To see the other types of publications on this topic, follow the link: Building heating system.

Dissertations / Theses on the topic 'Building heating system'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Building heating system.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Edge, Jerry. "Passive flow monitoring in heating system networks." Thesis, Northumbria University, 2001. http://nrl.northumbria.ac.uk/600/.

Full text
Abstract:
This work deals with a "passive flow monitoring" technique which can be used to help determine the energy used by a building's heating system. The thesis first highlights the background and importance of energy monitoring in buildings. This work points out that energy monitoring is an important feature in the running of buildings today. In the past, the energy crisis in the 1970's made people aware of how important it was to have knowledge of how buildings consume energy. More recently, environmental issues have reinforced the importance of gaining good quality information on energy use in buildings. This thesis investigates the use of combined port flow characteristics/control signal relationships for three port control valves to predict system water flow rate in heating systems. A laboratory test rig was built and a range of three port valves were tested. A series of combined port flow characteristics/control signal relationships were developed from measurements from the test rig. Curve fit models were then applied to these relationships in the form of polynomial equations. Where practical relationships could not be measured for a valve, a theoretical valve model was derived. In order to validate the polynomial regression model and the mathematical model, the test rig was modified to take into account practical heating system characteristics. A series of flow characteristic results were produced from the modified test rig so that the performance of the two models (empirical and mathematical) could be evaluated. It was found that the empirical model performed well in predicting combined port flow ratios with RMS errors ranging between 2.73% and 6.54%. The mathematical model gave overall prediction errors between -2.63% and +9.25% which compare favourably with the performance of some flow meters. The work then goes on to present an energy use algorithm which incorporates the valve model (empirical or theoretical) for use in BEMS.
APA, Harvard, Vancouver, ISO, and other styles
2

Botha, C. P. "Simulation of a building heating, ventilating and air-conditioning system." Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-07032006-113100/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Elizalde, Eduardo. "WEATHER FORECAST CONTROL : Prestudy of installing a predictive heating control system." Thesis, University of Gävle, Department of Technology and Built Environment, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-628.

Full text
Abstract:
<p>The forecast control for the heating system tries to maintain the buildings’ indoor</p><p>temperature at a desired level, by using technical building characteristics, data on its</p><p>mode of operation, data on the building location and meteorological parameters. By</p><p>forecasting the conditions of the building and calculating the free energies (solar radiation</p><p>and internal heat generation) it is possible to know the amount of additional heat that</p><p>should be supplied to the building every moment, avoiding heat surpluses or deficits.</p><p>By applying the theory developed by Roger Taesler to buildings 92911 and</p><p>92917 placed in Sandvik AB, it is seen that if the desired temperature was 21ºC it would</p><p>be possible to save a 16.3% of energy, 15518 SEK/year, and that the payback time for the</p><p>installation of such a system is 3 years.</p><p>Other efficiency measures as changing the ventilation schedule or installing a</p><p>heat exchanger are also discussed in the present report.</p>
APA, Harvard, Vancouver, ISO, and other styles
4

Korolija, Ivan. "Heating, ventilating and air-conditioning system energy demand coupling with building loads for office buildings." Thesis, De Montfort University, 2011. http://hdl.handle.net/2086/5501.

Full text
Abstract:
The UK building stock accounts for about half of all energy consumed in the UK. A large portion of the energy is consumed by nondomestic buildings. Offices and retail are the most energy intensive typologies within the nondomestic building sector, typically accounting for over 50% of the nondomestic buildings’ total energy consumption. Heating, ventilating and air conditioning (HVAC) systems are the largest energy end use in the nondomestic sector, with energy consumption close to 50% of total energy consumption. Different HVAC systems have different energy requirements when responding to the same building heating and cooling demands. On the other hand, building heating and cooling demands depend on various parameters such as building fabrics, glazing ratio, building form, occupancy pattern, and many others. HVAC system energy requirements and building energy demands can be determined by mathematical modelling. A widely accepted approach among building professionals is to use building energy simulation tools such as EnergyPlus, IES, DOE2, etc. which can analyse in detail building energy consumption. However, preparing and running simulations in such tools is usually very complicated, time consuming and costly. Their complexity has been identified as the biggest obstacle. Adequate alternatives to complex building energy simulation tools are regression models which can provide results in an easier and faster way. This research deals with the development of regression models that enable the selection of HVAC systems for office buildings. In addition, the models are able to predict annual heating, cooling and auxiliary energy requirements of different HVAC systems as a function of office building heating and cooling demands. For the first part of the data set development used for the regression analysis, a data set of office building simulation archetypes was developed. The four most typical built forms (open plan sidelit, cellular sidelit, artificially lit open plan and composite sidelit cellular around artificially lit open plan built form) were coupled with five types of building fabric and three levels of glazing ratio. Furthermore, two measures of reducing solar heat gains were considered as well as implementation of daylight control. Also, building orientation was included in the analysis. In total 3840 different office buildings were then further coupled with five different HVAC systems: variable air volume system; constant air volume system; fan coil system with dedicated air; chilled ceiling system with embedded pipes, dedicated air and radiator heating; and chilled ceiling system with exposed aluminium panels, dedicated air and radiator heating. The total number of models simulated in EnergyPlus, in order to develop the input database for regression analysis, was 23,040. The results clearly indicate that it is possible to form a reliable judgement about each different HVAC system’s heating, cooling and auxiliary energy requirements based only on office building heating and cooling demands. High coefficients of determination of the proposed regression models show that HVAC system requirements can be predicted with high accuracy. The lowest coefficient of determination among cooling regression models was 0.94 in the case of the CAV system. HVAC system heating energy requirement regression models had a coefficient of determination above 0.96. The auxiliary energy requirement models had a coefficient of determination above 0.95, except in the case of chilled ceiling systems where the coefficient of determination was around 0.87. This research demonstrates that simplified regression models can be used to provide design decisions for the office building HVAC systems studied. Such models allow more rapid determination of HVAC systems energy requirements without the need for time-consuming (hence expensive) reconfigurations and runs of the simulation program.
APA, Harvard, Vancouver, ISO, and other styles
5

Kubátová, Anna. "Heating of building with almost zero energy consumption." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-225687.

Full text
Abstract:
The aim of the thesis is to model energetic needs for heating and temperatures progress in the building with almost zero energy consumption. The part of the work is the economical and energetic comparison. Proposed systems are based on a knowledge of active houses.
APA, Harvard, Vancouver, ISO, and other styles
6

Sánchez, Herranz Daniel. "DESIGN OF A SOLAR WATER HEATING SYSTEM IN A RESIDENTIAL BUILDING." Thesis, University of Gävle, University of Gävle, Department of Technology and Built Environment, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-4957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schnurr, Birte. "Energy efficient space and water heating in a university building." Thesis, KTH, Strömnings- och klimatteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-128356.

Full text
Abstract:
The building Norra Djurgården 43:12 on the main campus of the Royal Institute of Technology (KTH)  in Stockholm will be retrofitted as students from the exter- nal campus Haninge will be moved there. This occasion is supposed to be used to improve the facility’s energy efficiency. Potential for this exists for both the space and the water heating system. The effect of decreasing the supply temperature to the radiators was examined  based on equations for the heat transfer. It was calcu- lated that lowering the supply temperature by 5 K would reduce the space heating demand by 25 %, i.e. 94.25 MWh a−1  and avoid emissions of 9.9 t CO2 a−1. Due to high heat losses from the secondary district heating circuit on KTH property to the ground, an alternative for the domestic hot water supply at times without space heating demand, i.e. from May to September, was considered.  Two systems were designed which can completely cover the demand and were evaluated in terms of both energy and economic efficiency. The daily domestic hot water demand  as well as the peak demand were modelled especially for this purpose. A system com- prising ten flat panel solar thermal collectors with a total aperture area of 23.3 m2 and an auxiliary heat pump of 7.5 kW capacity was calculated to achieve a maximum coefficient of performance (COP) of 9.13 in June. In spite of the low operation cost, the system has a negative Net Present Value as the fixed capital investment is very high. The more competitive option is the installation of a heat pump of 12.22 kW capacity which is supposed to use waste heat from the server room.  If both the cooling power and the heating  power are considered as the benefit, the Net Present Value calculates to about 274,500 SEK, otherwise it is still almost 99,000 SEK (ap- proximately 32,000 EUR and 11,500 EUR respectively).  These figures are based on an operation cycle of one year, i.e. if the heat pump contributes to the space heating supply from October to March. Compared to the use of outside air as a heat source, the COP is increased by 83 % or 10 % respectively, depending on the definition of the benefit. The reduction in the district heating demand calculated to 24.48 MWh a−1 provided the building can be disconnected from the KTH distribution network from May to September. At the same time, emissions of 2.57 t CO2 a−1  could be avoided. In conclusion, the installation of a heat pump using waste heat from the server room appears to be a solution which is both energy efficient and economical.<br>Das Gebäude Norra Djurgården  43:12 auf dem Hauptcampus der Königlichen Tech- nischen Hochschule (KTH)  in Stockholm wird renoviert werden, da der Vorlesungs- betrieb des externen Campus Haninge zukünftig zum Teil dort stattfinden wird. Bei dieser Gelegenheit soll die Energieeffizienz  des Gebäudes gesteigert werden. Poten- tial hierfür besteht sowohl beim Heizen als auch in der Warmwasserbereitung. Die Auswirkungen einer verringerten Vorlauftemperatur zu den Heizkörpern wurden auf Grundlage von Gleichungen zur Wärmeübertragung betrachtet. Es wurde berech- net, dass die Verringerung der Vorlauftemperatur um 5 K den Heizbedarf um 25 % reduzieren würde, d. h. um 94,25 MWh a−1, und damit Emissionen in Höhe von 9,9 t CO2 a−1 vermieden werden könnten. Aufgrund hoher Wärmeverluste vom sekundären Fernwärmekreislauf  zum Boden auf dem Gelände der KTH wurde eine Alternative  für die Warmwasserbereitung zu Zeiten ohne Heizbedarf, d.h. von Mai bis September, in Erwägung gezogen. Zwei Systeme, welche den Bedarf vollständig abdecken können, wurden entwick- elt und sowohl auf ihre Energieeffizienz  als auch auf ihre Wirtschaftlichkeit  hin geprüft. Der tägliche Warmwasserbedarf  sowie der Spitzenbedarf  wurden eigens zu diesem Zweck modelliert. Für ein Hybridsystem, welches aus zehn Flachkollek- toren mit einer gesamten Aperturfläche von 23,3 m2  und einer Wärmepumpe mit 7,5 kW Leistung besteht, wurde eine maximale Leistungszahl von 9,13 im Juni ermittelt. Trotz der geringen Betriebskosten ist der Kapitalwert negativ, da die Investitionskosten sehr hoch sind. Die konkurrenzfähige Alternative ist die Installa- tion einer Wärmepumpe mit 12,22 kW Leistung, welche die Abwärme der Computer im Serverraum nutzen soll. Werden sowohl die Kälte- als auch die Wärmeleistung als Nutzen angesehen, berechnet  sich der Kapitalwert zu etwa 32.000 EUR, ohne Miteinbeziehung der Kälteleistung zu 11.500 EUR. Diese Zahlen beziehen sich auf einen ganzjährigen Betrieb, d. h. die Wärmepumpe trägt von Oktober bis März zur Heizleistung bei. Verglichen mit der Nutzung von Außenluft als Wärmequelle kann die Leistungszahl um 83 % bzw. 10 % gesteigert werden, je nach Definition des Nutzens. Die Verringerung des Fernwärmebedarfs wurde zu 24,48 MWh a−1 berech- net, vorausgesetzt das Gebäude kann von Mai bis September vom Verteilernetz der KTH abgekoppelt werden. Gleichzeitig ermöglicht dies Emissionseinsparungen von 2,57 t CO2 a−1. Zusammenfassend erscheint  die Installation einer Wärmepumpe, welche die Abwärme im Serverraum nutzt, als eine sowohl energieeffiziente als auch wirtschaftliche Lösung.<br>Byggnaden Norra Djurgården  43:12 på Kungliga Tekniska Högskolans (KTH:s) hu- vudcampus i Stockholm kommer att renoveras då studenter från den externa cam- pusen Haninge kommer att  flyttas dit. Detta tillfälle  skall nu utnyttjas  för att effektivisera byggnadens energiprestation.  Potentialen för energieffektivisering finns därtill  i både uppvärmningen och varmvattenberedningen. I detta arbete har ef- fekten av sänkt tilloppstemperatur till radiatorerna studerats.  Effekten har kvan- tifierats genom beräkningarna  med hjälp av välkända ekvationer för värmetrans- port.  Beräkningarna har visat att värmebehovet kunde minskas med 25 %, d.v.s. 94,25 MWh per år, genom en sänkning av tillopstemperaturen med 5 K. Följaktigen kunde CO2 emissionerna också minskas med ungefär 9,9 ton per år. Då värmeförlusterna från den primära fjärrvärmekretsen mellan maj och september är höga, har ett alternativ  för varmvattenberedningen för denna tidsperiod pre- senterats.  Två system har presenterats som kan fullständigt täcka behovet  och har analyserats beträffande både energieffektiviteten och lönsamhet. Det dagliga varmvattenbehovet samt spetsbehovet har modellerats just för detta syfte.  Den maxmimala värmefaktorn till ett system bestående av 10 plana solfångare med en total aperturarea (genomskinliga arean) på 23,3 m−2  och en värmepump  på 7,5 kW har uppskattats till 9,13 i juni.  Trots de låga driftskostnaderna är kapitalvärdet negativt eftersom investeringskostnaderna  var höga. Den andra lösningen innefat- tade installation av en värmepump på 12,22 kW som använder sig av spillvärmen från serverrummet. Om besparingen av både fjärrvärme och fjärrkyla  betraktas i lönsamhetsanalysen, beräknas kapitalvärdet till ungefär 247.500 SEK, respektive 99.000 SEK om bara det minskade fjärrvärmebehovet  betraktas. Dessa siffror är baserade på ett års drift, d.v.s. om värmepumpen står för uppvärmningen från ok- tober till mars. Jämfört med användningen av uteluft som värmekälla  ökar värme- faktorn med 10 %. Ökningen blir 83 % om i processens nytta inkorporeras både den värme som absorberats från serverrummet och den värme som används för varm- vattenberedning  och uppvärmning. Reduktionen i fjärrvärmebehovet har beräknats till 24,48 MWh per år, förutsatt att byggnaden kan kopplas ifrån KTH:s distribu- tionsnätverk mellan maj och september.  Samtidigt kunde CO2 emissionerna också reduceras med 2,57 ton per år. Sammanfattningsvis kan det konstaterats att instal- lationen av en värmepump,  som använder sig av spillvärmen från serverrummet, kan vara både en kostnads- och energieffektiv lösning för den undersökta byggnaden.
APA, Harvard, Vancouver, ISO, and other styles
8

Lidberg, Tina. "Influences from Building Energy Efficiency Refurbishment on a Regional District Heating System." Licentiate thesis, Högskolan i Gävle, Energisystem, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-26499.

Full text
Abstract:
Improving energy performance of existing buildings is an important part in decreasing energy use and in turn reduce the greenhouse gas emissions caused by human activity and the primary energy use. To be able to evaluate how energy refurbishment influences the greenhouse gas emissions and the primary energy use a wider system perspective is needed that puts the building in its context. This thesis deals with energy refurbishment packages performed on multi-family buildings within district heated areas and how they influence greenhouse gas emissions and primary energy use when the district heating use is altered. A simulated building is used to evaluate several energy refurbishment packages. The results are used as input data for models of district heating systems to cost optimize the district heating production. The results from the cost optimization are used to evaluate the impact on greenhouse gas emissions and primary energy use. The results show a difference between measures that saves district heating without increasing the use of electricity and measures that increases the use of electricity while district heating is saved. For example, a building refurbishment package including only building envelope improvements saves the same amount of district heating as a package including only mechanical ventilation with heat recovery. Despite this, the emissions of greenhouse gases and the use of primary energy is to a greater extent reduced in the first package because the use of electricity remains unchanged. Comparing energy refurbishment packages performed on the same building, but within different district heating systems, show the importance of the design of the district heating system. Depending on the fuel types used and to which extent electricity is co-produced in the district heating system, the results of implementing the energy refurbishment packages vary. The largest reduction of greenhouse gases and primary energy use occurs when a refurbishment package is performed on a building in a district heating system with high share of biofuel and no electricity production.<br>Att förbättra energiprestanda hos befintliga byggnader är en viktig del i arbetet med att minska energianvändningen och i sin tur minska utsläpp av växthusgaser orsakade av mänsklig aktivitet samt att minska användningen av primärenergi. För att kunna utvärdera hur energieffektivisering av byggnader påverkar växthusgasutsläpp och primärenergianvändning behövs ett brett systemperspektiv som sätter byggnaden i sitt sammanhang. Denna avhandling handlar om hur paket av energieffektiviseringsåtgärder som utförs på flerfamiljshus inom fjärrvärmeuppvärmda områden påverkar växthusgasutsläpp och primärenergianvändning när fjärrvärmeanvändningen förändras. Resultaten visar på skillnader mellan åtgärder som sparar fjärrvärme utan att öka användningen av el och åtgärder som ökar användningen av el medan fjärrvärme sparas. Till exempel sparar ett energieffektiviseringspaket som endast omfattar byggnadsskalsförbättringar samma mängd fjärrvärme som ett paket som endast omfattar installation av mekanisk ventilation med värmeåtervinning. Trots detta minskar utsläppen av växthusgaser och användningen av primärenergi i större utsträckning i det första paketet på grund av att elanvändningen förblir oförändrad. Vikten av fjärrvärmesystemets utformning visas då en byggnad där olika energieffektiviseringspaket testats, flyttas runt till olika fjärrvärmesystem. Beroende på vilka bränsletyper som används och i vilken utsträckning som el produceras i fjärrvärmesystemet så varierar resultaten. Den största minskningen av växthusgaser uppstår när ett renoveringspaket utförs på en byggnad i ett fjärrvärmesystem med hög andel biobränsle och ingen elproduktion.
APA, Harvard, Vancouver, ISO, and other styles
9

Joyce, Charles Thane. "Optimized design of a commercial building chiller/cooking tower system." Thesis, Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/24115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Elzaidabi, Abdalla Ali Mohamed. "Low energy, wind catcher assisted indirect-evaporative cooling system for building applications." Thesis, University of Nottingham, 2009. http://eprints.nottingham.ac.uk/10703/.

Full text
Abstract:
Increased consciousness of the environmental problems has aroused people’s interest of renewable energy systems, especially the application of green features in buildings. The demand for air conditioning / cooling in domestic and non-domestic buildings is rising throughout the world; this increases the reliance on conventional fuels and the global warming effect from greenhouse gas emissions. Passive cooling and energy efficient design can substantially reduce reliance on fuel based heating and cooling. Passive and Hybrid Downdraught Cooling, in different forms, is now technically viable in many parts of the world. This has been established through a combination of research projects. In some hot arid regions, a major part of the energy consumed consists of air-conditioning requirements. Alternative methods, using passive cooling techniques, can assist in reducing the conventional energy consumption in buildings. Evaporative cooling, which can be tracked back several hundreds of years in ancient Egypt and Persia [1–3], is one of the most effective strategies, because of the enormous latent heat needed for evaporation of water. Green features are architectural features used to mitigate migration of various air-borne pollutants and transmission of air from outside to indoor environment in an advantageous way [9]. The reduction of fossil fuel consumption and the associated decrease in greenhouse gas emissions are vital to combat global warming and this can be accomplished, in part, by the use of natural ventilation. To assess the performance of several innovative cooling systems devices and to develop improved models for more established technology, quantitative measurement of output was necessary. This was achieved in this study by the development of simply constructed low energy cooling systems which were calibrated by the innovative use of wind and water as a source. These devices were found to be consistent and accurate in measuring the temperature and cooling load from a number of devices. There were some problems in the original evaporative units. Therefore, a number of modifications have to be made to enhance the systems performance. The novel Windcatcher – PEC cooling system was assessed and different cooling loads were achieved.
APA, Harvard, Vancouver, ISO, and other styles
11

Dickinson, Stephen John. "A building heating system simulation and optimisation tool incorporating bond graphs and genetic algorithms." Thesis, Lancaster University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.481623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Martinovic, Zarko. "Design a PV – system for a large building." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-17539.

Full text
Abstract:
This study presents the complete design of a photovoltaic system in commercial buildings. PV installation for Multiarena was primary used for internal consumption, rest of production will be sent according intentions in grid. Project presents theoretical demand calculations for building consumptions. According to the theoretical calculations numerical study has been provided by software Indoor Climate and Energy program. Detailed electric optimization strategy can be founded in project description, as well as the sizing of the photovoltaic installation and economic and financial issues related to it. Study presents several models for photovoltaic system and their economic analysis. Environmental issues can be founded at the end of the study.
APA, Harvard, Vancouver, ISO, and other styles
13

Choi, Sung In. "Smart Localized Heating Control System With Human Movement Tracking." Master's thesis, Temple University Libraries, 2016. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/407171.

Full text
Abstract:
Electrical Engineering<br>M.S.E.E.<br>According to the U.S. energy consumption survey in 2012, about 25% of the commercial and 42% of the residential building energy were used for heating. Despite the development of new and more efficient Heating, Ventilation, and Air Conditioning (HVAC) systems over the years, the high energy consumption in heating is still one of the major energy efficiency issues. Studies showed that decreasing HVAC operating temperature set points by 4°F will result in energy savings of 15% or more. Thus, the smart localized heating control (SLHC) system was designed and prototyped to provide localized heat directly to a person so that HVAC can run at a lower temperature set point. SLHC detects human movement and delivers the heat based on the result of the target location estimation and temperature measurement feedback. To detect the human movement, image processing techniques were used; image segmentation, mass center detection, background subtraction using the Mixture of Gaussian model, and human feature detection. In SLHC, a near-infrared heater and a tracking function were used to provide an instant and a direct heat to the person in order to minimize wasting energy. The SLHC system is divided into the sensing and processing (SP) and the heating and regulating (HR) subsystem. The SP’s primary function is to process captured video images and measured temperature data. SP also generates and sends the heater operating signal to HR. HR purposes to control the heater’s direction and power based on the signal. The communication between SP and HR was established through Wi-Fi enabled development platform. The SLHC prototype successfully processed the sensing data and transmitted the control signal. The result shows that it detected human movement and estimated the person’s location in 3D space within 10% margin of error. Also, it delivered the focused heat to the surface of the human body and increased the temperature by 10.0°F in 3 minutes at the distance of 1.5m away from the heater. This cost-effective, wireless, and localized heating system demonstrates the potential to improve energy efficiency in buildings.<br>Temple University--Theses
APA, Harvard, Vancouver, ISO, and other styles
14

Sun, Yanyi. "Glazing system with transparent insulation material for building energy saving and daylight comfort." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/39864/.

Full text
Abstract:
Concerns over sustainability in the built environment have resulted in continuous efforts to improve the performance of window system or glazed façade and hence indoor comfort and building energy conservation. An innovative façade system where parallel transparent/translucent plastic slats are sandwiched between glass panes to form a Parallel Slat Transparent Insulation Material (PS-TIM) is proposed as a strategy to effectively reduce heat transfer between the panes of a double glazed window, while maintaining access to daylight. A holistic investigation of the window system with PS- TIMs is conducted in terms of thermal and optical properties, as well as detailed daylight and energy performance predictions of applying PS-TIMs in buildings. Firstly, an experimental investigation is undertaken in a large climate chamber, and the measurement results were used to validate a two-dimensional Computational Fluid Dynamics (CFD) model. Secondly, the validated 2D CFD model is used to solve the dynamic thermal properties of different configurations of PS-TIMs under various environmental conditions. The optical properties (i.e. Bidirectional Scattering Distribution Function (BSDF)) of PS-TIMs are obtained via a ray-tracing technique based on the structures’ geometries and the material optical characteristics of the interstitial structure. The detailed annual daylight performance in different climates and building orientations are predicted using RADIANCE. Finally, the optical and thermal properties obtained from the previous fundamental models are applied in EnergyPlus to predict the energy performance (i.e. heating, cooling and lighting energy consumption) of applying PS-TIMs in buildings in different climates. The investigation results provide a better understanding of the benefits of PS-TIM in terms of energy saving and daylight comfort improvement, as well as offer some tentative suggestions as to how architects and engineers might apply PS-TIM to window system or glazed façade.
APA, Harvard, Vancouver, ISO, and other styles
15

RIETTO, LAURA. "Energy Systems Integration: from building scale to urban scale." Doctoral thesis, Politecnico di Torino, 2017. http://hdl.handle.net/11583/2679885.

Full text
Abstract:
The research activity presented in this thesis focuses on the heating energy demand assessment of a small urban district with buildings connected to the local District Heating Network (DHN). The main goal of the work consisted in determining effective actions that could be applied on both the heating system and on the envelope of five case study buildings in order to reduce the morning peak of the heating system and reduce also the overall energy demand for space heating. The outcomes of this research may be useful to assess the impact of the proposed improvements on the operation of a urban district heating network. A further goal of the work carried out was to develop an Artificial Neural Network useful to forecast, at short term, the indoor temperature of rooms once the weather conditions and the thermal energy supplied by the District Heating Network are known.
APA, Harvard, Vancouver, ISO, and other styles
16

Eriksson, Rickard, and Pontus Andersson. "Thermal storage solutions for a building in a 4th generation district heating system : Development of a dynamic building model in Modelica." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-40114.

Full text
Abstract:
The world is constantly striving towards a more sustainable living, where every part of contribution is greatly appreciated. When it comes to heating of buildings, district heating is often the main source of heat. During specific times, peak demands are created by the tenants who are demanding a lot of heat at the same time. This demand peak puts a high load on the piping system as well as the need for certain peak boilers that run on non-environmental friendly peak fuel. One solution that is presented in this degree project that solves the time difference between production and demand is by utilizing thermal storage solutions. A dynamic district heated building model is developed with proper heat propagation in the pipelines, thermal inertia in the building and heat losses through the walls of the building. This is all done utilizing 4th generation district heating temperatures. Modelica is the tool that was used to simulate different scenarios, where the preheating of indoor temperature is done to mitigate the possibility for demand peaks. Using an already existing model, implementation and adjustments are done to simulate thermal storage and investigate its effectiveness in a 4th generation district heating system. The results show that short-term energy storage is a viable solution in concrete buildings due to high building mass. However, combining both 4th generation district heating with storage in thermal mass is shown not to be suitable due to low temperatures of supply water, which is not able to increase the temperature of the building’s mass enough.
APA, Harvard, Vancouver, ISO, and other styles
17

Stojanovic, Bojan. "Lifetime Performance Assessment of Thermal Systems : Studies on Building, Solar and Disctrict Heating Applications." Doctoral thesis, KTH, Byggvetenskap, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10967.

Full text
Abstract:
The main questions today concerning thermal systems are their economical and environmental impacts. These entities are generally, at present, assessed on the basis of operation performances of newly installed/designed systems, during an assumed lifetime period. While this is the common way of perceiving thermal systems, performance-over-time will change as an effect of degradation, and not solely of different operation scenarios. How and to what extent is the question that needs assessing in order to evaluate if these changes will jeopardise the intended system performance requirement, hence service life (SL). The lack of knowledge/approaches and tools for assessing durability and performance-over-time of thermal systems complicates the task of incorporating these aspects in engineering. In turn, this pro-active assessment and analysis is in line with today’s performance based directives, laws and regulations; of which the working life is an essential part. The durability of materials, components and systems is not a topic that is an end in itself, but becomes a vital part in a comprehensive perspective as sustainability. The lifetime performance assessment of thermal systems, as presented in this thesis, shows that it is a vital part of the R&amp;D in the quest of sustainable energy/thermal systems and energy use. This thesis gives knowledge to the thermal (energy) system/technology R&amp;D and engineering sector, regarding durability and lifetime performance assessment methodologies; but also to the durability of construction works sector, regarding the needs for assessing lifetime performance of materials and components in relation to system performance. It also presents descriptions of requirements on construction works. Specifically, the studies presented in the thesis show how durability and lifetime performance assessment of thermal systems may be sought, with knowledge on: methodologies, exposure test set-ups, modelling and the attainment and use of adequate tools. The main focus is on performance-over-time modelling, tying material/component degradation to altered thermal performance, thereby attaining performance-over-time assessment tools to be used in order to incorporate these aspects when engineering thermal systems; hence enabling the forecasting of SL. The presented work was predominantly done in association to the EU project ENDOHOUSING. The project developed a solar-assisted heat pump system solution, with heat storage, to provide the thermal energy to meet space heating, cooling and hot water requirements for domestic houses in different regions of the EU. The project constituted the platform for the work presented in this thesis, thereby outlining the main context with studies on durability and lifetime performance of: flat plate solar collectors ground heat sources/storages and interaction with a heat pump system evaluation of the ENDOHOUSING solar-assisted heat pump system The thesis also presents a study of SL prediction and estimation of district heating distribution networks (an additional thermal system application). In this particular context, the Factor Method is proposed as a methodology. The main issue of lifetime performance of thermal systems is how and to what extent performance reduction in individual materials or components influence the overall system performance, as the essence of energy/thermal system sustainability is system performance.<br>QC 20100810
APA, Harvard, Vancouver, ISO, and other styles
18

Shakya, Bhakta. "An evaluation of a solar heating system and other alternatives for energy conservation in a church building." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq20883.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Farooq, Qureshi Harris, and Aber Alvi. "Evaluation of Building Integrated Heating System in Terms of Thermal Comfort & Energy Efficiency : A Case Study of Multistory Apartment Buildings in Kumla." Thesis, Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-12898.

Full text
Abstract:
This work comprises of a detail study of the impact of building integrated heating (BIH) systems on energy efficiency and thermal comfort. The work has been sponsored by a company called Thermotech AB which supplied the BIH system for twin apartment buildings in Kumla owned by Kumla Bostäder. Comprehensive energy analysis was done using IDA simulation software for the building with normal radiator heating and BIH heating systems. The analysis showed 7.5 % annual savings in favor of the BIH system but since the ground and first floor thermostatic set point was not achieved we are a bit skeptical about the actual savings. Detailed literature study in this regard showed that there was no significant difference in the energy consumption for both of the systems. In the case of thermal comfort there are many citations preferring the integrated heating with features like better comfort, air quality, less noisy system ,flexible room layout and ability to use a sustainable source such as solar power. Simulations for thermal comfort were unable to determine any significant betterment of one system over the other as both were theoretically able to deliver the same comfort. Actual measurements however showed extremely good PPD % values during a hot summer day. Unfortunately a winter measurement could not be taken due to time constraint but is a strong recommendation for further work. A detailed survey was also conducted to gauge the people’s reaction on the system during the past winter. While most of the people were satisfied average PMV of around 0.5, people from lower floors did complain about it being too cold during the winter. Some complained about it being too warm during summer time which is understandable as there no external shades and the ventilation system runs at constant speed. Some people had complains about the air quality and lack of ventilation as well. In conclusion the system’s superior thermal comfort over the conventional radiator circuit cannot be denied but its energy efficiency features may be up for debate. We recommend the system in spite of the additional cost due to the comfort for the occupants and the fact that it utilizes a low temperature source which is much more sustainable and environment friendly then the conventional high temperature sources.
APA, Harvard, Vancouver, ISO, and other styles
20

Voigt, Juan-Dirk. "Optimal control of a heating ventilation and air-conditioning system with ice-storage vessel in a commercial building." Diss., University of Pretoria, 2015. http://hdl.handle.net/2263/56123.

Full text
Abstract:
Current research indicates that optimal control methods can be used to control heating ventilation and air-conditioning (HVAC) systems with ice-storage tanks installed in commercial buildings that employ a time-of-use billing structure. An optimal control model for the cooling cycle of the HVAC system with an ice-storage tank for a commercial building is proposed. This nonlinear optimisation problem can be solved by existing software packages. The results are compared with the existing conventional control strategy employed on the HVAC system under consideration. It is shown that the optimal control of the ice storage can realise a greater energy and demand cost saving compared to the conventional control strategy for different billing periods. The research will present a comparative benchmark for other thermal energy storage systems installed in commercial buildings.<br>Huidige navorsing wys dat optimale beheermetodes aangewend kan word vir die beheer van n verhitting-, ventilasie- en lugversorgingstelsel met ysstoor, wat geïnstalleer is in n kommersiële gebou en waar die energieverbruik gemeet word volgens n tyd-van-verbruikelektrisiteittariefstruktuur. n Optimale beheermodel vir die verkoelingslassiklus van die lugversorgingstelsel met ysstoor in n kommersiële gebou word voorgestel. Die nie-liniêre optimaliseringprobleem kan deur middel van bestaande sagteware opgelos word. Die resultate van die model word vergelyk met die huidige konvensionele beheerstrategie wat toegepas word op die geëvalueerde lugversorgingstelsel. Daar word aangetoon dat optimale beheer groter aanvraag- en energiekostebesparing sal bewerkstellig in vergelyking met die konvensionele beheerstelsel vir die verskillende faktuur periodes. Die navorsing sal n vergelykende maatstaf bied vir soortgelyke stelsels met ysstore wat geïnstalleer is in kommersiële geboue en die verwagte kostebesparings.<br>Dissertation (MEng)--University of Pretoria, 2015.<br>tm2016<br>Electrical, Electronic and Computer Engineering<br>MEng<br>Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
21

Åberg, Magnus. "System Effects of Improved Energy Efficiency in Swedish District-Heated Buildings." Doctoral thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-229477.

Full text
Abstract:
To alleviate global warming, European-Union member states must reduce primary energy use, emit less carbon dioxide (CO2), and increase renewable energy use. Buildings constitute a great potential for energy savings, but saving energy in district-heated buildings influences combined heat and power (CHP) production, other electricity generation, and global CO2 emissions.   This thesis investigates the system effects from Swedish district heating production caused by district heating demand changes due to energy conservation in buildings. The cost-optimising linear programming modelling tools MODEST and FMS, the latter developed in the context of this thesis, are used to describe present district heating production and to investigate the impact of heat-demand reductions in twelve Swedish district heating systems, four of them representing all Swedish district heating.   Energy savings in district-heated, multi-family residential buildings yield a lower, more seasonally levelled district heating demand. These demand changes mainly reduce use of fossil-fuel and biomass for heat production. CHP production is significantly reduced if it supplies intermediate or peak district heating load. The αsystem value (ratio between generated CHP electricity and produced district heating) increases by demand reductions if CHP mainly supplies base district heating load. CO2 emissions due to district heat production depend on the approach used for CO2 assessment of electricity, and are generally reduced with heat demand reductions, unless the share of CHP production is large and the reduced fuel use yields smaller emission reductions than the emission increase from power production that replaces reduced CHP generation.   In total, heat demand reductions reduce CO2 emissions due to Swedish district heating, and the district heating systems even constitute a carbon sink at certain energy conservation levels. If saved biomass replaces fossil fuels elsewhere, a lower heat demand reduces CO2 emissions for every studied district heating system.
APA, Harvard, Vancouver, ISO, and other styles
22

Jarumongkonsak, Pornput. "Development and performance investigation on solar-powered thermoelectric radiant cooling in building-integrated system for a bedroom under hot and humid climate." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/33629/.

Full text
Abstract:
In order to replace a conventional air-conditioner (AC) based on vapour compression technology that directly has high global warming potential and also currently consumes the most fossil fuel primary energy in building sector of tropical countries for generating thermal comfort on sleeping purpose, other alternative green space cooling technologies, as thermoelectric cooling (TEC), has to be improved to have same performance with AC. This research aims to develop and investigate a performance of Solar-powered Thermoelectric Radiant Cooling (STRC) system, as the combination of TEC and radiant cooling (RC) that is well known in its low energy consumption advantage. The studies were conducted through calculations, CFD simulations, system performance simulations and experiments. The results of optimum STRC system design was proved to provide better thermal and air quality performances, while the result in energy performance was depended on the TEC’s COP and vapour condensation prevention. After novel developing of TEC’s cooling channel with combined helical and an oblique fin to induce effective secondary flows that highly reduced the TEC’s hot side temperature in this research, the COP was able to increase up to 175%. Meanwhile, a novel bio-inspired combined superhydrophobic and hydrophobic coating on RC panel were able to competently repel most condensed water droplets, leaving just tiny droplets that was hard to be seen by naked eye. Finally, the COP of STRC system from house model experiment in 1:100 scales under hot and high humid climate was as high as 2.1 that helped STRC to consume electricity 34% less than AC system. Along with other benefits, as no working fluid, noise-free and low maintenance needs, the return of investment (ROI) was studied to be only 5-6 years when being operated with grid electricity and 17-18 years with PV panel generated electricity.
APA, Harvard, Vancouver, ISO, and other styles
23

Eriksson, Douglas. "Investigation of the energy saving potential for an office building complex : A study on the viability of an on-site combined heat- and power supply system." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-39888.

Full text
Abstract:
The building stock in the European Union accounts for over 40% of final energy use, where the usage of non-residential buildings may be up to 40% higher than the residential sector. Improving building energy efficiency across all categories of buildings is one key goal of the European energy policies, made prominent by the Climate and Energy package, Energy Performance of Building Directive (EPBD) and Energy Efficiency Directive (EED). In this study, a simulation model of an office-building complex utilizing district heating was created using transient simulation software TRNSYS. The model was validated using consumption data provided by the facility owner, after which an investigation of the energy saving potential along with the economic viability of adapting a new heat- and power supply system was conducted. The system designs were comprised of a geothermal energy system in combination with a PV-system and electricity storage. It was concluded that the systems were sufficient in maintaining an adequate indoor climate. Furthermore, the investments were ascertained as profitable and resulted in a decreased building specific energy demand.
APA, Harvard, Vancouver, ISO, and other styles
24

Davidsson, Lukas, and Isak Alsterlund. "Badrumsrenovering i bostäder : Jämförelse mellan radiatorsystem och golvvärmesystem ur energi-, fukt- och komfortaspekt i Västerås." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-45091.

Full text
Abstract:
This degree project cover renovation of sanitary rooms with focus on an exchange from a radiator system to an underfloor heating system out of the three aspects energy, moisture and thermal comfort. The used method is literature study, interview, case study and calculations. When a radiator system is replaced with an underfloor heating system the energy demand will decrease due to a possible temperature reduction. The power requirement for the bathrooms will be reduced if the finish material have a higher density and the volume of the room is small. The moisture aspect can in some cases deteriorate with the replacement of systems. It is possible to achieve the same thermal comfort with any system, but it is easier to adjust with an underfloor heating system. An exchange from a radiator system to an underfloor heating system is possible. The energy and thermal comfort aspects improves, but the moisture aspect will potentially degrade.
APA, Harvard, Vancouver, ISO, and other styles
25

Spasis, G. "Heating, ventilation and air conditioning system optimization : a study of the effect of climate, building design, system selection and control strategy on the energy consumption of a typical office building in London and Athens." Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1445105/.

Full text
Abstract:
The increasing demand for air conditioning in commercial buildings imposes a serious threat to Europe's CO2 reduction targets. Architects and engineers are therefore in a key position to help reduce the impact of buildings on the environment by taking appropriate decisions concerning the design of the building and the associated heating, ventilation and air conditioning (HVAC) system. The thesis studies the effect of a number of building and HVAC system related design factors on the energy performance of a notional air-conditioned office building employing either a variable air volume (VAV) system with terminal re-heaters, or a four-pipe fan coil unit (FCU) system with fresh air supply from a central plant, using mainly a dynamic simulation tool and the response surface methodology. The evaluation of the energy performance of the HVAC systems is for two types of climate, using typical weather data for London (UK) and Athens (Greece). It has been found that the design variables associated with the solar radiation through the transparent building elements and the internal heat gains should be the main concern of the building designer. On the other hand, the HVAC system engineer should give emphasis to the parameters associated with the plant performance and operation, as well as the temperature control set-points. It has been shown that it is possible to reduce the carbon emissions of the base case scenario by up to 88% depending on the HVAC system and the climate for which it is simulated. The carbon savings, however, are reduced by up to 22% where humidification is provided. This reduction differs depending on the HVAC system and the climatic conditions. The VAV system is more energy efficient than the FCU system, mainly due to the exploitation of the free cooling capacity of the outdoor air. The difference in carbon emissions between the two systems drops when both of them are simulated for the Athens as opposed to the London typical weather conditions. It has been found that it is possible to turn the carbon scales in favour of the FCU system when humidification to a high RH set-point is provided throughout the year, since the adjustment of the RH of the air is particularly energy wasteful for the VAV system.
APA, Harvard, Vancouver, ISO, and other styles
26

Lundström, Lukas. "Heat demand profiles of buildings' energy conservation measures and their impact on renewable and resource efficient district heating systems." Licentiate thesis, Mälardalens högskola, Framtidens energi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-31495.

Full text
Abstract:
Increased energy performance of the building stock of European Union is seen as an important measure towards mitigating climate change, increasing resource utilisation efficiency and energy supply security. Whether to improve the supply-side, the demand-side or both is an open issue. This conflict is even more apparent in countries such as Sweden with a high penetration of district heating (DH). Many Swedish DH systems have high share of secondary energy resources such as forest industry residuals, waste material incineration and waste heat; and resource efficient cogeneration of electricity in combined heat and power (CHP) plants. When implementing an energy conservation measure (ECM) in a DH connected building stock, it will affect the operation of the whole DH system. If there are CHP plants and the cogeneration of electricity decreases due to an ECM, and this electricity is valued higher than the fuel savings, the consequences of the ECM would be negative.  These complex relationships are investigated by conducting a case study on the Eskilstuna DH system, a renewable energy supply system with relatively high share of cogenerated electricity. Heat demand profiles of ECMs are determined by building energy simulation, using recently deep energy retrofitted multifamily buildings of the “Million Programme”-era in Eskilstuna as model basis. How implementing ECMs impact on the DH system’s heat and electricity production under different electricity revenue scenarios has been computed and evaluated in terms of resource efficiency and CO2 emissions.  The results show that different ECMs in the buildings impact differently on the DH system. Measures such as improved insulation level of the building’s envelope, that decrease the heat demand’s dependence to outdoor temperature, increase the amount of cogenerated electricity. While measures such as thermal solar panels, which save heat during summer, affects the absolute amount of cogenerated electricity negatively. Revenues from cogenerated electricity influence the amount of cost-effectively produced electricity much more than the impact from ECMs. Environmental benefits of the ECMs, measured in CO2 emissions and primary energy consumption, are quite small in DH systems that have high share of forest residual fuels and electricity cogeneration. The consequences can even be negative if ECMs lead to increased need of imported electricity that is produced resource inefficiently or/and by fossil fuels. However, all studied ECMs increase the relative amount of cogenerated electricity, the ratio between amount of cogenerated electricity and the heat load. This implied that all ECMs increase the overall efficiency of the Eskilstuna DH system.
APA, Harvard, Vancouver, ISO, and other styles
27

Azad, Mohammad. "Evaluation of an Energy System for multi-family houses with Combination of Exhaust Air Heat Pump and PV : Case Study: Demonstration Building of The EU Energy Matching Project, Sweden-Ludvika." Thesis, Högskolan Dalarna, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:du-28650.

Full text
Abstract:
This thesis investigated application of the heat recovery ventilation using an exhaust air heat pump and a roof top photovoltaic (PV) system for a group of three multi-family houses located in Ludvika, Sunnansjö. The buildings in the existing condition have mechanical ventilation and a centralized heating system consists of a pellet boiler as the main source and an oil boiler as back up. Exhaust air heat pump (EAHP) has been known by the previous relevant researches as an effective solution to promote the energy efficiency in the buildings. Furthermore, reduction in PV cost has made the PV as a financially viable option to be contributed in supplying electricity demand. In this respect, this thesis aimed to calculate the potential of energy saving in the case study using the combination of EAHP and PV. For this purpose, the buildings and the proposed energy system were simulated to enable the comparison of energy demand before and after the renovation. The simulation was gradually progressed through several phases and each stage created the prerequisites of the next. Since the buildings were relatively similar in terms of boundary conditions, one of the buildings were initially modeled and the concluded space heating (SH) demand was extrapolated to the three buildings scope. The simulation of the building was done using 3dimensional thermal model offered by Trnsys3d. The primary results were also calibrated against the available annual fuel consumption data. In the second phase, a pre-developed TRNSYS model of the energy system was completed using the result of previous step as the total SH demand as well as the estimated domestic hot water (DHW) consumption from a stochastic model. This simulation produced the electricity demand profile of the heat pump when the heat pump provided the total heat demand. Subsequently, the electricity consumption of the flats and operational equipment were estimated using stochastic model and available monthly measurement, respectively. Since the feasibility and optimal placement of 74 𝑘𝑊 PV modules offered for these buildings had been already examined by the author in another study, the final simulation were performed in an hourly basis considering PV production and total electricity demand; i.e. EAHP, flats consumption and operational equipment. The results of the simulation showed that 21 % of total electricity demand during a year could be supplied by the proposed PV system even without any electrical storage, whereas 74 % of total yearly PV production is consumed by the local loads. The results also proved that removing old inefficient oil boiler and supplementing the pellet boiler with the combination of EAHP and PV could mitigate the annual purchased energy (including electricity and pellet) by approximately 40 % compared to the current condition.
APA, Harvard, Vancouver, ISO, and other styles
28

Sundberg, Malin, Frida Sundblad, and Klara Hansson. "A CLIMATE SMART BUILDING WITH AN OPTIMAL HEATING AND DOMESTIC HOT WATER SYSTEM : Investigating environmentally sustainable solutions for a Youth Centre in Moldova." Thesis, University of Skövde, School of Technology and Society, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-4418.

Full text
Abstract:
<p>Moldova is a country that during the last twenty years, since the declaration of their independence, has had big problems within the energy sector. The infra structure that exist is outdated and there are few national sources of energy. Today Moldova import 94-98 % of the total energy consumption from surrounding countries. The usage of renewable energy sources is today low and in its beginning. There have been a few previous projects within the area.</p><p>In 2010 Borlänge Energy AB and the Peace&Love Foundation took  an initiative to start up two Youth Centres, one in the countryside and one in the capital, Chişinău. These centres will not only contribute to offer a sanctuary for young people but as well function as a good example of energy efficient construction and the usage of renewable energy sources.</p><p>The projects’ purpose is to design an ecologically sustainable solution for the building construction, the supply of domestic hot water and the domestic heating for the Youth Centre that will be built in Lozova, Moldova. The aim is to present a final suggestion of this complete system in a report. The gathering of information is based on literature but also interviews and study visits. All the stages have been done both in Moldova and Sweden. The work is done within the three areas: Energy smart building construction, thermal solar system for domestic hot water and heat and biomass fueled boilers for small scale use. The domestic heating system is based primarily on sun energy with a complimenting biomass boiler.</p><p>Different materials for the building construction are compared with a starting point in different traditional types of buildings. Three different standardized cases are put against each other and these results in a recommendation of a low U-value. Meaning a value of how high the flow of energy is allowed to be through the house. This U-value is then used to obtain the total annual energy use which then lies as ground for the sun- and biomass energy system. Moldova’s biomass resources are mapped to identify possible choices for the biomass boiler. An evaluation of the boiler that in the end will give the best result for the environment is done. In the simulation program Polysun two different cases of combined sun and biomass systems are compared to each other. One system is designed with more basic technique and the other one is designed with more advanced technique. The results from Polysun and the Moldovan capability to receive the technique are taken into consideration and in the end the system designed with basic technique is chosen.</p>
APA, Harvard, Vancouver, ISO, and other styles
29

Saini, Puneet Kumar. "A Preliminary Optimisation and Techno-economic Analysis of Solar Assisted Building Heating System Using Transpired Air Solar Collector and Heat Pump in Sweden." Thesis, Högskolan Dalarna, Energiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:du-30537.

Full text
Abstract:
This thesis presents an optimisation approach and techno-economic evaluation tool for a system consisting of a transpired solar air collector and air source heat pump in a series arrangement. The thesis also investigates the application of the developed tool for feasibility study of a solar heat pump system for a group of three multi-family houses located in Ludvika, Sweden.   Transpired solar air collector is used in combination with an air source heat pump to meet space heating and hot water demand for the defined location. Moreover, the solar pre-heated fresh air is used as a heat source for the heat pump evaporator to improve its coefficient of performance. Solar heat pump systems are extensively studied by numerous researchers, However the analyses about techno-economic feasibility of air source heat pump with transpired air solar collector are still lacking. Therefore, an optimisation tool is developed based on the non-linear programming for coherent operation strategy and variation in collector flow rate. The effect of optimisation along with the techno-economic feasibility for a demo case residential building in Sweden is then preliminary studied based on the defined boundary conditions.   The analysis is gradually progressed through several phases of thesis starting from system description and followed by tool methodology and case study. A pre-developed dynamic simulation model is used to obtain the space heating and domestic hot water demand of the building. The electricity expenses of the existing system are evaluated and the results are used as a reference to compare the savings resulting from the installation of transpired solar collectors with gross area of 50 m2.   The results are presented as a defined economic indicator such as payback period. The results of the simulation reflect that the installation of 50 m2solar collector area leads to 3 % savings compared to the defined reference case, with a simple payback of 22 years. Moreover, results also indicate that variation of collector flow rate and operation timings are effective strategies to maximise the system savings. The analysis reveals that the optimisation can result in up to 60 % additional savings in comparison to a fixed flow rate case.   The developed tool has a potential use for feasibility check at an earlier stage of the installation project, without the need for extensive system simulations. Moreover, the tool overcomes the shortcoming of various available tools such as RETscreen solar air heating project model, which are not designed to evaluate the performance of solar collectors with heat pump systems.
APA, Harvard, Vancouver, ISO, and other styles
30

Duarte, Marta. "Heat recovery units in ventilation : Investigation of the heat recovery system for LB20 and LB21 in Building 99, University of Gävle." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-21825.

Full text
Abstract:
Heating, ventilation and air-conditioning (HVAC) systems are widely distributed over the world due to their capacity to adjust some local climate parameters, like temperature, relative humidity, cleanliness and distribution of the air until the desired levels verified in a hypothetical ideal climate. A review of buildings’ energy usage in developed countries shows that in the present this energy service is responsible for a portion of about 20% of the final energy usage on them, increasing up to 50% in hot-humid countries. In order to decrease this value, more and more different heat recovery systems have been developed and implemented over the last decades. Nowadays it is mandatory to install one of these units when the design conditions are above the limit values to avoid such components, what is possible to verify mostly in non-residential buildings. Each one of those units has its own performance and working characteristics that turns it more indicated to make part of a certain ventilation system in particular. Air-to-air energy recovery ventilation is based on the heat recovery transfer (latent and/or sensible) from the flow at high temperature to the flow at lower temperature, pre-warming the outdoor supply air (in the case of the winter). Therefore, it is important to understand in which concept those units have to be used and more important than that, how they work, helping to visualize their final effect on the HVAC system. The major aims of this study were to investigate the actual performance of the heat recovery units for LB20 and LB21 in building 99 at the University of Gävle and make some suggestions that could enhance their actual efficiency. Furthermore, the energy transfer rates associated to the heat recovery units were calculated in order to understand the impact of such components in the overall HVAC system as also the possible financial opportunity by making small improvements in the same units. To assess the system, values of temperature and flow (among others) were collected in the air stream and in the ethylene-glycol solution that works as heat transfer medium between air streams and is  enclosed in pipes that make part of the actual run-around heat recovery units. After some calculations, it was obtained that for the coldest day of measurements, the sensible effectiveness was 42% in LB20 and 47% in LB21, changing to 44% and 43% in the warmer day, respectively. The actual heat transfer representing the savings in the supply air stream is higher on the coldest day, with values of 46 kW in LB20 and 84 kW in LB21, justifying the existence of the heat recovery units even if those ones imply the use of hydraulic pumps to ensure the loop. The low values of efficiency have shown that both heat recovery units are working below the desired performance similarly to the pumps that make part of the same units.  This fact, together with the degradation of the units that is possible to observe in the local, indicates that a complete cleaning (followed by a change of the heat transfer medium) of the heat recovery units and a new adjustment of pumps and valves for the further changes, are necessary. By doing this, it is expected to see the year average sensible effectiveness increase to close to 45% in both units which will lead to a potential economic saving of around 41 000 SEK per year.
APA, Harvard, Vancouver, ISO, and other styles
31

Lei, Tong Weng. ""D_PID" method for on-demand air conditioning system control in meetings, incentives, conventions and exhibition (M.I.C.E.) building." Thesis, University of Macau, 2009. http://umaclib3.umac.mo/record=b2148238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Havlíčková, Simona. "Rekonstrukce zdravotně technických instalací v bytovém domě." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265732.

Full text
Abstract:
This diploma thesis deals reconstruction of sanitation installations in an apartment building in Brno. It is a multi-storey building which is intended mainly for living. The theoretical part deals individual ways of preparation hot water in the apartment buildings. The experimental part deals measurement consumption hot water in the apartment building. Calculating and design part contains a proposal of sewerage system, piping system and linking up of the object on present engineering systems. The diploma thesis also focuses on possible options and re-quested specifics. The diploma thesis was arranged in accordance with present-day valid norms and regulations.
APA, Harvard, Vancouver, ISO, and other styles
33

Perschk, Alf. "Gebäude-Anlagen-Simulation unter Berücksichtigung der hygrischen Prozesse in den Gebäudewänden." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2000. http://nbn-resolving.de/urn:nbn:de:swb:14-993456440484-94152.

Full text
Abstract:
Das Ziel der Dissertationsschrift bestand in der Entwicklung von Modellen, die notwendig waren, um eine komplexe Gebäudesimulation durchführen zu können. Dabei wurde der Schwerpunkt auf die Eigenentwicklung gelegt, während andere Modelle nur erwähnt und kurz beschrieben bzw. deren notwendige Erweiterungen erläutert wurden. Die Arbeit unterteilt sich in die Hauptpunkte Gebäude, Anlage, Modellverifizierung und Beispielrechnungen. Als Simulationswerkzeug wurde das Programmsystem TRNSYS verwendet, in welches letztendlich alle vorgestellten Modelle implementiert werden konnten.
APA, Harvard, Vancouver, ISO, and other styles
34

Larmérus, Alexander. "Styrning av värmesystem i kontorsbyggnader : Jämförelse mellan prognosstyrning, styrning som utnyttjar byggnadens värmetröghet, samt traditionell styrning." Thesis, KTH, Tillämpad termodynamik och kylteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-146975.

Full text
Abstract:
En stor del av Sveriges energianvändning går till bostäder och lokaler. Ur en nationell synvinkel är energieffektiviseringar i befintliga byggnader därför en potentiellt viktig del för att kunna nå de satta klimatmålen till år 2020. I ett traditionellt styr- och reglersystem styrs framledningstemperaturen i ett vätskeburet värmesystem efter en kurva som beror på utomhustemperaturen. En del nya styr- och reglersystem tar även hänsyn till andra parametrar, såsom byggnaders värmetröghet och lokala väderprognoser. Ett exempel på ett sådant system är Ecopilot, utvecklat av Kabona. Nuvarande kunskap angående hur stor energibesparing som styr- och reglersystem med prognosstyrning och styrning som utnyttjar byggnadens värmetröghet ger upphov till består till största del av referensfall som jämför byggnaders energianvändning före och efter installationen. I detta examensarbete undersöktes hur energianvändning och inomhusklimat påverkades av prognosstyrning och styrning som utnyttjar byggnaders värmetröghet. Mätningar utfördes på två kontorsbyggnader vid namn Fräsaren 10 och Fräsaren 11. Båda byggnaderna är belägna i Sundbyberg och har Kabona Ecopilot installerat. Mätdata loggades genom redan utsatta givare och en enklare form av validering av dessa gjordes. I Fräsaren 10 och Fräsaren 11 jämfördes Ecopilot i normal drift med driftfallet då prognosstyrningsfunktionen stängdes av i Ecopilot. Även ett tredje driftfall undersöktes i Fräsaren 10. Under detta driftfall stängdes Ecopilot av och framledningstemperaturen styrdes med hjälp av reglerkurvor. I luftbehandlingsaggregaten sattes tilluftstemperaturens börvärde, till 19-20 °C. Varje driftfall hade en mätperiod på minst 14 dagar. Energisignaturer användes för att jämföra energianvändningen och en osäkerhetsanalys av de anpassade linjerna gjordes. En egen modell för att undersöka toppbelastningar i radiatorsystemet, VS1, i Fräsaren 10 togs fram. Även en modell för att undersöka hur temperaturen varierat inomhus mellan de olika mätperioderna togs fram. Energisignaturer för radiatorsystemen VS1 och VS2 i Fräsaren 10 visade på att likvärdiga energisignaturer kunde fås för samtliga av de undersökta driftfallen under det temperaturintervall som undersöktes. Energisignaturer för värmeanvändning i luftbehandlingsaggregatet, LB2601, visade på att en konstant tillufttemperatur på 19 °C som användes då Ecopilot var avstängd, kunde ge en högre värmeanvändning jämfört med fallen då Ecopilot var i normal drift och då Ecopilot hade sin prognosstyrning avstängd. Från jämförelse mellan fallen då Ecopilot var i normal drift och då Ecopilots prognosstyrning var avstängd kunde inga substantiella skillnader hittas mellan energisignaturerna. Det betyder dock inte att prognosstyrningen inte ger upphov till energibesparingar, utan att eventuella energibesparingarna var för små relativt mätningarnas osäkerhet vid en konfidensnivå på 65 % eller 95 %. Osäkerheten kan minskas om mätningar utförs över en längre tidsperiod än som var möjligt under detta examensarbete. Värmetoppbelastningar som undersöktes i radiatorsystemet i VS1 Fräsaren 10 visade inte på att några signifikanta skillnader mellan antalet uppmätta värmeeffekttoppar under de olika mätperioderna. Det förekom dock en viss indikation att det kan leda till fler värmeeffekttoppar om prognosstyrningen stängs av i Ecopilot. För att få ett mer tillförlitligt resultat behöver mätningar göras under en längre tidsperiod. Inomhustemperaturen undersöktes i Fräsaren 10 och Fräsaren 11. I Fräsaren 10 uppgick medeltemperatur till 21,5 °C för fallen då Ecopilot var i normal drift och då prognosstyrningen var avstängd. Då Ecopilot var avstängd var medeltemperaturen 22,1 °C. Under mätperioderna uppmättes en variation som understeg ± 1 °C från medelvärdet för respektive mätperiod. Baserat på resultaten presenterade i detta examensarbete antaganden angående hur stor besparing av värme som Ecopilot ger upphov till revideras. Att jämföra energianvändning före och efter installation av styrsystem såsom Ecopilot kan ge en dålig bild av hur stor del av energibesparingen som orsakats av Ecopilot, speciellt om reglerkurvorna i det gamla systemet var dåligt intrimmade.
APA, Harvard, Vancouver, ISO, and other styles
35

Plavec, Kamil. "Polyfunkční dům, Jihlava." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-225774.

Full text
Abstract:
Proposed office and apartment building is situated in the north-west area of the city of Jihlava. Office and apartment building is designed as four-storey detached house, flat roof with a single casing. There are three shops and common area in the 1st floor. In the second floor there are situated 4 apartments consisting of two rooms and a house cellar in the centre of the house. The third floor is of the same pattern as the second one. In the fourth floor there are 4 apartments consisting either of one room or three rooms and a house cellar in the centre of the house as well. The total number of the apartments is 12. The house is made of building system VELOX.
APA, Harvard, Vancouver, ISO, and other styles
36

Joelsson, Jonas. "On Swedish bioenergy strategies to reduce CO2 emissions and oil use." Doctoral thesis, Mittuniversitetet, Institutionen för teknik och hållbar utveckling, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-13868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Nowak, Sylvia. "Reducing Energy Use of an Electric Floor Heating System and analyzing Thermal Comfort and Heat Transmission when using different Control Strategies : Analysis of a bathroom in a residential building located in Gävle, Sweden." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-17061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Perschk, Alf. "Gebäude-Anlagen-Simulation unter Berücksichtigung der hygrischen Prozesse in den Gebäudewänden." Doctoral thesis, Technische Universität Dresden, 1999. https://tud.qucosa.de/id/qucosa%3A24729.

Full text
Abstract:
Das Ziel der Dissertationsschrift bestand in der Entwicklung von Modellen, die notwendig waren, um eine komplexe Gebäudesimulation durchführen zu können. Dabei wurde der Schwerpunkt auf die Eigenentwicklung gelegt, während andere Modelle nur erwähnt und kurz beschrieben bzw. deren notwendige Erweiterungen erläutert wurden. Die Arbeit unterteilt sich in die Hauptpunkte Gebäude, Anlage, Modellverifizierung und Beispielrechnungen. Als Simulationswerkzeug wurde das Programmsystem TRNSYS verwendet, in welches letztendlich alle vorgestellten Modelle implementiert werden konnten.
APA, Harvard, Vancouver, ISO, and other styles
39

Gaidukov, Vladimir A. "Multiple criteria optimisaiton of building heating systems." Thesis, De Montfort University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Škorpík, Adam. "Energetický management v ubytovacím zařízení." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2013. http://www.nusl.cz/ntk/nusl-223978.

Full text
Abstract:
This thesis deals with heating system in accommodation facility. It clarifies the way of controlling multiple decentralized systems which results in automatization of the whole heating system. Heating distrubition into individual zones is controlled by central server which communicates with reservation system of accommodation facility. The main goal is to lower expenses for heating.
APA, Harvard, Vancouver, ISO, and other styles
41

Houzar, Tomáš. "Analýza tepelné spotřeby objektu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-319291.

Full text
Abstract:
Master’s thesis is focused on analysis of thermal consumption in the buiding. This work describes current state of family house and possible suggestions for heating and water heating. Part of solution is created program, which supposed to serve as universal calculation program for design and economic evaluation of suggested solar systém and allows a comparison between commonly used sources for heating and water heating.
APA, Harvard, Vancouver, ISO, and other styles
42

Rohlíková, Věra. "Teplovzdušné vytápění." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226009.

Full text
Abstract:
The subject of this master's thesis is warm air heating system. The task is to apply this heating method to a specified building and to design technical solutions. The degree of completion of the extended project is appropriate for the requirements of building permit documentation. Proposed solutions were evaluated in the viewpoint of inner environment, space requirements, operation economy and environmental impact. Warm air heating system made by Atrea is used for building heating. The text part of the thesis deals with building air permeability and the experimental part describes performance of blower door test in a family house and evaluation of experiment data
APA, Harvard, Vancouver, ISO, and other styles
43

Bouwer, Werner. "Designing a dynamic thermal and energy system simulation scheme for cross industry applications / W. Bouwer." Thesis, North-West University, 2004. http://hdl.handle.net/10394/592.

Full text
Abstract:
The South African economy, which is largely based on heavy industry such as minerals extraction and processing, is by nature very energy intensive. Based on the abundance of coal resources, electricity in South Africa remains amongst the cheapest in the world. Whilst the low electricity price has contributed towards a competitive position, it has also meant that our existing electricity supply is often taken for granted. The economic and environmental benefits of energy efficiency have been well documented. Worldwide, nations are beginning to face up to the challenge of sustainable energy - in other words to alter the way that energy is utilised so that social, environmental and economic aims of sustainable development are supported. South Africa as a developing nation recognises the need for energy efficiency, as it is the most cost effective way of meeting the demands of sustainable development. South Africa, with its unique economic, environmental and social challenges, stands to benefit the most from implementing energy efficiency practices. The Energy Efficiency Strategy for South Africa takes its mandate from the South African White Paper on Energy Policy. It is the first consolidated governmental effort geared towards energy efficiency practices throughout South Africa. The strategy allows for the immediate implementation of low-cost and no-cost interventions, as well as those higher-cost measures with short payback periods. An initial target has been set for an across sector energy efficiency improvement of 12% by 2014. Thermal and energy system simulation is globally recognised as one of the most effective and powerful tools to improve overall energy efficiency. However, because of the usual extreme mathematical nature of most simulation algorithms, coupled with the historically academic environment in which most simulation software is developed, valid perceptions exist that system simulation is too time consuming and cumbersome. It is also commonly known that system simulation is only effective in the hands of highly skilled operators, which are specialists in their prospective fields. Through previous work done in the field, and the design of a dynamic thermal and energy system simulation scheme for cross industry applications, it was shown that system simulation has evolved to such an extent that these perceptions are not valid any more. The South African mining and commercial building industries are two of the major consumers of electricity within South Africa. By improving energy efficiency practices within the building and mining industry, large savings can be realised. An extensive investigation of the literature showed that no general suitable computer simulation software for cross industry mining and building thermal and energy system simulation could be found. Because the heating, ventilation and air conditioning (HVAC) of buildings, closely relate to the ventilation and cooling systems of mines, valuable knowledge from this field was used to identify the requirements and specifications for the design of a new single cross industry dynamic integrated thermal and energy system simulation tool. VISUALQEC was designed and implemented to comply with the needs and requirements identified. A new explicit system component model and explicit system simulation engine, combined with a new improved simulation of mass flow through a system procedure, suggested a marked improvement on overall simulation stability, efficiency and speed. The commercial usability of the new simulation tool was verified for building applications by doing an extensive building energy savings audit. The new simulation tool was further verified by simulating the ventilation and cooling (VC) and underground pumping system of a typical South African gold mine. Initial results proved satisfactory but, more case studies to further verify the accuracy of the implemented cross industry thermal and energy system simulation tool are needed. Because of the stable nature of the new VISUALQEC simulation engine, the power of the simulation process can be further extended to the mathematical optimisation of various system variables. In conclusion, this study highlighted the need for new simulation procedures and system designs for the successful implementation and creation of a single dynamic thermal and energy system simulation tool for cross industry applications. South Africa should take full advantage of the power of thermal and energy system simulation towards creating a more energy efficient society.<br>Thesis (Ph.D. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2005.
APA, Harvard, Vancouver, ISO, and other styles
44

Snášelová, Tereza. "Kvalita otopné vody pro zdroje tepla." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265465.

Full text
Abstract:
The diploma thesis focuses on assesment of water quality in heating systems. The experiment includes description of used methods and meters as well as analysis of collected samples. The theoretical part describes selected water properties, quality meters and sources of heat according to the material of their heat exchanger. This thesis processes design of heating system and hot water preparation for complex of administration buildings. The project includes calculations of heat losses, system proposal and two versions of possible heat source. The first version offers solution with condensing boiler with heat exchanger from stainless steel, while the second version uses condensing boiler with heat exchanger from aluminium and silicon. Both versions have their own solution of safety equipment and water treatment.
APA, Harvard, Vancouver, ISO, and other styles
45

Pražan, Tomáš. "Bytový dům." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240334.

Full text
Abstract:
The main goal of this diploma thesis „apartment building“ is create project documentation for building construction. This apartment building located in Policka's suburb is designed for 32 people living in 8 apartments. The building is designed as detached house on four floors, without basement. The first floor above the ground is used as a apartment for handicapped people, common rooms, cleaning room, maintenance room, and garages for 5 cars. In the second floor above the ground there are apartments. In the last floor above the ground there are entrance to rooftop and an apartment for 7 people. All floors are connected with staircase and elevator. Bearing and partition walls are lined with ceramic bricks Heluz, heating contact system. Ceiling panel system is designed Spiroll. The roof is flat.
APA, Harvard, Vancouver, ISO, and other styles
46

Afroz, Zakia. "Performance improvement of building heating, cooling and ventilation systems." Thesis, Afroz, Zakia (2019) Performance improvement of building heating, cooling and ventilation systems. PhD thesis, Murdoch University, 2019. https://researchrepository.murdoch.edu.au/id/eprint/54931/.

Full text
Abstract:
Heating, Ventilation, and Air Conditioning (HVAC) systems are responsible for a substantial share of the energy consumed in commercial buildings. Energy used by HVAC systems has increased over the years due to its broader application in response to the growing demand for better thermal comfort within the built environment. While existing case studies demonstrate the energy saving potential of efficient HVAC operation, there is a lack of studies quantifying energy savings from optimal operation of HVAC systems when considering indoor environmental conditions. This research aims to improve the performance of HVAC systems by optimizing its energy consumption without compromising indoor environmental conditions. The concept of maintaining indoor environmental conditions poses new challenges to the optimal operation of HVAC systems. While the primary objective of ensuring optimal operation is to minimize energy consumption, controlling the indoor environmental parameters, e.g., temperature, humidity, the level of carbon dioxide (CO2), and volatile organic compounds (VOCs) to remain within the acceptable range imposes excess energy use. These two conflicting objectives constitute a multi-variable constrained optimization problem that has been solved using a particle swarm algorithm (PSO). A real-time predictive model has been developed for individual indoor environmental parameters and HVAC energy consumption using Nonlinear Autoregressive Exogenous (NARX) neural network (NN). During model development, efforts have been paid to optimize the performance of the model in terms of complexity, prediction results, and ease of application to a real system. The proposed predictive models are then optimized to provide an optimal control setting for HVAC systems taking into account seasonal variations. An extensive case study analysis has been performed in a real commercial building to demonstrate the effectiveness of developing predictive models and evaluating the relevance of integrating indoor air quality (IAQ) within the optimization problem. Results show that it is possible to minimize 7.8% energy consumption from HVAC systems without compromising indoor environmental conditions. This study demonstrates that the proposed optimal control settings maintain the indoor environment within the acceptable limit of thermal comfort conditions (indoor air temperature between 19.60 to 28.20C and indoor air humidity between 30 to 65 %RH as per ASHRAE Standard 55-2017) and air quality (CO2 ≤ 800 ppm and VOC ≤ 1000ppm as per Australian Standard AS 1668.2 2016). The outcomes of this research will act as a guideline for energy management practices, not only for energy efficient building design and retrofitting but also for building energy performance analysis. This research provides insight into the aspects that affect the performance of predictive models for indoor temperature. The proposed feature selection approach establishes its efficacy to determine salient and independent input parameters without compromising prediction performance. The application of this approach will minimize the measurement and data storing cost of variables. Further, using fewer numbers of input parameters in the model will reduce the computational cost and time. Thus, the proposed model establishes its applicability in a real system for a more extended period of advanced prediction. In addition, the need to better account for building-occupant interactions as an important step to maintain a healthy indoor environment has been recognized through evaluating a real-life demand control (DCV) system. Lastly, the proposed optimization approach, where four defined environmental parameters are considered simultaneously presents a new outlook within the HVAC control system by eliminating the unseen interface between thermal comfort and IAQ. Overall, this unexploited potential to simultaneously improve the performance of HVAC systems and indoor environmental conditions drives the discussion on reconsidering the set-point configuration standards of HVAC in commercial buildings, either as part of individual building retrofit planning or as part of building regulatory applications.
APA, Harvard, Vancouver, ISO, and other styles
47

Egermaier, Václav. "Bytový dům." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265332.

Full text
Abstract:
This thesis summarizes my work on a new apartment building in Slovany, neighbourhood in Pilsen. My primary responsibility was to develop documentation for the project´s design and implementation. The building consists of four floors above ground, an underground floor and a flat roof. The building´s L-shaped plan, rebound 4th floor above ground and balconies lighten the mass of the building. The structural system of the building combined reinforced concrete system of the underground floor, column system of the 1st up to the 3rd floor above ground and wall system of the 4th floor above ground. The building is designed for six residential units with cellars, two garages, a relaxation room and a gym. The thesis includes the preparatory and study reports, architectural and construction solutions, and fire-safety building and construction site equipment solutions.
APA, Harvard, Vancouver, ISO, and other styles
48

Aoun, Nadine. "Modeling and flexible predictive control of buildings space-heating demand in district heating systems." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC104.

Full text
Abstract:
La gestion de la demande en chauffage des bâtiments raccordés à des réseaux de chaleur s'effectue classiquement au moyen d’une courbe de chauffe : lorsque la température extérieure chute, la température de départ de l’eau alimentant le circuit de chauffage interne est relevée. Ce mode de contrôle, appelé régulation par loi d’eau, présente des atouts en termes de simplicité et de robustesse, mais ne tient pas compte de l'inertie thermique du bâtiment et ne permet donc pas une modulation de sa demande. La modulation de la demande en chauffage se définit comme l'action de contrôle consistant à modifier de manière stratégique les conditions de confort thermique dans le cadre d’une optimisation énergétique et/ou économique. Il s’agit d’une brique essentielle du contrôle flexible qui envisage le déplacement des charges et l’effacement des pics pour une meilleure efficacité de production favorisant la pénétration des énergies renouvelables et de récupération.Ces travaux de thèse visent à développer une stratégie de contrôle prédictif et flexible de la demande en chauffage, applicable à grande échelle dans les réseaux de chaleur.Tout d'abord, un simulateur thermique dynamique de bâtiment résidentiel, équipé de radiateurs hydrauliques connectés à une sous-station de réseau de chaleur, est développé. Il permet de définir plusieurs cas d’études de bâtiments représentatifs du parc résidentiel français et constitue l’environnement expérimental virtuel de nos travaux de recherche. Ensuite, une méthodologie permettant d’obtenir un modèle orienté-contrôle et d’ordre réduit de bâtiment avec son système de chauffage est proposée. Elle commence par la définition de la structure du modèle en se basant sur des connaissances physiques, puis consiste en l'identification des paramètres par optimisation méta-heuristique à l'aide des données générées par le simulateur. L'approche d'identification paramétrique évalue la possibilité de réaliser cette tâche en ne s’appuyant que sur des données disponibles au niveau de la sous-station, notamment en s’interdisant d’utiliser des mesures de température intérieure au bâtiment, donnée à caractère personnel présumée indisponible à grande échelle pour des raisons techniques, économiques et juridiques. Enfin, la stratégie de contrôle prédictif est implémentée. Elle permet la planification de la température de départ de l'eau de chauffage en fonction des prévisions météorologiques et des prix de l’énergie. Le contrôleur flexible s’appuie sur un problème d’optimisation linéaire sous contraintes, selon le principe de l’horizon fuyant. Il incorpore les équations linéarisées du modèle d’ordre réduit et calcule le compromis optimal entre coûts énergétiques et inconfort thermique, le degré de flexibilité de la demande en chauffage étant défini par l’intermédiaire de paramètres de réglage dédiés<br>In District Heating Systems (DHSs), buildings Space-Heating (SH) demand management conventionally relies on a heating curve: when the outdoor temperature drops, the internal SH system supply water temperature is raised. This control mode, referred to as Weather-Compensation Control (WCC), offers widely recognized assets in terms of simplicity and robustness. However, WCC does not account for the building thermal inertia, and consequently, it does not allow modulation of its demand. SH demand modulation is the control action of strategically altering the indoor thermal comfort conditions within an energetic and/or economic optimization framework. It is a key measure in flexible demand control strategies, which seek loads shifting and peaks shaving to allow sustainable commitment of energy resources in favour of renewable power penetration and waste heat recovery.The work presented in this thesis aims at developing a flexible Model Predictive Control (MPC) strategy for SH demand, applicable at large scale in DHSs.Firstly, a thermal dynamic simulator of a residential building with a radiator SH circuit connected to a DHS substation is developed. It allows the definition of multiple case study buildings, well-representative of the french residential stock, and constitutes the virtual experimental environment for our research. Then, a methodology to obtain a control-oriented Reduced-Order Model (ROM) for the building and its SH system is proposed. It starts by defining the ROM structure based on physical knowledge, and proceeds to parameters identification by meta-heuristic optimization using data generated by the simulator. The parametric identification approach evaluates the possibility of carrying out this task by relying solely on data available at the substation level, refraining from using indoor temperature measurements, personal data assumed to be unavailable at large scale for technical, economic and legal reasons. Finally, MPC is implemented to schedule the SH supply water temperature as function of weather forecasts and energy price variations. The flexible controller is designed to solve a constrained linear optimization problem according to the receding horizon principle. It embeds the linearized ROM equations within the problem formulation and makes an optimal trade-off between energy consumption costs and thermal discomfort, the degree of flexibility to modulate SH demand being defined through dedicated tuning parameters
APA, Harvard, Vancouver, ISO, and other styles
49

Panovec, Jan. "Uplatnění energie obnovitelných zdrojů v budovách." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227660.

Full text
Abstract:
The aim of this diploma thesis is to understand the functioning of heating and cooling systems in an administrative building built in passive standard using a renewable energy source. The thesis includes theoretical findings of heat pumps and designing the heating systems. The experimental part contains an analysis of working of heating and cooling systems in selected rooms in assigned building, which includes an experimental measurement of selected quantities and a thermographic measurement. In the last part of the thesis a comparison of measured and simulated values using simulation software was done.
APA, Harvard, Vancouver, ISO, and other styles
50

Ahmad, Mardiana Idayu. "Novel heat recovery systems for building applications." Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/13852/.

Full text
Abstract:
The work presented in this thesis will explore the development of novel heat recovery systems coupled with low carbon technologies, and its integration to become one device with multifunction (building integrated heat recovery/cooling/air dehumidifier. In the first part of this thesis, an experimental performance of an individual heat recovery unit using Micro Heat and Mass Cycle Core (MHM3C) made of fibre papers with cross flow arrangement has been carried out. The unit was tested in an environmental control chamber to investigate the effects of various parameters on the performance of heat/energy recovery unit. The results showed that as the airflow rate and temperature change increase, the efficiency decreases whilst recovered energy increases. Integrating heat recovery system in energy-efficient system represents significant progress for building applications. As part of the research, the integration of heat recovery using a cross-flow fixed-plate with wind-catcher and cellulose fibre papers of evaporative cooling units have allowed part of the energy to be recovered with the efficiency of heat recovery unit ranged from 50 to 70%, cooling efficiency ranged from 31 to 54%. In another case, the integration of heat recovery system with building part so called building integrated heat recovery (BIHR) was explored using polycarbonate plate with counter-flow arrangement. It introduces a new approach to MVHR system, an established technology that uses a modified insulation panel, linking the inside and outside of a building, to recover heat while extracting waste air and supplying fresh air. In this configuration it is not only acts a heat recovery, but also as a contribution to building thermal insulation. From the experiments conducted, it was found that through an energy balance on the structure, the efficiency of BIHR prototype was found to be 50 to 61.1 % depending on the airflow rate. This efficiency increases to the highest value of 83.3% in a full-scale measurement on a real building in Ashford, Kent as the area of heat transfer surface increases. The increasing of heat surface area again proved a better performance in terms of efficiency as the results on another full scale measurement on a real house in Hastings, Sussex showed to be 86.2 to 91.7%. With the aiming to have a high performance system, a new improvement design of BIHR' corrugated polycarbonate channels with four airstreams has significant advantages over the previous prototype BIHR with two airstreams. The recovered heat is increased by more than 50%. With the issue of thermal comfort in hot region area and problems with conventional air conditioning system, a study of BIHR system with fibre wick structure for different hot (summer) air conditions using different working fluids was carried out. For the first case, water was used to give a direct evaporative cooling effect which is suitable to evaluate the system performance under hot and dry climatic conditions and the second case, potassium formate (HCOOK) solution was used as liquid desiccant for dehumidification under hot and humid climate conditions. By supplying the water over the fibre wick structure, with a constant airflow rate of 0.0157m3/s, the efficiency increased with increasing intake air temperature. The efficiency ranged from 20 to 42.4% corresponding to the minimum and maximum of intake air temperature of 25°C and 38.2°C, respectively. With the variation of airflow rate, the efficiency of the system was found to be 53.2 to 60%. In second case, the HCOOK solution with concentration of 68.6% has been selected as the desiccant and for a defined airflow rate of 0.0157m3/s, heat recovery efficiency of about 54%, a lower desiccant temperature of 20°C, with higher intake air temperature and relative humidity produces a better dehumidification performance with a good moisture absorption capacity. Therefore, this system is expected to be used efficiently in hot and humid regions. The research is novel in the following ways: • The development of multifunction device in one system; building integrated, heat recovery, cooling, desiccant dehumidification. • The design and development of BIHR is an advanced technology of building thermal insulation and heat recovery. The novel BIHR -fibre wick cooling/dehumidification system has the potential to compete with conventional air conditioning systems under conditions involving high temperature and high moisture load.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography