstc53976.2022.9767504.
Full textRodrigues, J. P., I. Barbi, and A. J. Perin. "Buck converter with ZVS three level buck clamping." In 2008 IEEE Power Electronics Specialists Conference - PESC 2008. IEEE, 2008. http://dx.doi.org/10.1109/pesc.2008.4592266.
Full textIqbal, Zafar, Usman Nasir, Muhammad Tahir Rasheed, and Kashif Munir. "A comparative analysis of synchronous buck, isolated buck and buck converter." In 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, 2015. http://dx.doi.org/10.1109/eeeic.2015.7165299.
Full textJoseph, Greeshma, and V. Renjini. "Analysis and comparison of inductor coupled buck-boost converter combining KY converter and SR buck converter." In 2014 International Conference on Circuit, Power and Computing Technologies (ICCPCT). IEEE, 2014. http://dx.doi.org/10.1109/iccpct.2014.7054941.
Full textMyneni, Sukesh Babu, and Susovon Samanta. "Time Domain Analysis of Isolated Buck (F1y-Buck) Converter." In 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, 2018. http://dx.doi.org/10.1109/pedes.2018.8707573.
Full textBoora, Arash A., Firuz Zare, Gerard Ledwich, and Arindam Ghosh. "Bidirectional positive buck-boost converter." In 2008 13th International Power Electronics and Motion Control Conference (EPE/PEMC 2008). IEEE, 2008. http://dx.doi.org/10.1109/epepemc.2008.4635351.
Full textReports on the topic "Buck converter"
Ciezki, John G., and Robert W. Ashton. Analysis of a PWM Resonant Buck Chopper for Use as a Ship Service Converter Module. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada361136.
Full textWatson, Mark, Martyn Wilmott, and Brian Erno. GRI-96-0452_2 Stress Corrosion Cracking Under Field Simulated Conditions II. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 1997. http://dx.doi.org/10.55274/r0011974.
Full text