Academic literature on the topic 'Building Information Modeling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Building Information Modeling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Building Information Modeling"

1

Kumar, Bimal. "Building Information Modeling." International Journal of 3-D Information Modeling 1, no. 4 (October 2012): 1–7. http://dx.doi.org/10.4018/ij3dim.2012100101.

Full text
Abstract:
As is common knowledge now, in 2016 it will be mandatory to use BIM on all public sector projects. This has clearly spurned a lot of interest in BIM within the construction industry. However, the industry appears to be struggling to find its feet as to what it needs to have in place before BIM based projects become a reality. Uses of BIM technology and associated processes have been categorized into 3 levels and the 2016 requirement is for Level 2 implementations only. This paper outlines the requirements of level 2 BIM implementation and assesses the status of the industry as a whole as to its readiness. There are various pre-requisites that need to be in place, mostly in relation to process protocols and standards. This paper gives an understanding of the roadmap that needs to be traversed in order to be ready for BIM. This paper presents an outline of the UK Government’s requirements for 2016 before discussing and assessing the UK construction industry’s readiness. Finally, the paper gives an outline of what needs to be in place for the government’s ambitions to be achieved as well as a summary of some of the challenges along the way and possible ways of addressing some of them.
APA, Harvard, Vancouver, ISO, and other styles
2

Braila, Natalya, Nikolai Panchenko, and Vadim Kankhva. "Building Information Modeling for existing sustainable buildings." E3S Web of Conferences 244 (2021): 05024. http://dx.doi.org/10.1051/e3sconf/202124405024.

Full text
Abstract:
The article is devoted to evaluation of the possibility of usage BIM for existing buildings. While BIM processes are established for new buildings, the majority of existing buildings is not maintained, refurbished or deconstructed with BIM yet. However, it can play a significant role for better operation and maintenance and building facility management. Research in creating BIM for existing buildings has received growing attention in recent years. The objective of this paper is to explore potential opportunities and barriers in constructing BIM for existing buildings
APA, Harvard, Vancouver, ISO, and other styles
3

Hosseini, M. Reza, Ehsan Azari, Linda Tivendale, Saeed Banihashemi, and Nicholas Chileshe. "Building Information Modeling (BIM) in Iran: An Exploratory Study." Journal of Engineering, Project, and Production Management 6, no. 2 (July 31, 2016): 78–89. http://dx.doi.org/10.32738/jeppm.201607.0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Drozdova, G., S. Ershova, V. Nikolaeva, and L. Shilova. "Building information-energy modeling." Энергетическая политика, no. 12 (2021): 70–79. http://dx.doi.org/10.46920/2409-5516_2021_12166_70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Neuhäuser, Thomas, and Rüdiger Daub. "Building Information Modeling einführen/Implementing Building Information Modeling – Realizing the digital Factory." wt Werkstattstechnik online 113, no. 04 (2023): 126–34. http://dx.doi.org/10.37544/1436-4980-2023-04-26.

Full text
Abstract:
Das produzierende Gewerbe in Deutschland befindet sich in einem zunehmend turbulenten Umfeld. Eine entscheidende Rolle kommt dabei der Reaktions- und Anpassungsfähigkeit an neue Gegebenheiten zu. Um die notwendigen Anpassungen umzusetzen, steigt die Relevanz digitaler Methoden, Modelle und Werkzeuge in der Fabrikplanung signifikant an. Wie Building Information Modeling in die digitale Fabrik eingeordnet und in Unternehmen eingeführt werden kann, wird in diesem Beitrag vorgestellt. The environment of manufacturing companies in Germany is considered to be increasingly turbulent. The capicity of companies to react and adapt to new market conditions plays a decisive role. Increasingly relevant for implementing the necessary adjustments is the use of digital methods, models and tools in factory planning. This article shows how Building Information Modeling relates to the digital factory and can be implemented in companies.
APA, Harvard, Vancouver, ISO, and other styles
6

Dereje, Lami S., Gizachew M. Dabi, Tewodros T. Baza, and Marina I. Rynkovskaya. "Seismic retrofitting of buildings using Building Information Modeling." Structural Mechanics of Engineering Constructions and Buildings 17, no. 2 (December 15, 2021): 188–98. http://dx.doi.org/10.22363/1815-5235-2021-17-2-188-198.

Full text
Abstract:
Building Information Modeling (BIM), in the last couple of decades, has emerged as a technology that can be used in combination with different methodologies in the fields of architecture, engineering, and construction industry as a digital model to facilitate the planning and design process, construction and maintenance. Using the tools of BIM, the stakeholders generate the digital models that can help them to identify the problems. A total of 24 conference papers, referenced journal articles, and other academic sources were analyzed based on their relevance and research focus areas. This article provides a review on the integration of building information modeling with different methodologies for seismic retrofitting of both structural and non-structural components of buildings. Pre-seismic and post-seismic applications of Building Information Modeling with the integration of different methodologies have been reviewed overbuilding life cycles with a view of addressing the challenges and recommending the future research perspectives. In the end, by stating the possibilities of integration of BIM tools with different methodologies mainly using Performance-Based Earthquake Engineering as a paradigm which is fully probabilistic, this paper concludes that the implication of the Building Information Modeling with the integration of different methodologies isnt merely the inclusion of the certain conditions, but also of the numerical integration of all the possible uncertainties.
APA, Harvard, Vancouver, ISO, and other styles
7

Koptseva, N. P. "POSSIBILITIES OF BIM (BUILDING INFORMATION MODELING)- TECHNOLOGIES FOR INNOVATIVE DEVELOPMENT." Digitalization 2, no. 2 (June 30, 2021): 8–24. http://dx.doi.org/10.37993/2712-8733-2021-2-2-8-24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Volvach, А. "INFORMATION MODELING AS MEANS OF THE BUILDINGS AND STRUCTURES LIFE CYCLE MANAGING." Odes’kyi Politechnichnyi Universytet Pratsi 2, no. 61 (2020): 104–7. http://dx.doi.org/10.15276/opu.2.61.2020.12.

Full text
Abstract:
In the conditions of rapid scientific and technological progress, the technologies development pace of designing buildings and structures began to outstrip the practical application of them in the domestic market in comparison with the countries of the western world. Ukrainian building design tools have ceased to be internationally competitive. In these circumstances, it is especially important to introduce new and improve existing methods and tools for modeling buildings and structures. An important task for a modern designer is the ability to use a computer model at various stages of the building's life cycle, namely: design, construction, operation. To solve this problem, one can apply a new design method - Building Information Modeling (BIM). The purpose of this research is to explore the possibilities of using information modeling technologies for buildings as a means of their life cycle managing. The scientific and practical importance of the work stands in the possibility of introducing of information modeling technologies of buildings not only as a new design method, but also as a means of managing of the life cycle of the building at all its stages. The results of the research are based on the analysis of literary sources and practical experience of the authors. The article revealed the possibility usage of building information modeling as means of managing of the life cycle of building and structures. There is considered options and the main problems of information modeling application on different stages of buildings life cycle. In this paper, the main functions of building information modeling, which are necessary for managing of the life cycle of buildings and structures, have been analyzed and formulated. The practical importance of the results of this paper is in the presentation of the proposed functions and development prospects of building information modeling tools.
APA, Harvard, Vancouver, ISO, and other styles
9

Näser, P., and N. Wickenhagen. "Fabrik-Integration in das Building Information Modeling (BIM)/Factory integration into building information modeling." wt Werkstattstechnik online 108, no. 04 (2018): 245–50. http://dx.doi.org/10.37544/1436-4980-2018-04-51.

Full text
Abstract:
Die Anforderungen an den Planungsprozess, insbesondere hinsichtlich der Planungsqualität, nehmen bei steigendem Kostendruck immer mehr zu. Gleichzeitig verlaufen der Planungs- sowie der begleitende Kommunikationsprozess zwischen den unterschiedlichen beteiligten Gewerken zunehmend digital. Der Planungsansatz des Building Information Modeling (BIM) verfolgt eben diese Ziele, im Wesentlichen aber bei der Planung und dem Betrieb von Gebäuden. Im Beitrag wird untersucht, wie sich der BIM-Ansatz auf die Fabrikplanung übertragen lässt.   The requirements of the planning process, in particular with regard to the planning quality, rise more and more with increasing cost pressure. At the same time, the planning process and the accompanying communication process between the different work areas involved are increasingly digital. The planning approach of Building Information Modeling (BIM) pursues precisely these goals, but essentially in the planning and operation of buildings. The article examines how the BIM approach can be transferred to factory planning.
APA, Harvard, Vancouver, ISO, and other styles
10

Hulínová, Zdenka, and Jana Madová. "BUILDING INFORMATION MODELING AND OHAS." Czech Journal of Civil Engineering 1, no. 1 (June 30, 2015): 26–31. http://dx.doi.org/10.51704/cjce.2015.vol1.iss1.pp26-31.

Full text
Abstract:
Civil engineering is considered to be the area with the highest occurrence of occupational injuries. Workers perform plenty of activities that endanger their health and put them at risk of occupational injuries and diseases. There are many convincing proves that dangerous risk situations appear already in the early stages of project proposals. On the basis of this fact we can estimate that one of the most effective methods of preventing and reducing occupational injuries is elimination of potential risk at the very beginning, i.e. already in the architectural design. Information models BIM enable us to simulate the overall situation of the project both structurally and visually. Thanks to this fact we can prevent multiple problems occurring not only during the realisation phase, but during the usage of buildings as well.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Building Information Modeling"

1

Caldeira, Beatriz Martins de Jesus Machado. "Building information modeling." Master's thesis, Universidade de Lisboa, Faculdade de Arquitetura, 2018. http://hdl.handle.net/10400.5/18054.

Full text
Abstract:
Dissertação de Mestrado Integrado em Arquitetura, com a especialização em Arquitetura apresentada na Faculdade de Arquitetura da Universidade de Lisboa para obtenção do grau de Mestre.
O Building Information Modeling (BIM) é considerado como o mais recente paradigma a adotar no exercício da Arquitetura, Engenharias e Construção (AEC) e Design. Um método de trabalho destacado como a aptidão a ter no futuro do setor mundial, onde todas as suas fases e dimensões validam o espírito de colaboração, partilha de informação, interajuda e otimização. Sendo já aplicado em diversos países como cariz obrigatório na profissão, desde 2016 como os Estados Unidos, Reino Unido e Singapura, a visão mundial a cerca desta ferramenta no ensino é ainda bastante elementar comparativamente com as suas imensas potencialidades, principalmente em Portugal. Ciente de que um profissional adquire conhecimentos e competências fulcrais à profissão numa fase anterior a este estatuto é de interesse geral que as habilitações que se adquirem com a metodologia BIM sejam ensinadas no curso de Arquitetura. Porém tal importância não se verifica, tendo como resultado um curso desajustado das novas necessidades da profissão. Perante o problema apresentado surgiu a motivação para o desenvolvimento de uma dissertação que apostasse numa proposta de um modelo curricular para o curso de Mestrado Integrado em Arquitetura que incorpore o Building Information Modeling.
ABSTRACT: The Building Information Modeling (BIM) it’s considered as the latest paradigm to be adopted in the exercise of Architecture, Engeneering, and Construction (AEC) and Design. A working method model highlighted as the ability to have in the future of the global sector, where all of its fases and dimensions validate the spirit of colaboration, sharing of information, mutual aid and optimization. Having already been aplied in several countries as required in the profession, since 2016 like the United States, United Kingdom and Singapore, the world vision about this tool in education it’s rader elementary compared to its immense potentialities, mainly in Portugal. Aware that a professional acquires knowledge and core competencies at a stage prior to this status is of general interest that the qualifications that are acquired with the BIM methodology are taught in the Architecture course. But such importance is not verified, resulting in a misfiting course face of the new needs of the profession. Faced with the presented problem, the motivation rised for the development of a dissertation that focused on a proposal of a curricular model for the Mestrado Integrado em Arquitetura course that incorporate Building Information Modeling.
N/A
APA, Harvard, Vancouver, ISO, and other styles
2

McFarland, Jessica E. "Building information modeling for MEP." Manhattan, Kan. : Kansas State University, 2007. http://hdl.handle.net/2097/518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

wang, menglin. "Building Information Modeling (BIM): Site-Building Interoperability Methods." Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/1026.

Full text
Abstract:
"Nowadays, many companies in the Architecture/Engineering/Construction (AEC) industry are using Building Information Modeling (BIM) in achieving a faster, sustainable and more economic project. Among the new developed concepts and BIM applications, two of the concepts most frequently used with the support of BIM technology in the planning, organization and scheduling of projects are 4D and 5D in which a 3D model is tied to its time execution (4D) at any point in time and its corresponding cost (5D). However, most of these applications concentrate on modeling the building but it does not include a corresponding modeling of the site in which the building is located. To date, there are few studies and systematic implementation of the site and the building integrated into one BIM model. This site-building integrated model can also be conceptualized as ¡°6D BIM¡± model. The benefit of integrating the site and building together into one model is that the building is no longer treated in isolation of its surround site but incorporates extremely helpful short-term and long-term information for the owner, designer, and builder regarding site topography, landscaping, access roads, ground conditions and the location of site utilities. Major existing research and technology issues that are preventing this site-building integration deal with functionality and interoperability of the BIM software, different orientation and coordination of building model and site model. The objectives of this thesis are to explore current organizational and technological issues preventing this integration, to investigate a feasible method to create a site-linked BIM model, and to discuss the benefits and limitations of bringing BIM concept to the site conditions. The research has been conducted by an extensive review on the literature related to the topic of interest published primarily by AEC. A review on current applications of Geographic Information Systems (GIS) has also been included because of the wider context provided by this technology to the specific topic of this research. Related BIM software developed by three different vendors ¡ªhas been discussed and compared to determine the level of feasibility and operational features of technological support necessary to implement the site-linked BIM model. A case study based on the design and construction of the WPI Recreational & Sports Center, currently under construction, was developed to explore and understand the details that are involved in creating a new site model and to link it with the existing 3D building model. What has been learned from the analysis of this case study is presented, discussed and analyzed in terms of benefits and limitations. Recommendations for future extensions from both the research aspect and the technology support aspect finally presented. These include the creation of 3D BIM Campus Map, which is one site model with several building models placed on it to facilitate future planning of new building and/or maintenance and operation of the current buildings and campus infrastructure.   "
APA, Harvard, Vancouver, ISO, and other styles
4

Martinini, Elena. "Building Information Modeling: analisi e utilizzo." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8272/.

Full text
Abstract:
Dalla raffigurazione artistica fino alla modellazione digitale, passando per il disegno tecnico, la rappresentazione del progetto d’architettura ha conosciuto nel tempo evoluzioni significative che solo di recente hanno raggiunto l’apice nell’utilizzo di modelli cognitivi in grado di collezionare ed organizzare il patrimonio di informazioni che gravitano attorno all’intero processo edilizio. L’impiego sempre più diffuso dello strumento informatico, insieme al coordinamento delle specializzazioni nelle molte discipline coinvolte nel progetto, ha favorito negli ultimi anni l’adozione del Building Information Modeling un processo che permette di rivoluzionare il mondo delle costruzioni, coprendo molteplici aspetti del ciclo di vita per un manufatto edilizio. Questa Tesi intende presentare in maniera specifica le tappe che hanno consentito il formarsi del BIM. La migliore capacità di gestione, un linguaggio comune tra i progettisti, un’ottimizzazione di risorse e costi, unito ad un controllo convincente ed accurato delle fasi di lavoro, sono alcune delle potenzialità non ancora completamente espresse dal Building Information Modeling che è destinato a divenire una consapevolezza strategica nel bagaglio culturale del professionista contemporaneo.
APA, Harvard, Vancouver, ISO, and other styles
5

Barbosa, Margarida de Carvalho Jerónimo. "As-built building information modeling (BIM) workflows." Doctoral thesis, Universidade de Lisboa, Faculdade de Arquitetura, 2018. http://hdl.handle.net/10400.5/16380.

Full text
Abstract:
Tese de Doutoramento em Arquitetura, com a especialização em Conservação e Restauro apresentada na Faculdade de Arquitetura da Universidade de Lisboa para obtenção do grau de Doutor.
As metodologias associadas ao software BIM (Building Information Modeling) representam nos dias de hoje um dos sistemas integrados mais utilizado para a construção de novos edifícios. Ao usar BIM no desenvolvimento de projetos, a colaboração entre os diferentes intervenientes num projeto de arquitetura, engenharia e construção, melhora de um modo muito significativo. Esta tecnologia também pode ser aplicada para intervenções em edifícios existentes. Na presente tese pretende-se melhorar os processos de registo, documentação e gestão da informação, recorrendo a ferramentas BIM para estabelecer um conjunto de diretrizes de fluxo de trabalho, para modelar de forma eficiente as estruturas existentes a partir de nuvens de pontos, complementados com outros métodos apropriados. Há vários desafios que impedem a adoção do software BIM para o planeamento de intervenções em edifícios existentes. Volk et al. (2014) indica que os principais obstáculos de adoção BIM são o esforço de modelação/conversão dos elementos do edifício captados em objetos BIM, a dificuldade em actualizar informação em BIM e as dificuldades em lidar com as incertezas associadas a dados, objetos e relações que ocorrem em edifícios existentes. A partir desta análise, foram desenvolvidas algumas diretrizes de fluxo de trabalho BIM para modelação de edifícios existentes. As propostas indicadas para as diretrizes BIM em edifícios existentes, incluem tolerâncias e standards para modelar elementos de edifícios existentes. Tal metodologia permite que as partes interessadas tenham um entendimento e um acordo sobre o que é suposto ser modelado. Na presente tese, foi investigado um conjunto de tópicos de pesquisa que foram formuladas e colocadas, enquadrando os diferentes obstáculos e direcionando o foco de pesquisa segundo quatro vectores fundamentais: 1. Os diferentes tipos de dados de um edifício que podem ser adquiridos a partir de nuvens de pontos; 2. Os diferentes tipos de análise de edifícios; 3. A utilização de standards e BIM para edifícios existentes; 4. Fluxos de trabalho BIM para edifícios existentes e diretrizes para ateliers de arquitectura. A partir da pesquisa efetuada, pode-se concluir que é há necessidade de uma melhor utilização da informação na tomada de decisão no âmbito de um projeto de intervenção arquitetónica. Diferentes tipos de dados, não apenas geométricos, são necessários como base para a análise dos edifícios. Os dados não geométricos podem referir-se a características físicas do tecido construído, tais como materiais, aparência e condição. Além disso, o desempenho ambiental, estrutural e mecânico de um edifício, bem como valores culturais, históricos e arquitetónicos, essenciais para a compreensão do seu estado atual. Estas informações são fundamentais para uma análise mais profunda que permita a compreensão das ações de intervenção que são necessárias no edifício. Através de tecnologias Fotogrametria (ADP) e Laser Scanning (TLS), pode ser gerada informação precisa e actual. O produto final da ADP e TLS são nuvens de pontos, que podem ser usadas de forma complementar. A combinação destas técnicas com o levantamento tradicional Robotic Total Station (RTS) fornece uma base de dados exata que, juntamente com outras informações existentes, permitem o planeamento adequado da intervenção. Os problemas de utilização de BIM para intervenção em edifícios existentes referem-se principalmente à análise e criação de geometria do edifício, o que geralmente é uma etapa prévia para a conexão de informação não-geométrica de edifícios. Por esta razão, a presente tese centra-se principalmente na busca de diretrizes para diminuir a dificuldade em criar os elementos necessários para o BIMs. Para tratar dados incertos e pouco claros ou informações semânticas não visíveis, pode-se complementar os dados originais com informação adicional. Os fluxos de trabalho apresentados na presente tese focam-se principalmente na falta de informação visível. No caso de projetos de remodelação, a informação não visível pode ser adquirida de forma limitada através de levantamentos ADP ou TLS após a demolição de alguns elementos e/ou camadas de parede. Tal metodologia permite um melhor entendimento das camadas de materiais não visíveis dos elementos do edifício, quando a intervenção é uma demolição parcial. Este processo é útil apenas se uma parte do material do elemento é removida e não pode ser aplicada a elementos não intervencionados. O tratamento da informação em falta pode ser feito através da integração de diferentes tipos de dados com diferentes origens. Devem ser implementados os fluxos de trabalho para a integração da informação. Diferentes fluxos de trabalho podem criar informação em falta, usada como complemento ou como base para a tomada de decisão quando não há dados disponíveis. Relativamente à adição de dados em falta através da geração de nuvem de pontos, os casos de estudo destacam a importância de planear o levantamento, fazendo com que todas as partes compreendam as necessidades associadas ao projeto. Além da precisão, o nível de tolerância de interpretação e modelação, requeridos pelo projeto, também devem ser acordados e entendidos. Nem todas as ferramentas e métodos de pesquisa são adequados para todos os edifícios. A escala, os materiais e a acessibilidade do edifício desempenham um papel importante no planeamento do levantamento. Para lidar com o elevado esforço de modelação, é necessário entender os fluxos de trabalho necessários para analisar a geometria dos elementos do edifício. Os BIMs construídos são normalmente gerados manualmente através de desenhos CAD e/ou nuvens de pontos. Estes são usados como base geométrica a partir da qual a informação é extraída. A informação utilizada para planear a intervenção do edifício deve ser verificada, confirmando se é uma representação do estado actual do edifício. As técnicas de levantamento 3D para capturar a condição atual do edifício devem ser integradas no fluxo de trabalho BIM, construído para capturar os dados do edifício sobre os quais serão feitas as decisões de intervenção. O resultado destas técnicas deve ser integrado com diferentes tipos de dados para fornecer uma base mais precisa e completa. O atelier de arquitetura deve estar habilitado com competências técnicas adequadas para saber o que pedir e o que utilizar da forma mais adequada. Os requisitos de modelação devem concentrar-se principalmente no conteúdo deste processo, ou seja, o que modelar, como desenvolver os elementos no modelo, quais as informações que o modelo deve conter e como deve ocorrer a troca de informações no modelo. O levantamento das nuvens de pontos deve ser efectuado após ter sido estipulado o objetivo do projeto, standards, tolerâncias e tipo de conteúdo na modelação. As tolerâncias e normas de modelação são diferentes entre empresas e países. Independentemente destas diferenças, os documentos standard têm como objetivo produzir e receber informação num formato de dados consistente e em fluxos de trabalho de troca eficiente entre os diferentes intervenientes do projeto. O pensamento crítico do fluxo de trabalho de modelação e a comunicação e acordo entre todas os intervenientes são os principais objetivos das diretrizes apresentadas nesta tese. O estabelecimento e o acordo de tolerâncias de modelação e o nível de desenvolvimento e detalhes presentes nas BIMs, entre as diferentes partes envolvidas no projeto, são mais importantes do que as definições existentes atualmente e que são utilizadas pela indústria da AEC. As ferramentas automáticas ou semi-automáticas para extração da forma geométrica, eliminação ou redução de tarefas repetitivas durante o desenvolvimento de BIMs e a análise de condições de ambiente ou de cenários, são também um processo de diminuição do esforço de modelação. Uma das razões que justifica a necessidade de standards é a estrutura e a melhoria da colaboração, não só para os intervenientes fora da empresa, mas também dentro dos ateliers de arquitetura. Os dados e standards de fluxo de trabalho são difíceis de implementar diariamente de forma eficiente, resultando muitas vezes em dados e fluxos de trabalho confusos. Quando tal situação ocorre, a qualidade dos resultados do projeto reduz-se e pode ficar comprometida. As normas aplicadas aos BIMs construídos, exatamente como as normas aplicadas aos BIMs para edifícios novos, contribuem para a criação de informação credível e útil. Para atualizar um BIMs durante o ciclo de vida de um edifício,é necessário adquirir a informação sobre o estado actual do edifício. A monitorização de dados pode ser composta por fotografias, PCM, dados de sensores, ou dados resultantes da comparação de PCM e BIMs e podem representar uma maneira de atualizar BIMs existentes. Isto permite adicionar continuamente informações, documentando a evolução e a história da construção e possibilita avaliar possíveis intervenções de prevenção para a sua valorização. BIM não é geralmente usado para documentar edifícios existentes ou intervenções em edifícios existentes. No presente trabalho propõe-se melhorar tal situação usando standards e/ou diretrizes BIM e apresentar uma visão inicial e geral dos componentes que devem ser incluídos em tais standards e/ou linhas de orientação.
ABSTRACT: Building information modeling (BIM) is most often used for the construction of new buildings. By using BIM in such projects, collaboration among stakeholders in an architecture, engineering and construction project is improved. This scenario might also be targeted for interventions in existing buildings. This thesis intends to enhance processes of recording, documenting and managing information by establishing a set of workflow guidelines to efficiently model existing structures with BIM tools from point cloud data, complemented with any other appropriate methods. There are several challenges hampering BIM software adoption for planning interventions in existing buildings. Volk et al. (2014) outlines that the as-built BIM adoption main obstacles are: the required modeling/conversion effort from captured building data into semantic BIM objects; the difficulty in maintaining information in a BIM; and the difficulties in handling uncertain data, objects, and relations occurring in existing buildings. From this analysis, it was developped a case for devising BIM workflow guidelines for modeling existing buildings. The proposed content for BIM guidelines includes tolerances and standards for modeling existing building elements. This allows stakeholders to have a common understanding and agreement of what is supposed to be modeled and exchanged.In this thesis, the authors investigate a set of research questions that were formed and posed, framing obstacles and directing the research focus in four parts: 1. the different kind of building data acquired; 2. the different kind of building data analysis processes; 3. the use of standards and as-built BIM and; 4. as-built BIM workflows and guidelines for architectural offices. From this research, the authors can conclude that there is a need for better use of documentation in which architectural intervention project decisions are made. Different kind of data, not just geometric, is needed as a basis for the analysis of the current building state. Non-geometric information can refer to physical characteristics of the built fabric, such as materials, appearance and condition. Furthermore environmental, structural and mechanical building performance, as well as cultural, historical and architectural values, style and age are vital to the understanding of the current state of the building. These information is necessary for further analysis allowing the understanding of the necessary actions to intervene. Accurate and up to date information information can be generated through ADP and TLS surveys. The final product of ADP and TLS are the point clouds, which can be used to complement each other. The combination of these techniques with traditional RTS survey provide an accurate and up to date base that, along with other existing information, allow the planning of building interventions. As-built BIM adoption problems refer mainly to the analysis and generation of building geometry, which usually is a previous step to the link of non-geometric building information. For this reason the present thesis focus mainly in finding guidelines to decrease the difficulty in generating the as-built-BIMs elements. To handle uncertain data and unclear or hidden semantic information, one can complement the original data with additional missing information. The workflows in the present thesis address mainly the missing visible information. In the case of refurbishment projects the hidden information can be acquired to some extend with ADP or TLS surveys after demolition of some elements and wall layers. This allows a better understanding of the non visible materials layers of a building element whenever it is a partial demolition. This process is only useful if a part of the element material is removed, it can not be applied to the non intervened elements. The handling of visible missing data, objects and relations can be done by integrating different kind of data from different kind of sources. Workflows to connect them in a more integrated way should be implemented. Different workflows can create additional missing information, used to complement or as a base for decision making when no data is available. Relating to adding missing data through point cloud data generation the study cases outlined the importance of planning the survey, with all parts understanding what the project needs are. In addition to accuracy, the level of interpretation and modelling tolerances, required by the project, must also be agreed and understood. Not all survey tools and methods are suitable for all buildings: the scale, materials and accessibility of building play a major role in the survey planning. To handle the high modeling/conversion effort one has to understand the current workflows to analyse building geometry. As-built BIMs are majorly manually generated through CAD drawings and/or PCM data. These are used as a geometric basis input from where information is extracted. The information used to plan the building intervention should be checked, confirming it is a representation of the as-is state of the building. The 3D surveys techniques to capture the as-is state of the building should be integrated in the as-built BIM workflow to capture the building data in which intervention decisions are made. The output of these techniques should be integrated with different kind of data to provide the most accurate and complete basis. The architectural company should have technical skills to know what to ask for and to use it appropriately. Modeling requirements should focus primarily on the content of this process: what to model, how to develop the elements in the model, what information should the model contain, and how should information in the model be exchanged. The point clouds survey should be done after stipulating the project goal, standards, tolerances and modeling content. Tolerances and modeling guidelines change across companies and countries. Regardless of these differences the standards documents have the purpose of producing and receiving information in a consistent data format, in efficient exchange workflows between project stakeholders. The critical thinking of the modeling workflow and, the communication and agreement between all parts involved in the project, is the prime product of this thesis guidelines. The establishment and agreement of modeling tolerances and the level of development and detail present in the BIMs, between the different parts involved on the project, is more important than which of the existing definitions currently in use by the AEC industry is chosen. Automated or semi-automated tools for elements shape extraction, elimination or reduction of repetitive tasks during the BIMs development and, analysis of environment or scenario conditions are also a way of decreasing the modeling effort. One of the reasons why standards are needed is the structure and improvement of the collaboration not only with outside parts but also inside architectural offices. Data and workflow standards are very hard to implement daily, in a practical way, resulting in confusing data and workflows. These reduce the quality of communication and project outputs. As-built BIM standards, exactly like BIM standards, contribute to the creation of reliable and useful information. To update a BIMs during the building life-cycle, one needs to acquire the as-is building state information. Monitoring data, whether consisted by photos, PCM, sensor data, or data resulting from the comparison of PCM and BIMs can be a way of updating existing BIMs. It allows adding continuously information, documenting the building evolution and story, and evaluating possible prevention interventions for its enhancement. BIM environments are not often used to document existing buildings or interventions in existing buildings. The authors propose to improve the situation by using BIM standards and/or guidelines, and the authors give an initial overview of components that should be included in such a standard and/or guideline.
N/A
APA, Harvard, Vancouver, ISO, and other styles
6

Vogt, Blythe A. "Elating building information modeling & architectural engineering curricula." Manhattan, Kan. : Kansas State University, 2010. http://hdl.handle.net/2097/3884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Eriksson, Markus. "Building Information Modeling Som ett hjälpmedel i byggnadsprojekt." Thesis, Högskolan i Borås, Institutionen Ingenjörshögskolan, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-20218.

Full text
Abstract:
Just nu pågår stora förändringar i byggbranschen. Kostnaderna för att bygga är idag för stora och branschen letar efter nya metoder för att effektivisera byggandet och minska kostnaderna. Genom att använda sig av den relativt nya Building Information Modeling-tekniken (BIM) öppnar sig flera nya dörrar för vad som är möjligt.BIM är kort sagt en digital modell där all information för hur ett byggprojekts utformning, konstruktion, utrustning och förvaltning ska hanteras. En gemensam modell skapas som arkitekten, byggnadskonstruktörer, vvs-konstruktörer, el-konstruktörer och förvaltare har tillgång till. Ändringar som görs i modellen blir direkt synliga för de andra parterna.Den gemensamma modellen ligger lagrad på en gemensam server för att underlätta kommunikationen.I produktionen har man mycket att vinna av BIM. Först och främst upptäcks många brister och planeringsfel innan de ens kommer ut i produktionen där det blir betydligt dyrare att rätta till. Dessutom följer vid användadet av BIM också en del verktyg som kan användas för planering i produktionen. Två av dessa är kollisionskontroll och 4D-simulering, där tidplanen kopplas samman med ritningen för att simulera fortskridandet av ett byggprojekt.Dessa två verktyg kommer som en biprodukt när BIM nyttjas i ett byggnadsprojekt. I denna rapport presenteras dessa verktyg och vilka fördelar dessa ger i produktionenSyftet med examensarbetet har varit att få en fördjupad kunskap av vad BIM är, både i teorin och praktiskt. Men också att hitta fördelar som Skanska kan nyttja som en följd av användandet av BIM.
APA, Harvard, Vancouver, ISO, and other styles
8

Avila, Mary-Alice. "Programming and Conceptual Design Using Building Information Modeling." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/38.

Full text
Abstract:
This thesis explores the benefits of using Building Information Modeling (BIM) during the programming and conceptual design phase of a project. The research was based on a case study undertaken dealing with the decisions and assumptions made during the design phases of the Center for Science at Cal Poly San Luis Obispo. The project team used a traditional approach to project plan development. The finding of this study was that the project process would have greatly benefited utilizing BIM tools and a collaborative team approach in the programming and conceptual design phase. Because decisions made early in the project have enormous implications to aesthetics and cost, the increase in analysis of design options afforded by the use of BIM tools would have minimized inaccurate, incomplete and unreliable information, and allowed the design team to work in a more efficient, collaborative manner transmitting through all phases of the project.
APA, Harvard, Vancouver, ISO, and other styles
9

VITE, CLARA. "Optimization for Sustainable Design through Building Information Modeling." Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/1005526.

Full text
Abstract:
More than thirty years after the definition of the concept of sustainable development, the European Union's Agenda 2030 renews its commitment to protect the Planet and to support the needs of present and future generations. All sectors of human activity have to make their contribution to this significant challenge of our time. Therefore, the construction sector can also make an essential contribution in terms of its impact. In this context, designers are called upon to modify their actions in order to take into account the environmental, social, and economic impacts during the entire life cycle of construction. Therefore, a substantial transformation in the designer's "mentality" is necessary. The digital revolution could be a suitable opportunity for a profound renewal oriented towards sustainability. The new digital technologies and the increased computing power are useful to manage the increasing complexity in current projects and to support collaboration between the many experts involved. The thesis aim is to analyse the current state and identify the signs of change and the cues to imagine possible virtuous complicity between sustainable development goals and the potential of the digital revolution, supported by the operational features of optimization methods. The further intent is to translate the synergy between the three key topics - sustainability, digitization, and optimization - through an operational strategy that can be a concrete demonstration of what is proposed and offered to designers.
APA, Harvard, Vancouver, ISO, and other styles
10

Ezekwem, Kenechukwu Chigozie. "Environmental Information Modeling: An Integration of Building Information Modeling and Geographic Information Systems for Lean and Green Developments." Thesis, North Dakota State University, 2016. https://hdl.handle.net/10365/28195.

Full text
Abstract:
Building Information Modeling (BIM), used by many for building design and construction, and Geographic Information GIS System (GIS), used for city planning, contain large spatial and attribute data which could be used for Lean and green city planning and development. However, there exist a systematic gap and interoperability challenge between BIM and GIS that creates a disjointed workflow between city planning data in GIS and building data in BIM. This hinders the seamless analysis of data between BIM and GIS for lean and green developments. This study targets the creation of a system which integrates BIM and GIS system data. The methods involve the establishment of a novel Environmental Information Modeling (EIM) framework to bridge the gap using Microsoft Visual C#. The application of this framework shows the potential of this concept. The research results provide an opportunity for more analysis for lean and green construction planning, development and management.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Building Information Modeling"

1

Borrmann, André, Markus König, Christian Koch, and Jakob Beetz, eds. Building Information Modeling. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-33361-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kensek, Karen M., and Douglas Noble, eds. Building Information Modeling. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119174752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Borrmann, André, Markus König, Christian Koch, and Jakob Beetz, eds. Building Information Modeling. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92862-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Borrmann, André, Markus König, Christian Koch, and Jakob Beetz, eds. Building Information Modeling. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-05606-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, Dana K., and Michael Tardiff. Building Information Modeling. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470432846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kymmell, Willem. Building Information Modeling. New York: McGraw-Hill, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

McCuen, Tamera L., and Dominique M. Pittenger. Building Information Modeling for Airports. Washington, D.C.: Transportation Research Board, 2016. http://dx.doi.org/10.17226/23517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Özener, Ozan Önder, Salih Ofluoglu, and Umit Isikdag, eds. Advances in Building Information Modeling. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16895-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Spengler, Arnim J., and Jacqueline Peter. Die Methode Building Information Modeling. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-30235-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ofluoglu, Salih, Ozan Onder Ozener, and Umit Isikdag, eds. Advances in Building Information Modeling. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42852-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Building Information Modeling"

1

Sabol, Louise A. "Building Information Modeling." In Technology for Facility Managers, 21–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119572626.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

van Treeck, C. "Building Information Modeling." In Gebäude.Technik.Digital., 7–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-52825-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schlundt, Maik, Michael May, and Sven Reichardt. "Building Information Modeling." In CAFM-Handbuch, 237–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30502-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Borrmann, André, and Markus König. "Building Information Modeling." In Wendehorst Bautechnische Zahlentafeln, 1475–85. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-17936-6_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bender, Thomas, Michael Härtig, Erik Jaspers, Markus Krämer, Michael May, Maik Schlundt, and Nino Turianskyj. "Building Information Modeling." In CAFM-Handbuch, 295–324. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-21357-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Borrmann, André, and Markus König. "Building Information Modeling." In Wendehorst Bautechnische Zahlentafeln, 1643–52. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-32218-2_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bartels, Niels, Jannick Höper, Sebastian Theißen, and Reinhard Wimmer. "Building Information Modeling." In Anwendung der BIM-Methode im nachhaltigen Bauen, 21–29. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-36502-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Melzner, Jürgen, and Martin Ferger. "Building Information Modeling." In Zahlentafeln für den Baubetrieb, 1051–73. Wiesbaden: Springer Fachmedien Wiesbaden, 2024. http://dx.doi.org/10.1007/978-3-658-41330-9_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Leimböck, Egon, Andreas Iding, and Heiko Meinen. "Building Information Modeling." In Bauwirtschaft, 671–89. Wiesbaden: Springer Fachmedien Wiesbaden, 2024. http://dx.doi.org/10.1007/978-3-658-40348-5_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Koch, Christian, and Markus König. "Data Modeling." In Building Information Modeling, 43–62. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92862-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Building Information Modeling"

1

Zeiss, Geoff. "Building information modeling." In the 2nd International Conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1999320.1999394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Campbell, Dace A. "Building information modeling." In the twelfth international conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1229390.1229422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Ruilin, Dongfeng Jia, Weiping Zhang, and Yu Tong. "3D Reverse Geometrical Modeling and Building Information Modeling of Historic Buildings." In 37th CIB W78 Conference 2020. Eduardo Toledo Santos and Sergio Scheer, 2020. http://dx.doi.org/10.46421/2706-6568.37.2020.paper019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gultekin-Bicer, Pelin, and Sihyun Kim. "Towards Building Geotechnical Information Modeling." In Construction Research Congress 2018. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784481295.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tian, Chi, Yunfeng Chen, Jiansong Zhang, and Robert F. Cox. "Global Building Information Modeling Maturity." In International Conference on Construction and Real Estate Management 2019. Reston, VA: American Society of Civil Engineers, 2019. http://dx.doi.org/10.1061/9780784482308.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Karshenas, Saeed, and Mehrdad Niknam. "Ontology-Based Building Information Modeling." In ASCE International Workshop on Computing in Civil Engineering. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784413029.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Suliyanti, Widya Nita, and Riri Fitri Sari. "Blockchain-based Building Information Modeling." In 2019 2nd International Conference on Applied Engineering (ICAE). IEEE, 2019. http://dx.doi.org/10.1109/icae47758.2019.9221744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vries, B. de, E. Allameh, and M. Heidari Jozam. "Smart-BIM (Building Information Modeling)." In 29th International Symposium on Automation and Robotics in Construction; Held jointly with the 8th World Conference of the International Society for Gerontechnology. International Association for Automation and Robotics in Construction (IAARC), 2012. http://dx.doi.org/10.22260/isarc2012/0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Sha. "Sustainable Building Design Optimization Using Building Information Modeling." In ICCREM 2015. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479377.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tse, Kenny T. C., Andy K. D. Wong, and Francis K. W. Wong. "Modeling Objects and Interfaces in Building Information Modeling." In International Conference on Computing in Civil Engineering 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40794(179)40.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Building Information Modeling"

1

Stumpf, Annette L., Hyunjoo Kim, and Elisabeth M. Jenicek. Early Design Energy Analysis Using Building Information Modeling Technology. Fort Belvoir, VA: Defense Technical Information Center, November 2011. http://dx.doi.org/10.21236/ada552789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guo, Xingzhou, Chi Tian, Jinwu Xiao, Yunfeng Chen, and Jiansong Zhang. Life Cycle Integration of Building Information Modeling in Infrastructure Projects. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317356.

Full text
Abstract:
Building Information Modeling (BIM) can provide solutions to many challenges of asset management, such as missing data, incompatible software, and an unclear business process. However, current implementation of BIM in infrastructure projects has only considers limited factors, such as technology application and digital information delivery, while issues of system compatibility and information needs are still missing. Different aspects of a business are interdependent and an incompatible development of various factors might result in different levels of BIM implementation or even project failure. Comprehensive research is needed to explore the key factors and challenges of BIM implementation in infrastructure projects. This study conducted interviews and surveys with key stakeholders of infrastructure projects to explore the challenges and potential solutions of BIM implementation. Interviews were conducted with 37 professionals and surveys were conducted with 102 professional stakeholders, including owners, designers, contractors, and software vendors. Four main factors, challenges, and potential solutions were identified from content analysis of the interviews and further validated by the surveys. These factors include process factor (when), technology factor (how), people factor (who), and information factor (what). Corresponding solutions are proposed to refine the current workflow and practices.
APA, Harvard, Vancouver, ISO, and other styles
3

Carstafhnur, Sirobe D., and DeAnna L. Dixon. Building Information Modeling (BIM) Primer. Report 1: Facility Life-Cycle Process and Technology Innovation. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada571762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brucker, Beth A., E. W. East, Lance R. Marrano, Michael P. Case, William D. Goran, Allan Carroll, and Gus DeJesus. Emerging Challenges and Opportunities in Building Information Modeling for the US Army Installation Management Command. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada570386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brucker, Beth A., Michael P. Case, E. W. East, Brian K. Huston, Susan D. Nachtigall, Johnette C. Shockley, Steve C. Spangler, and James T. Wilson. Building Information Modeling (BIM): A Road Map for Implementation to Support MILCON Transformation and Civil Works Projects within the U.S. Army Corps of Engineers. Fort Belvoir, VA: Defense Technical Information Center, October 2006. http://dx.doi.org/10.21236/ada480201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bjella, Kevin, Yuri Shur, Misha Kanevskiy, Paul Duvoy, Bruno Grunau, John Best, Stephen Bourne, and Rosa Affleck. Improving design methodologies and assessment tools for building on permafrost in a warming climate. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38879.

Full text
Abstract:
The U.S. Department of Defense (DoD) operates numerous Arctic and Subarctic installations, including Alaska. Changes to permafrost can threaten critical built infrastructure. It is critical to accurately characterize and compare site conditions in permafrost regions to enable the efficient, cost-effective design and construction of an infrastructure well suited to the permafrost environment and that meets DoD requirements. This report describes three research efforts to establish (1) field investigation approaches for ground ice detection and delineation, (2) methods and modeling for early warning detection of thawing permafrost under infrastructure, and (3) an outline of a decision support system that determines the most applicable foundation design for warming and degrading permafrost. Outcomes of these interrelated efforts address needs to improve construction of DoD mission critical infrastructure on Arctic and Subarctic permafrost terrains. Field investigation processes used systematic methodologies including borehole data and geophysical measurements to effectively characterize subsurface permafrost information. The Permafrost Foundation Decision Support System (PFFDSS) tool implements and logically links field survey information and foundation type assessments. The current version of PFFDSS is designed to be accessible to design-engineers of a broad range of experience, that will reduce the effort and cost, and improve the effectiveness of site assessment.
APA, Harvard, Vancouver, ISO, and other styles
7

AUTODESK INC SAN RAFAEL CA. The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling (BIM). Supplement 1- BIM Implementation Guide for Military Construction (MILCON) Projects Using the Autodesk Platform. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada576142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

BENTLEY SYSTEMS INC EXTON PA. The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling (BIM). Supplement 2 - BIM Implementation Guide for Military Construction (MILCON) Projects Using the Bentley Platform. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada578649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Spangler, Stephen. A/E/C Computer-Aided Design (CAD) Standard : Release 6.2. Engineer Research and Development Center (U.S.), July 2024. http://dx.doi.org/10.21079/11681/48775.

Full text
Abstract:
The A/E/C Computer-Aided Design (CAD) Standard has been developed by the CAD/Building Information Modeling (BIM) Technology Center for Facilities, Infrastructure, and Environment to eliminate redundant CAD standardization efforts within DoD and the Federal Government. This manual is part of an initiative to develop a nonproprietary CAD standard that incorporates existing industry, national, and international standards and to develop data standards that address the entire life cycle of facilities within DoD. The material addressed in the A/E/C CAD Standard includes level/layer assignments, digital file naming, and standard symbology. The CAD/BIM Center’s primary goal is to develop a CAD standard that is generic enough to operate under various CAD software packages (such as Bentley’s MicroStation and Autodesk’s AutoCAD) while incorporating existing industry standards when possible. While this Standard encompasses many CAD concepts and practices, it is not intended to limit the capabilities of other advanced modeling software. Ultimately, a BIM / Civil Information Modeling standard will be developed to standardize the additional capabilities of other software.
APA, Harvard, Vancouver, ISO, and other styles
10

Spangler, Stephen, Roger Fujan, Gerald Piotrowski, and Brian Baker. A/E/C Graphics Standard : Release 2.2. Engineer Research and Development Center (U.S.), August 2023. http://dx.doi.org/10.21079/11681/47452.

Full text
Abstract:
The A/E/C Graphics Standard Release 2.2 has been developed by the Computer-Aided Design/Building Information Modeling Technology Center to document how proper hand-drafting practices can be achieved in advanced modeling. It is through the collection and documentation of these practices that consistent models and drawings shall be achieved throughout the US Army Corps of Engineers (USACE), as well as other federal agencies. In the collection of these practices, various historical USACE District drafting manuals were consulted and compared against practices contained in industry and national standards, with consideration toward whether software can achieve those practices. The documentation of these practices will help to achieve both clear and aesthetically pleasing construction documents.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography