Academic literature on the topic 'Buffalo meat fatty acids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Buffalo meat fatty acids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Buffalo meat fatty acids"
Mello, J. L. M., A. B. B. Rodrigues, A. Giampietro-Ganeco, F. B. Ferrari, R. A. Souza, P. A. Souza, and H. Borba. "Characteristics of carcasses and meat from feedlot-finished buffalo and Bos indicus (Nellore) bulls." Animal Production Science 58, no. 7 (2018): 1366. http://dx.doi.org/10.1071/an16556.
Full textLuz, Patrícia Aparecida Cardoso da, André Mendes Jorge, Caroline De Lima Francisco, Juliana Lolli Malagoli de Mello, Carolina Toledo Santos, and Cristiana Andrighetto. "Chemical-physical characteristics of buffalo (Bubalus bubalis) meat subjected to different aging times." Acta Scientiarum. Animal Sciences 39, no. 4 (September 22, 2017): 419. http://dx.doi.org/10.4025/actascianimsci.v39i4.36799.
Full textPetridis, D., A. Zotos, B. Skapetas, and V. A. Bampidis. "The Effect of Buffalo Meat on Composition, Instrumental and Sensory Characteristics of Traditional Greek Sausages." Journal of Food Research 4, no. 3 (February 10, 2015): 26. http://dx.doi.org/10.5539/jfr.v4n3p26.
Full textEkiz, Bulent, Alper Yilmaz, Hulya Yalcintan, Akin Yakan, Ismail Yilmaz, and Ihsan Soysal. "Carcass and Meat Quality of Male and Female Water Buffaloes Finished Under an Intensive Production System." Annals of Animal Science 18, no. 2 (May 1, 2018): 557–74. http://dx.doi.org/10.1515/aoas-2017-0036.
Full textFranzolin, Raul, Fabrício Pini Rosales, and Weber Vilas Bôas Soares. "Effects of dietary energy and nitrogen supplements on rumen fermentation and protozoa population in buffalo and zebu cattle." Revista Brasileira de Zootecnia 39, no. 3 (March 2010): 549–55. http://dx.doi.org/10.1590/s1516-35982010000300014.
Full textKenawi, M. A., H. A. Abdel-Aal, and S. S. Latif. "Effect of spice extracts in combination with packaging materials and treatments on the stability of ground buffalo meat product stored under frozen conditions." Biotehnologija u stocarstvu 20, no. 1-2 (2004): 1–15. http://dx.doi.org/10.2298/bah0402001k.
Full textSharma, N., G. Gandemer, R. Goutefongea, and B. N. Kowale. "Fatty acid composition of water buffalo meat." Meat Science 16, no. 3 (January 1986): 237–43. http://dx.doi.org/10.1016/0309-1740(86)90029-x.
Full textRipoll, Guillermo, María Jesús Alcalde, Anastasio Argüello, María de Guía Córdoba, and Begoña Panea. "Effect of Rearing System on the Straight and Branched Fatty Acids of Goat Milk and Meat of Suckling Kids." Foods 9, no. 4 (April 9, 2020): 471. http://dx.doi.org/10.3390/foods9040471.
Full textBecskei, Zsolt, Mila Savić, Dragan Ćirković, Mladen Rašeta, Nikola Puvača, Marija Pajić, Sonja Đorđević, and Snežana Paskaš. "Assessment of Water Buffalo Milk and Traditional Milk Products in a Sustainable Production System." Sustainability 12, no. 16 (August 15, 2020): 6616. http://dx.doi.org/10.3390/su12166616.
Full textDanilova, I. S. "The content of fatty acids in the meat of snails by the action of heat processing." Scientific Messenger of LNU of Veterinary Medicine and Biotechnology 21, no. 93 (April 2, 2019): 27–30. http://dx.doi.org/10.32718/nvlvet9305.
Full textDissertations / Theses on the topic "Buffalo meat fatty acids"
Steenkamp, Karen. "Factors affecting the composition of long-chain fatty acids in the African buffalo (Syncerus caffer)." Diss., University of Pretoria, 2000. http://hdl.handle.net/2263/30192.
Full textCooper, Sarah Louise. "Dietary manipulation of the fatty acid composition of sheep meat." Thesis, Open University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252388.
Full textOnibi, Gbenga Emmanuel. "Influence of dietary fatty acids and α-tocopherol on muscle tissue quality." Thesis, University of Aberdeen, 1997. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU551786.
Full textWarren, Helen Elizabeth. "Enhancing the beneficial fatty acids in beef and implications for meat quality." Thesis, University of Bristol, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407037.
Full textArnold, Andrew Richard. "Lipid oxidation in a model system and in meat." Thesis, University of St Andrews, 1989. http://hdl.handle.net/10023/14168.
Full textRichards, Sion E. "Regulation of adipose tissue deposition and fatty acid composition in sheep." Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389360.
Full textSado, Kamdem Sylvain Leroy <1973>. "Effect of diet supplementation in unsaturated fatty acids on meat keeping qualities: study of selected fatty acids antimicrobial properties and inhibition mechanism on Staphylococcus aureus." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2007. http://amsdottorato.unibo.it/418/.
Full textCuthbertson, Abla Zehour. "Effect of animal type or treatment on the efficiency of lean meat production and the fatty acid composition of meat : thesis submitted for the degree of Master of Agricultural Science." Title page, summary and contents only, 1988. http://web4.library.adelaide.edu.au/theses/09A/09ac988.pdf.
Full textChail, Arkopriya. "Effects of Beef Finishing Diets and Muscle Type on Meat Quality, Fatty Acids and Volatile Compounds." DigitalCommons@USU, 2015. https://digitalcommons.usu.edu/etd/4479.
Full textFrancisco, Alexandra Eduarda Amador de Oliveira. "Enhancing bioactive fatty acids of the meat from lambs reared in intensive systems through nutritional modulation." Doctoral thesis, Universidade de Lisboa. Faculdade de Medicina Veterinária, 2016. http://hdl.handle.net/10400.5/11705.
Full textalexandrafrancisco@sapo.pt
Ruminant meats are characterized by being rich in saturated fatty acids (SFA), particularly, and low in polyunsaturated fatty acids (PUFA), which is regarded as disadvantageous for humans. However, ruminant meats are also the dietary source of some bioactive health benefit fatty acids, including conjugated linoleic acid isomers (CLA) and long chain polyunsaturated fatty acids from the n-3 series (n-3 LC-PUFA). In the present thesis we have explored three nutritional strategies to improve the fatty acid (FA) profile of lamb meat, in order to maximize CLA and n-3 LC-PUFA content. Two experiments were conducted to evaluate the effects on lipid metabolism and fatty composition of meat from lambs intensively fattened of the i) dietary inclusion of Cistus ladanifer L. (C. ladanifer); ii) dietary supplementation with vegetable oils and iii) replacement of cereal grains by dehydrated citrus pulp (DCP) in diets. A global evaluation of the effects of the dietary treatments on production, meat quality and meat lipid composition, was achieved by recording the productive performance of lambs, carcasses composition, and determining analytically the fatty acid composition, oxidative stability and organoleptic quality of meat. Moreover, the expression of genes encoding Δ5-, Δ6- and Δ9-desaturases (FADS1, FADS2 and SCD) in longissimus muscle was also assessed. The first experiment, involved 54 Merino Branco lambs, and evaluated the effects of the dietary inclusion of C. ladanifer (rockrose) (Cistus) and of the lipid supplementation with a blend of linseed and soybean oil (2:1 vol/vol). Nine diets were formulated resulting from the combination between 3 levels of C. ladanifer inclusion (50, 100 and 200g/kg of dry matter (DM)) and 3 levels of oil supplementation ((0, 40 e 80g/kg DM)). On second experiment, 32 Merino Branco lambs were fed using diets containing 60g/kg DM of soybean oil and 50% of dehydrated lucerne, and there were evaluated the effects of C. ladanifer inclusion (0 vs 150g/kg) DM) and the replacement of cereal grains by DCP in the diets. On the first experiment, the diets did not affect animal´s growth. Lipid suplementation reduced DM intake, muscle proportion in the carcass and increased kidney knobb channel fat. Meat chemical and physical parameters were not influenced by the diets. The level of 100g/kg of C. ladanifer inclusion improved meat oxidative stability during 7 days of storage. The perception of off-flavours was higher and meat overall acceptability by the sensory panel was reduced with suplementation 8% oil blend. The increasing inclusion of C. ladanifer and oil in the diet act sinergetically on the 10t-18:1 in meat. C. ladanifer increased total amount and proportion of trans monoinsaturated FA (trans MUFA) and reduced the proportions of eicosapentaenoic (EPA) and docosapentaenoic (DPA) acids. The dietary suplementation with vegetable oil blend was a good strategy to improve nutritional value of meat, enhancing total amount of linolenic acid (18:3 n-3) and of n-3 PUFA, and reducing the proportion of SFA, which it was followed by an increment of the proportion of PUFA on lipid profile of intramuscular fat (IMF). The expression of the SCD mRNA increased with C. ladanifer but it was not correlated with the concentration of the Δ9-desaturase FA products. On the second experiment, DM intake increased with C. ladanifer, althought growth was not influenced by diets. Carcass composition was not affected by the dietary treatments, but an interaction between C. ladanifer and DCP was observed for dressing percentage. Dietary factors did not influence muscular pH, cooking losses, meat color and oxidative stability during storage. However, meat shear force increased with the adition of C. ladanifer to diets. Meat tenderness and juiciness were both reduced by C. ladanifer and DCP, but only C. ladanifer reduced meat overall acceptability assessed by the sensory panel. The inclusion of C. ladanifer to 1:1 forage to concentrate ratio diets enriched with soybean oil, reduced the occurrence of trans-10 shift, but did not increase 11t-18:1 and 9c,11t-18:2 concentrations on meat lipids. Trans fatty acids (TFA) were reduced by C. ladanifer inclusion in diets. Dehydrated citrus pulp improved meat nutritional value by increasing 18:3 n-3.
RESUMO - Enriquecimento em ácidos gordos bioactivos da carne de borrego de sistema intensivo através da modulação nutricional do metabolismo lipídico - A carne de ruminantes caracteriza-se por ser particularmente rica em ácidos gordos saturados (AGS) e pobre em ácidos gordos poliinsaturados (AGPI), o que é considerado como negativo para a dieta humana. Contudo, é também uma importante fonte de alguns ácidos gordos bioactivos benéficos para a saúde, como os isómeros conjugados do ácido linoleico (CLA) e ácidos gordos poliinsaturados de cadeia longa da família n-3 (n-3 CL-AGPI). Na presente tese explorámos três estratégias nutricionais de modo a melhorar o perfil lipídico da carne de borrego através do aumento do seu conteúdo em CLA e em n-3 n-3 CL-AGPI. Foram realizadas duas experiências nas quais os efeitos i) da inclusão de Cistus ladanifer L. (esteva); ii) da suplementação lipídica com óleos vegetais e iii) da substituição dos grãos de cereais por polpa de citrínos desidratada (PCD) no metabolismo lipídico e na composição em ácidos gordos da carne de borrego de sistema intensivo de engorda foram avaliados. A avaliação integrada dos efeitos dos tratamentos no desempenho produtivo, foi efectuada registando-se a ingestão de matéria seca (MS), ganho médio diário e composição das carcaças dos borregos, assim como a qualidade física e sensorial da carne e a sua composição em ácidos gordos e níveis de expressão dos genes que codificam para as Δ5, Δ6 e Δ9-desaturases (FADS1, FADS2 e SCD mRNAs). No primeiro ensaio, que envolveu 54 borregos Merino Branco avaliámos a inclusão, na dieta, de Cistus ladanifer (esteva), e da suplementação lipídica constituída por uma mistura de óleo de linho e de soja (2:1 vol/vol). Para tal foram formuladas 9 dietas que resultaram da combinação entre 3 níveis de inclusão de C. ladanifer (50, 100 e 200g/kg de matéria seca (MS)) e 3 níveis de suplementação lipídica (0, 40 e 80g/kg de MS). No segundo ensaio, utilizaram-se 32 borregos alimentados com dietas contendo 50% de luzerna desidratada e 60g/kg MS de óleo de soja, e avaliaram-se os efeitos da inclusão de C. ladanifer (0 vs 150g/kg) de MS) e da substituição dos grãos de cereais por polpa de citrínos desidratada (PCD) nas dietas. No primeiro ensaio, os tratamentos não afectaram o crescimento dos animais. O óleo reduziu a ingestão de MS, a proporção de músculo da carcaça e aumentou a quantidade de gordura pélvica e renal. As caraterísticas físicas e químicas da carne não foram afectadas pelas dietas. O nível de 100g/kg de esteva melhorou a estabilidade oxidativa da carne durante o armazenamento de 7 dias. A percepção de off-flavours foi superior e a aceitação global por parte do painel de provadores foi inferior para a suplementação com 8% de óleo. A inclusão de C. ladanifer potenciou o aumento de 10t-18:1 na carne induzido pelo óleo. Com a inclusão de C. ladanifer nas dietas aumentou a quantidade total e proporção de ácidos gordos monoinsaturados trans (TransAGMI) e diminuiram as proporções dos ácidos eicosapentaenoico (EPA) e docosapentaenoico (DPA). A suplementação das dietas com a mistura de óleos vegetais foi uma boa estratégia para melhorar o valor nutricional da carne, permitindo um aumento da quantidade total de ácido linolénico (18:3 n-3) e n-3 AGPI, e a redução da proporção de AGS acompanhada de um aumento da proporção de AGPI no perfil lipídico da gordura intramuscular. A expressão do mRNA do gene SCD aumentou com a inclusão de C. ladanifer nas dietas. No segundo ensaio, a ingestão de MS aumentou com a inclusão de C. ladanifer, embora o crescimento não tenha sido influenciado pelas dietas. A composição da carcaça não foi afectada pelos tratamentos, mas verificou-se uma interacção entre a inclusão de esteva e a de PCD que afectou o rendimento da carcaça. Os factores em estudo não influenciaram o pH muscular, as perdas por cozedura, a cor da carne e a sua estabilidade oxidativa. No entanto, ocorreu um aumento da força de corte da carne com a adição de C. ladanifer às dietas. A tenrura e a suculência da carne sofreram uma diminuição com a inclusão de C. ladanifer e de PCD nas dietas, no entanto a aceitação global da carne pelo painel de provadores apenas foi diminuída com C. ladanifer. A inclusão de C. ladanifer a dietas com uma relação de forragem: concentrado de 1:1 e enriquecidas com óleo de soja, reduziu a ocorrência do trans-10 shift, embora não tenha aumentado os teores de 11t-18:1 e de 9c,11t-18:2 na fracção lipídica da carne. O total de ácidos gordos trans (AGT) na carne foi reduzido pela inclusão de esteva nas dietas. A PCD melhorou o valor nutricional da gordura da carne de borrego, aumentando a concentração em 18:3 n-3.
Books on the topic "Buffalo meat fatty acids"
The Dakota diet: Health secrets from the Great Plains. Laguna Beach, CA: Basic Health Publications, 2007.
Find full textWeiland, Kevin M. D., and Kevin Weiland. The Dakota Diet: Health Secrets from the Great Plains. Basic Health Publications, 2007.
Find full textThe big fat surprise: Why butter, meat, and cheese belong in a healthy diet. Simon & Schuster, 2014.
Find full textDietary sources of unsaturated fatty acids for animals and their subsequent availability in milk, meat and eggs: A summary of research findings. Hillsborough , Co. Down, Northern Ireland: Agri-Food and Biosciences Institute, 2005.
Find full textAndrews, Rob, and Clare England. Poor diets. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0335.
Full textBook chapters on the topic "Buffalo meat fatty acids"
Díaz-Chirón, María Teresa Díaz, Ana Rivas-Cañedo, Jesús De La Fuente Vázquez, Concepción Pérez Marcos, and Sara Lauzurica Gómez. "Meat and Meat Products Enriched with n-3 Fatty Acids." In Handbook of Food Fortification and Health, 55–69. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7110-3_5.
Full textLemos, Marcos Vinicius Antunes de, Angelica S. C. Pereira, Inaê Cristina Regatieri, Fabieli Louise Braga Feitosa, and Fernando Baldi. "Genetic Factors that Determine the Meat Fatty Acids Composition." In Fatty Acids. InTech, 2017. http://dx.doi.org/10.5772/67693.
Full textWood, J., M. Enser, F. Whittington, and R. Richardson. "Fatty Acids in Meat and Meat Products." In Fatty Acids in Foods and their Health Implications,Third Edition, 87–107. CRC Press, 2007. http://dx.doi.org/10.1201/9781420006902.ch5.
Full textDewhurst, R. J., and A. P. Moloney. "Modification of animal diets for the enrichment of dairy and meat products with omega-3 fatty acids." In Food Enrichment with Omega-3 Fatty Acids, 257–87. Elsevier, 2013. http://dx.doi.org/10.1533/9780857098863.3.257.
Full textAnsorena, D., and I. Astiasarán. "Enrichment of meat products with omega-3 fatty acids by methods other than modification of animal diet." In Food Enrichment with Omega-3 Fatty Acids, 299–318. Elsevier, 2013. http://dx.doi.org/10.1533/9780857098863.3.299.
Full textSoriano, Almudena, and Carlos Sánchez-García. "Nutritional Composition of Game Meat from Wild Species Harvested in Europe." In Meat and Nutrition. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97763.
Full textBenjamin, Sailas, Kizhakepowathil Nair Unni, Prakasan Priji, and Andre-Denis Girard Wright. "Biogenesis of Conjugated Linoleic Acids." In Examining the Development, Regulation, and Consumption of Functional Foods, 1–28. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0607-2.ch001.
Full textNadtochii, Liudmila, Daria Kuznetcova, Artem Lepeshkin, Mariya Ostrovskaya, and Anna Veber. "Omega-3 Fatty Acids as an Essential Nutritional Element in the High North." In Handbook of Research on International Collaboration, Economic Development, and Sustainability in the Arctic, 547–69. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-6954-1.ch026.
Full textElsabaawy, Eman H., and Sawsan M. Gad. "Lipids in Ruminant Nutrition and Its Effect on Human Health." In Precision Agriculture Technologies for Food Security and Sustainability, 344–67. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5000-7.ch015.
Full textBogatko, Alyona, and Vasil Lyasota. "ASSESSMENT OF SAFETY AND FAT QUALITY OF BIRDS ‘CARCASES DURING THEIR PRODUCTION AND STORAGE ACCORDING TO DEVELOPED METHODS." In Priority areas for development of scientific research: domestic and foreign experience. Publishing House “Baltija Publishing”, 2021. http://dx.doi.org/10.30525/978-9934-26-049-0-41.
Full textConference papers on the topic "Buffalo meat fatty acids"
Broadhurst, C. Leigh, Walter F. Schmidt, Julie K. Nguyen, Jianwei Qin, Kuanglin Chao, and Moon S. Kim. "Continuous gradient temperature Raman spectroscopy of unsaturated fatty acids: applications for fish and meat lipids and rendered meat source identification." In Sensing for Agriculture and Food Quality and Safety X, edited by Moon S. Kim, Byoung-Kwan Cho, Bryan A. Chin, and Kuanglin Chao. SPIE, 2018. http://dx.doi.org/10.1117/12.2307528.
Full textShahryar, Habib Aghdam, Majid Toghyani, and Alireza Lotfi. "Effects of different type and levels of fat on fatty acids profile, cholesterol and triglyceride in thigh meat of broiler chicks." In 2010 2nd International Conference on Chemical, Biological and Environmental Engineering (ICBEE). IEEE, 2010. http://dx.doi.org/10.1109/icbee.2010.5651206.
Full textEichenauer, Sabrina, Bernd Weber, and Ernst A. Stadlbauer. "Thermochemical Processing of Animal Fat and Meat and Bone Meal to Hydrocarbon Based Fuels." In ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/es2015-49197.
Full text