Academic literature on the topic 'Buckling Restrained Brace Frame'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Buckling Restrained Brace Frame.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Buckling Restrained Brace Frame"

1

Coy, Bradly B. "Buckling-Restrained Braced Frame Connection Design and Testing." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2030.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Matthews, Mark Thurgood. "Impact of Large Gravity Loads on Buckling Restrained Braced Frame Performance." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd3286.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Burkholder, Margaux Claire. "Performance Based Analysis of a Steel Braced Frame Building With Buckling Restrained Braces." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/715.

Full text
Abstract:
This paper provides an assessment of the seismic performance of a code-designed buckling restrained braced frame building using the performance-based analysis procedures prescribed in ASCE 41-06. The building was designed based on the standards of the ASCE 7-05 for a typical office building located in San Francisco, CA. Nonlinear modeling parameters and acceptance criteria for buckling restrained brace components were developed to match ASCE 41-06 design standards for structural steel components, since buckling restrained braces are not currently included in ASCE 41-06. The building was evaluated using linear static, linear dynamic, nonlinear static and nonlinear dynamic analysis procedures. This study showed that the linear procedures produced more conservative results, with the building performing within the intended Life Safety limit, while the nonlinear procedures predicted that the building performed closer to the Immediate Occupancy limit for the 2/3 maximum considered earthquake hazard. These results apply to the full maximum considered earthquake hazard as well, under which the building performed within the Collapse Prevention limit in the linear analysis results and within the Life Safety limit in the nonlinear analysis results. The results of this paper will provide data for the engineering profession on the behavior of buckling restrained braced frames as well as performance based engineering as it continues to evolve.
APA, Harvard, Vancouver, ISO, and other styles
4

Oxborrow, Graham T. "Optimized distribution of strength in buckling-restrained brace frames in tall buildings /." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd2986.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Oxborrow, Graham Thomas. "Optimized Distribution of Strength in Buckling-Restrained Brace Frames in Tall Buildings." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/1794.

Full text
Abstract:
Nonlinear time history analysis is increasingly being used in the design of tall steel structures, but member sizes still must be determined by a designer before an analysis can be performed. Often the distribution of story strength is still based on an assumed first mode response as determined from the Equivalent Lateral Force (ELF) procedure. For tall buckling restrained braced frames (BRBFs), two questions remain unanswered: what brace distribution will minimize total brace area, while satisfying story drift and ductility limits, and is the ELF procedure an effective approximation of that distribution? In order to investigate these issues, an optimization algorithm was incorporated into the OpenSees dynamic analysis platform. The resulting program uses a genetic algorithm to determine optimum designs that satisfy prescribed drift/ductility limits during nonlinear time history analyses. The computer program was used to investigate the optimized distribution of brace strength in BRBFs with different heights. The results of the study provide insight into efficient design of tall buildings in high seismic areas and evaluate the effectiveness of the ELF procedure.
APA, Harvard, Vancouver, ISO, and other styles
6

Prinz, Gary S. "Using Buckling-Restrained Braces in Eccentric Configurations." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2134.

Full text
Abstract:
Ductile braced frames are often used to resist lateral earthquake loads in steel buildings; however the presence of a brace element can sometimes interfere with architectural features. One common type of ductile braced frame system sometimes used to accommodate architectural features is the eccentrically braced frame (EBF). In order to dissipate seismic forces, EBF beam regions (called links) must sustain large inelastic deformations. EBF links with column connections must transmit large moments and shear forces to facilitate link rotation. Experiments have shown that welded link-to-column connections tend to fracture in the link flange prior to large link rotations. This study investigated methods for improving EBF link-to-column connection performance, and proposed an alternative ductile braced frame system for accommodating architectural features. Several EBF links with reduced web and flange sections were analytically investigated using validated finite element models in ABAQUS. Results indicated that putting holes in the link web reduced stress and strain values in the link flanges at the connection, but increased the plastic strain and stress triaxiality in the web at the edges of holes. Removing area from the link flanges had little effect on connection stresses and strains. Thus, the reduced web section and reduced flange section methods are not a promising solution to the EBF link-to-column connection problem. The alternative braced frame system proposed in the dissertation used ductile beam splices and buckling-restrained braces in eccentric configurations (BRBF-Es) to accommodate architectural features. Design considerations for the BRBF-Es were determined and dynamic BRBF-E performance was compared with EBF performance. BRBF-E system and component performance was determined using multiple finite element methods. Inter-story drifts and residual drifts for the BRBF-Es were similar to those for EBFs. Results indicated that BRBF-Es are a viable alternative to the EBF, and may result in better design economy than EBFs. With the BRBF-E, damage was isolated within the brace, and in the EBF, damage was isolated within the link, indicating simpler repairs with the BRBF-E. Shop welding of BRBF-E members may replace the multiple field welds required in EBF construction.
APA, Harvard, Vancouver, ISO, and other styles
7

Fuqua, Brandon W. "Buckling restrained braced frames as a seismic force resisting system." Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Craft, Jennifer Lorraine. "Reducing Drifts in Buckling Restrained Braced FramesThrough Elastic Stories." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/4430.

Full text
Abstract:
It is possible to reduce residual and maximum drifts in buildings by adding “elastic stories” that engage gravity columns in seismic response. An elastic story is a story wherein the buckling restrained brace frame (BRBF) size is increased to prevent yielding when an earthquake occurs. Buildings ranging from 4–16 stories were designed with various elastic story brace sizes and locations to determine the optimal combination to best reduce drifts. Gravity column stiffnesses were also varied in elastic story buildings to determine the effects on drifts. Computer models were used to analyze these buildings under a suite of earthquakes. Adding elastic stories reduce residual drifts 34% to 65% in 4- to 16-story BRBF buildings. General recommendations are made to achieve optimal reductions in drifts. For buildings with six or more stories, drifts were generally reduced most when an elastic story was added to every 4th story starting at level 1 (the bottom story). The most effective size for the braces in the elastic story appears to be three times the original brace size. For buildings with less than six stories, adding a three times elastic story to the bottom level was observed to reduce drifts the most. Further research is also recommended to confirm the optimal location and size of elastic stories for buildings with differing number of stories. Increasing gravity column stiffnesses in buildings with elastic stories helps to further reduce drifts, however it may not be economical. Residual drifts were observed to decrease significantly more than maximum drifts when elastic stories were added to buildings. Maximum drifts generally decreased at some levels, but also increased at others when elastic stories were used.
APA, Harvard, Vancouver, ISO, and other styles
9

Al-Sadoon, Zaid. "Seismic Retrofitting of Conventional Reinforced Concrete Moment-Resisting Frames Using Buckling Restrained Braces." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34755.

Full text
Abstract:
Reinforced concrete frame buildings designed and built prior to the enactment of modern seismic codes of the pre-1970’s era are considered seismically vulnerable, particularly when they are subjected to strong ground motions. It is the objective of this research to develop a new and innovative seismic retrofit technology for seismic upgrading of nonductile or limited ductility reinforced concrete frame buildings involving the implementation of buckling restrained braces. To achieve this objective, combined experimental and analytical research was conducted. The experimental research involved tests of large-scales reinforced concrete frames under slowly applied lateral deformation reversals, and the analytical research involved design and nonlinear analysis of laboratory specimens, as well as design and dynamic inelastic response history analysis of selected prototype buildings in eastern and western Canada. The research project started with a comprehensive review of the building code development in Canada to assess the progression of seismic design requirements over the years, and to select a representative period within which a significant number of engineered buildings were designed and constructed with seismic deficiencies. A similar review of seismic design and detailing provisions of the Canadian Standard Association (CSA) Standard A23.3 on Design of Concrete Structures was also conducted for the same purpose. Six-storey and ten-storey prototype buildings were designed for Ottawa and Vancouver, using the seismic provisions of the 1965 National Building Code of Canada, representative of buildings in eastern and western Canadian. Preliminary static and dynamic linear elastic analyses were performed to assess the effectiveness of upgrading the ten-storey reinforced concrete building designed for Ottawa. The retrofit methods studied consisted of lateral bracing by adding reinforced concrete shear walls, diagonal steel braces, or diagonal steel cable strands. The results indicated that the retrofit techniques are effective in limiting deformations in non-ductile frame elements to the elastic range. The numerical analyses were used to demonstrate the effectiveness of Buckling Restrained Braces (BRBs) as a retrofit method for seismically deficient reinforced concrete frame buildings. The experimental phase of research consisted of two, 2/3rd scale, single bay and single storey reinforced concrete frames, designed and constructed based on a prototype sixstorey moment resisting frame building located in Ottawa and Vancouver, following the requirements of the 1965 edition of the NBCC. One test specimen served as a bare control frame (BCF) that was first tested, repaired and retrofitted (RRF) to evaluate the effectiveness of the proposed retrofit methodology for buildings subjected to earthquakes in the City of Ottawa. The control frame was assessed to be seismically deficient. The second frame served as a companion non-damaged frame (RF) that was retrofitted with a similar retrofit concept but for buildings subjected to earthquakes in the City of Vancouver. A new buckling restrained brace (BRB) was conceived and developed to retrofit existing sub-standard reinforced concrete frames against seismic actions. The new BRB consists of a ductile inner steel core and an outer circular sleeve that encompasses two circular steel sections of different diameters to provide lateral restraint against buckling in compression of inner steel core. Mortar is placed between the two circular sections to provide additional buckling resistance. The inner core is connected to novel end units that allow extension and contraction during tension-compression cycles under seismic loading while providing lateral restraint against buckling within the end zones. The end units constitute an original contribution to the design of Buckling Restrained Braces (BRBs), providing continuous lateral restraint along the core bar. The new technique has been verified experimentally by testing four BRBs on the two test structures under simulated seismic loading. The test results of the BRB retrofitted frames indicate promising seismic performance, with substantial increases in the lateral load and displacement ductility capacities by factors of up to 3.9 and 2.6, respectively. In addition, the test results demonstrate that the BRB technology can provide excellent drift control, increased stiffness, and significant energy dissipation, while the reinforced concrete frames continue fulfilling their function as gravity load carrying frames. The above development was further verified by an exhaustive analytical study using SAP2000. At the onset, analyses were conducted to calibrate and verify the analytical models. Two-dimensional, one-bay, one-storey models, simulating the BCF and RRF test frames, were created. The models were subjected to incrementally increasing lateral displacement reversals in nonlinear static pushover analyses, and the results were compared with those obtained in the test program. Material nonlinearity was modeled using “Links” to incorporate all lumped linear and nonlinear properties that were defined with moment-rotation properties for flexural frame members and with force-displacement properties for the diagonal buckling restrained braces. Comparison with test data demonstrated good agreement of the frame behaviour in the elastic and post-elastic ranges, and the loading and unloading stiffness. The research program was further augmented with nonlinear dynamic time history analyses to verify the feasibility of the new retrofit technique in multi-storey reinforced concrete frame buildings located in Canada and their performances relative to the performance-based design objectives stated in current codes. Prior to conducting the analyses, 450 artificial earthquake records were studied to select the best matches to the Uniform Hazard Spectra (UHS) according to the 2010 edition of the NBCC for Ottawa and Vancouver. Furthermore, additional analyses were conducted on buildings for the City of Ottawa based on amplified Uniform Hazard Spectrum compatible earthquake records. The nonlinear time-history response analyses were conducted using a model that permits inelasticity in both the frame elements and the BRBs.The results indicated that reinforced concrete buildings built before the 1970’s in the City of Ottawa do not require seismic retrofitting; they remain within the elastic range under current code-compatible earthquake records. The structural building performance is within the Immediate Occupancy level, and all structural elements have capacities greater than the force demands. In the City of Vancouver, buildings in their virgin state experienced maximum interstorey drifts of 2.3%, which is within the Collapse Prevention structural performance level. Improved building performance was realized by retrofitting the exterior frames with multiple uses of the BRB developed in this research project. The seismic shear demands were reduced in the columns, while limiting the deformations in the non-ductile frame elements to the elastic range. The lateral interstorey drift was limited to 0.92%, which lies within the Life Safety structural performance level.
APA, Harvard, Vancouver, ISO, and other styles
10

Anozie, Valencia Chibuike. "Parametric Study of Friction-Damped Braced Frames with Buckling-Restrained Columns using Recommended Frame and BRC Strength Factors." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1500294960127361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography