Academic literature on the topic 'Buffer gas trap'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Buffer gas trap.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Buffer gas trap"

1

Natisin, M. R., J. R. Danielson, and C. M. Surko. "Formation of buffer-gas-trap based positron beams." Physics of Plasmas 22, no. 3 (March 2015): 033501. http://dx.doi.org/10.1063/1.4913354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vazquez, Timothy, Colette Taylor, and Theresa Evans-Nguyen. "Ion-Trap-Performance Enhancement Utilizing Pulsed Buffer-Gas Introduction." Analytical Chemistry 90, no. 17 (August 8, 2018): 10600–10606. http://dx.doi.org/10.1021/acs.analchem.8b02881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tattersall, W., R. D. White, R. E. Robson, J. P. Sullivan, and S. J. Buckman. "Simulations of pulses in a buffer gas positron trap." Journal of Physics: Conference Series 262 (January 1, 2011): 012057. http://dx.doi.org/10.1088/1742-6596/262/1/012057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Machacek, J. R., S. J. Buckman, and J. P. Sullivan. "A pulsed positronium beam using a positron buffer gas trap." Review of Scientific Instruments 91, no. 3 (March 1, 2020): 033311. http://dx.doi.org/10.1063/1.5128012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Doyle, John M., Bretislav Friedrich, Jinha Kim, and David Patterson. "Buffer-gas loading of atoms and molecules into a magnetic trap." Physical Review A 52, no. 4 (October 1, 1995): R2515—R2518. http://dx.doi.org/10.1103/physreva.52.r2515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lunney, M. D. N., F. Buchinger, and R. B. Moore. "The Temperature of Buffer-gas Colled Ions in a Paul Trap." Journal of Modern Optics 39, no. 2 (February 1992): 349–60. http://dx.doi.org/10.1080/09500349214550341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Higaki, Hiroyuki, Koji Michishio, Kaori Hashidate, Akira Ishida, and Nagayasu Oshima. "Accumulation of LINAC based low energy positrons in a buffer gas trap." Applied Physics Express 13, no. 6 (May 28, 2020): 066003. http://dx.doi.org/10.35848/1882-0786/ab939f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ma, Ce, Heewon Lee, and David M. Lubman. "Computer Simulation of the Operation of a Three-Dimensional Quadrupole Ion Trap." Applied Spectroscopy 46, no. 12 (December 1992): 1769–79. http://dx.doi.org/10.1366/0003702924123458.

Full text
Abstract:
A computer simulation of the motion of ions in a three-dimensional (3-D) quadrupole ion trap has been performed with a Gateway 386 PC/AT computer. The SIMION program was used as the main program to calculate the potential array of the ion trap space. Several user-written programs were interfaced to the SIMION program to simulate the effects of changing various operating conditions, such as the radio-frequency (rf) potential, the collisional buffer gas, external ion injection, dc ejection from the trap, and resonance ejection. With the use of this simulation, the total storage mass range could be obtained as a function of rf voltage and frequency. The simulations show, as expected, that the collisional buffer gas plays an important role in both stabilizing the trajectory of high-kinetic-energy ions (hot ions) inside the ion trap and trapping ions injected from an external source. Several different buffer gases were studied for their effects upon the trapping motion. In addition, both the total mass ejection that results from applying a dc pulse on the output end-cap electrode and the ion ejection that results from applying an rf frequency to the end cap to produce resonance ejection were also studied with this simulation program. It is demonstrated that a simple PC computer using a modified SIMION program provides results very similar to those expected from theory or from previous work.
APA, Harvard, Vancouver, ISO, and other styles
9

Janulyte, Aurika, Yves Zerega, Boris Brkić, Stephen Taylor, and Jacques Andre. "Accurate modelling of small-scale linear ion trap operating mode using He buffer gas to improve sensitivity and resolution for in-the-field mass spectrometry." Journal of Analytical Atomic Spectrometry 34, no. 8 (2019): 1672–82. http://dx.doi.org/10.1039/c9ja00017h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lei, She, Wang Wen-Ming, Bai Lei, Sun Huan-Yao, Zhu Xi-Wen, Li Jiao-Mei, and Gao Ke-Lin. "Fluorescence Detection and Buffer Gas Cooling of Trapped Mercury Ions in Paul Trap." Chinese Physics Letters 25, no. 5 (May 2008): 1653–56. http://dx.doi.org/10.1088/0256-307x/25/5/036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Buffer gas trap"

1

Nohlmans, Didier. "A permanent magnet trap for buffer gas cooled atoms." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/26283.

Full text
Abstract:
Achieving precise control over an array of ultracold molecules would provide a unique tool-set for carrying out quantum simulations and quantum computations, as a result of the molecules' rich internal structure. To realise this aim, the molecules have to be cooled and trapped. This is much more difficult for molecules than for atoms due to their complex internal structure. This thesis presents preliminary work towards realising a versatile, permanent magnet trap for buffer gas cooled molecules. Atoms are used throughout to test the feasibility of the trap, as they are easier to produce and detect. Two novel methods for trapping buffer gas cooled atoms in a permanent magnet trap are investigated. The first of these involves trapping the atoms directly from a cryogenic buffer gas cooled ablation plume. Dy atoms, with a magnetic moment of 10μB, are trapped with a lifetime of 800 ± 30 μs, thought to be limited by collisions with a high density of background buffer gas atoms remaining in the trap region. Information gained from the direct trapping experiments motivated the design of a second trapping set-up. Here, a beam of Dy atoms is first extracted from a cryogenic buffer gas source, and when this beam reaches the trapping region, a fraction of the atoms are stopped through collisions with cold helium gas present in the trapping region. This second method reduces the density of buffer gas required in the trap region. The trap lifetime achieved in this arrangement of 810 ± 40 μs is no longer than in the direct trapping experiments, but this arrangement is much more stable and repeatable. The lifetime here is also thought to be limited by collisions with background buffer gas atoms.
APA, Harvard, Vancouver, ISO, and other styles
2

Maia, Leite Amélia Mafalda. "Development of a buffer gas trap for the confinement of positrons and study of positronium production in the GBAR experiment." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS380/document.

Full text
Abstract:
L’expérience GBAR repose sur la production d’ions antihydrogène positifs dans le but de mesurer l’accélération gravitationnelle à laquelle est soumise l’antimatière au repos. Le projet ANTION, sous-projet de GBAR, a pour but la production de ces ions d’antimatière. Il vise également à mesurer la section efficace de production d’antihydrogène dans les collisions d’antiprotons sur des atomes de positronium, ainsi que les sections efficaces correspondantes avec la matière, de production d’hydrogène et de l’ion hydrogène négatif. Ces expériences reposent sur la formation d’un nuage très dense de positronium, et nécessitent donc une grande quantité de positons qui seront implantés sur un matériau convertisseur de positons en positronium. Cette thèse décrit la construction d’un piège à “buffer gas” à trois étages, destiné à piéger et accumuler des positons pour le projet ANTION. L’association d’un piège de Penning avec une source basée sur un Linac constitue un montage expérimental unique. Le piège a été construit et optimisé, et est maintenant pleinement opérationnel. Les protocoles de piégeage ont été étudiés et les effets du gaz tampon et du gaz de refroidissement sur le taux de piégeage et la durée de vie des positons ont été quantifiés. Afin de faciliter la mesure de la section efficace de production de l’hydrogène, une simulation avec GEANT4 a été mise au point. Elle décrit l’évolution temporelle et spatiale des atomes d’ortho-positronium dans la cavité où aura lieu la production d’hydrogène. On estime que 2.7 atomes d’hydrogène sont produits pour des proton de 6 keV d’énergie incidente, en utilisant les sections efficaces calculées avec le modèle “Coulomb-Born Approximation”, et 1.6 atomes d’hydrogène pour des protons de 10 keV, si l’on utilise la méthode “two-center convergent close-coupling”. Les simulations permettent également d’estimer le bruit de fond associé aux positons et à l’annihilation du para-positronium. Cette étude amène à proposer une modification permettant d’augmenter le nombre d’atomes de positronium dans la cavité. En parallèle, une étude a porté sur l’efficacité de modération de positons d’une couche épitaxiale de carbure de silicium 4H-SiC. Une efficacité de modération de 65% a été mesurée pour des positons implantés avec une énergie de l’ordre du kilo- électronvolt. Ce résultat intéresse les expériences de physique utilisant des positons lents, car il permet d’améliorer la luminosité de faisceaux de positons; dans le cas de GBAR cela permettrait d’augmenter l’efficacité de piégeage des positons
The GBAR experiment relies on the production of antihydrogen positive ions to achieve its goal of measuring the gravitational acceleration of antimatter at rest. The ANTION project, included in the GBAR enterprise, is responsible for the production of these antimatter ions. Moreover, it also aims to measure the cross section of antihydrogen production throughout the collision of antiprotons and positronium atoms, as well as the matter cross sections of hydrogen and the hydrogen negative ion. These experiments imply the formation of a very dense positronium cloud, thus a large amount of positrons will be implanted on a positron/positronium converter material. This thesis reports the construction of a three stage buffer gas trap with the goal of trapping and accumulating positrons for the ANTION project. The combination of the Penning-type trap with a LINAC source constitutes a unique experimental setup. The trap was commissioned and optimized and is now fully operational. Trapping protocols were studied and the effect of the buffer and cooling gases on the positron trapping rate and lifetime was assessed. In order to assist the cross section measurement of hydrogen, a GEANT4 simulation was developed. It evaluates the time and spatial evolution of the ortho-positronium atoms in a cavity, where hydrogen production will take place. It was estimated that 2.7 hydrogen atoms are produced for proton impact energy of ∼ 6 keV, according to the cross sections computed with the Coulomb-Born Approximation model, and 1.6 hydrogen atoms for a proton impact energy of ∼ 10 keV, according to the two-center convergent close-coupling method. The simulations also allow the estimation of the background associated with the positron and para-positronium decay. In addition, a suggestion is proposed to increase the number of positronium atoms in the cavity. In parallel, the positron moderation efficiency of a commercially available 4H-SiC epitaxial layer was studied. A 65% moderation efficiency was observed for kiloelectronvolt implanted positrons. This result can be of interest to slow positron physics experiments by improving the brightness of positron beams, and in particular to GBAR as it can potentially increase the efficiency of positron trapping
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Buffer gas trap"

1

Mishra, Sukalpa, Sudipto Bhattacharya, D. S. Rawal, and S. Karmalkar. "The Dependence of off-State Breakdown of AlGaN/GaN HEMTs on Buffer Traps, Gate Bias and Field Plate." In Springer Proceedings in Physics, 279–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Doyle, John, and Wesley Campbell. "Cooling, Trap Loading, and Beam Production Using a Cryogenic Helium Buffer Gas." In Cold Molecules. CRC Press, 2009. http://dx.doi.org/10.1201/9781420059045.pt4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Buffer gas trap"

1

Yoda and Sugiyama. "Effect of Buffer Gas on the Total Number and the Storage Time of BA Ions Trapped in an RF Ion Trap." In Conference on Precision Electromagnetic Measurements. IEEE, 1988. http://dx.doi.org/10.1109/cpem.1988.671193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Verzellesi, G., M. Faqir, A. Chini, F. Fantini, G. Meneghesso, E. Zanoni, F. Danesin, et al. "False surface-trap signatures induced by buffer traps in AlGaN-GaN HEMTs." In 2009 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2009. http://dx.doi.org/10.1109/irps.2009.5173339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yerram, Ravinder, and Balakrishnan Ponnuraj. "Gas Fuel Variability Using Buffer Volume in Aeroderivative Gas Turbines." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11090.

Full text
Abstract:
Abstract General Electric (GE) DLE gas turbines typically use a Gas Chromatograph (GC) and/or a Wobbe Index Meter (WIM) to monitor changing fuel properties during operation. These conventional fuel sensors experience a significant time lag during operation, so a patented buffer volume device and a software algorithm is used to compensate for this lag and to ensure that the control system including metering valves can react to rapid fuel changes. Computational Fluid Dynamics (CFD) was used to design and analyze the buffer volume device that increases the time and distance taken by the gas to the metering valve. This delay provides the control system time to adjust the metering valves when the fuel transitions at the combustor to maintain gas turbine combustor stability and operation during rapid gas property changes that could otherwise result in a trip or flame-out condition. In GE’s Aeroderivative Gas Turbine Gas Fuel transfer system, the innovative buffer volume was the critical component, and this paper describes its performance in detail.
APA, Harvard, Vancouver, ISO, and other styles
4

Sharma, Khushboo, Emmanuel Dupouy, Mohamed Bouslama, Raphael Sommet, and Jean-Christophe Nallatamby. "Impact of the Location of Iron Buffer Doping on Trap Signatures in GaN HEMTs." In 2020 International Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMiC). IEEE, 2020. http://dx.doi.org/10.1109/inmmic46721.2020.9160114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiangfeng Du, Kunhua Ma, Ziqi Zhao, and Qi Yu. "Simulation of trap state effects in GaN DHFETs on buffer leakage current and breakdown voltage." In 2013 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2013. http://dx.doi.org/10.1109/edssc.2013.6628126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Joshi, Vipin, Bhawani Shankar, Shree Prakash Tiwari, and Mayank Shrivastava. "Dependence of avalanche breakdown on surface & buffer traps in AlGaN/GaN HEMTs." In 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2017. http://dx.doi.org/10.23919/sispad.2017.8085276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Iucolano, Ferdinando, Antonino Parisi, Santo Reina, Alfonso Patti, Salvatore Coffa, Gaudenzio Meneghesso, Giovanni Verzellesi, Fausto Fantini, and Alessandro Chini. "Correlation between dynamic Rdsou transients and Carbon related buffer traps in AlGaN/GaN HEMTs." In 2016 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2016. http://dx.doi.org/10.1109/irps.2016.7574586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Meneghini, Matteo, Isabella Rossetto, Davide Bisi, Antonio Stocco, Andrea Cester, Gaudenzio Meneghesso, Enrico Zanoni, Alessandro Chini, Alessio Pantellini, and Claudio Lanzieri. "Role of buffer doping and pre-existing trap states in the current collapse and degradation of AlGaN/GaN HEMTs." In 2014 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2014. http://dx.doi.org/10.1109/irps.2014.6861113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Otsuka, Tomohiro, Yutaro Yamaguchi, Shintaro Shinjo, and Toshiyuki Oishi. "Study of Self-heating Effect of GaN HEMTs with Buffer Traps by Low Frequency S-parameters Measurements and TCAD Simulation." In 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS). IEEE, 2019. http://dx.doi.org/10.1109/bcicts45179.2019.8972751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tabuchi, Masaya, Tomohiro Otsuka, Yutaro Yamaguchi, Shintaro Shinjo, and Toshiyuki Oishi. "Study on Self-heating and Drain Voltage Effects for Buffer Traps in GaN HEMTs by Low Frequency S-parameter measurements." In 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT). IEEE, 2020. http://dx.doi.org/10.1109/rfit49453.2020.9226246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography